Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (114)

Search Parameters:
Keywords = anodic polymer layer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4082 KB  
Article
Electrochemical Characterization of a Molecularly Imprinted Polymer Sensor for the Selective Recognition of Type II Collagen in Joint Degeneration Monitoring
by Jindapa Nampeng, Naphatsawan Vongmanee, Chuchart Pintavirooj and Sarinporn Visitsattapongse
Polymers 2026, 18(3), 321; https://doi.org/10.3390/polym18030321 - 25 Jan 2026
Viewed by 243
Abstract
Type II collagen is a primary fibrillar component of articular cartilage, and its early degradation is a key biomarker of joint-degenerative disorders such as osteoarthritis, rheumatoid arthritis, gout, etc. Reliable detection at low concentrations remains challenging due to limited assay accessibility, complex analytical [...] Read more.
Type II collagen is a primary fibrillar component of articular cartilage, and its early degradation is a key biomarker of joint-degenerative disorders such as osteoarthritis, rheumatoid arthritis, gout, etc. Reliable detection at low concentrations remains challenging due to limited assay accessibility, complex analytical procedures, and nonspecific responses in multicomponent biological matrices. This research reports the development of a Molecularly Imprinted Polymer (MIP)–based electrochemical sensor engineered for the selective recognition of type II collagen. A series of monomer formulations were evaluated, and the 1AAM:2VP composition produced a well-defined imprinted layer on screen-printed carbon electrodes, yielding the highest electrochemical sensitivity and linearity. The optimized sensor exhibited strong anodic and cathodic responses proportional to increasing collagen concentrations, with a calibration slope corresponding to an R2 value of 0.9394. Minimal signal interference was observed, confirming high molecular selectivity. The limit of detection (LOD) was calculated to be approximately 0.065 µg/mL. These characteristics demonstrate that the proposed MIP sensor provides a low-cost, accessible, and highly selective analytical platform suitable for early-stage cartilage degeneration monitoring. Full article
(This article belongs to the Special Issue Molecularly Imprinted Polymers)
Show Figures

Figure 1

17 pages, 15287 KB  
Article
Tuning Optical Absorption and Device Performance in P3HT:PCBM Organic Solar Cells Using Annealed Silver Thin Films
by Alaa Y. Mahmoud
Polymers 2026, 18(2), 254; https://doi.org/10.3390/polym18020254 - 17 Jan 2026
Viewed by 237
Abstract
In this study, we investigated the effect of annealing ultrathin silver (Ag) films of varying thicknesses (1–6 nm) on both their optical absorption and the performance of poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) organic solar cells (OSCs). The Ag [...] Read more.
In this study, we investigated the effect of annealing ultrathin silver (Ag) films of varying thicknesses (1–6 nm) on both their optical absorption and the performance of poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) organic solar cells (OSCs). The Ag films were deposited on indium tin oxide (ITO) anodes and annealed at 300 °C for 1–2 h to modify the anodic interface. The optical and electrical properties of the resulting devices were systematically characterized and optimized. The results revealed that a 1 nm AgO layer annealed for 2 h significantly enhanced the device performance, yielding a 6% increase in power conversion efficiency compared to the standard configuration. This improvement is attributed to two main factors: (i) a 25% increase in light absorption of the AgO/P3HT:PCBM film due to localized surface plasmon resonance of Ag nanoparticles and (ii) an 11% reduction in series resistance resulting from the favorable alignment of the Ag work function with the ITO anode and the polymer HOMO, which facilitates efficient hole extraction. These findings highlight the potential of ultrathin, annealed Ag/AgO interfacial layers as an effective strategy to enhance light absorption and charge transport in OSCs. Full article
(This article belongs to the Special Issue Advances in Polymeric Organic Optoelectronic Materials and Devices)
Show Figures

Graphical abstract

20 pages, 3300 KB  
Review
Improving the Cycling Stability of Next-Generation Si Anode Batteries Using Polymer Coatings
by Ki Yun Kim, Seong Soo Kang, Young-Pyo Jeon, Jin-Yong Hong and Jea Uk Lee
Materials 2025, 18(24), 5630; https://doi.org/10.3390/ma18245630 - 15 Dec 2025
Viewed by 534
Abstract
Silicon is widely recognized as a next-generation anode owing to its exceptional theoretical capacity, yet its practical deployment in lithium-ion batteries is constrained by severe volume expansion, particle fracture, loss of electrical percolation, and solid electrolyte interphase layer instability. Polymer-based strategies have emerged [...] Read more.
Silicon is widely recognized as a next-generation anode owing to its exceptional theoretical capacity, yet its practical deployment in lithium-ion batteries is constrained by severe volume expansion, particle fracture, loss of electrical percolation, and solid electrolyte interphase layer instability. Polymer-based strategies have emerged as accessible solutions to engineer extensive volume changes and interfacial compatibility, while preserving pathways for charge transport. Viscoelastic polymer binders dissipate stress, catechol-inspired chemistries strengthen adhesion and tailor interphases, and conductive polymers can function simultaneously as binder, electronic additive, and artificial SEI. This review describes these approaches through a structure–process–performance perspective, emphasizing practically relevant metrics, such as initial capacity, initial Coulombic efficiency, and long-term cycling stability. We organize the main section into (i) dopamine-derived interfacial engineering, (ii) self-healing three-dimensional network binders, and (iii) conductive-polymer-based designs. In the last section, we articulate the functional requirements of polymers in silicon anodes, outline the ideal structural designs, and provide forward-looking avenues for future lithium-ion battery anode research. Full article
Show Figures

Graphical abstract

17 pages, 4796 KB  
Article
Nanomechanical and Adhesive Behavior of Electrophoretically Deposited Hydroxyapatite- and Chitosan-Based Coatings on Ti13Zr13Nb Alloy
by Michał Bartmański
Materials 2025, 18(23), 5323; https://doi.org/10.3390/ma18235323 - 26 Nov 2025
Viewed by 451
Abstract
This work reports on the effects of surface pre-treatment and EPD process parameters on the nanomechanical and adhesive performance of chitosan-based composite coatings fabricated on a Ti13Zr13Nb alloy. Three different coating systems were prepared: chitosan–Cu (series A), chitosan–HAp (series B), and HAp–Cu (series [...] Read more.
This work reports on the effects of surface pre-treatment and EPD process parameters on the nanomechanical and adhesive performance of chitosan-based composite coatings fabricated on a Ti13Zr13Nb alloy. Three different coating systems were prepared: chitosan–Cu (series A), chitosan–HAp (series B), and HAp–Cu (series C). Coatings were deposited from suspensions at different voltages (10–30 V) and for various times (1–2 min) onto polished, anodized, and laser surface-treated titanium alloy substrates. Microstructural, nanomechanical, and adhesion properties were characterized by means of SEM, nanoindentation, and nanoscratch testing, respectively. Chitosan–Cu coatings exhibited the highest hardness (up to 8.2 GPa) and stiffness due to the homogeneous dispersion of Cu nanoparticles and strong interfacial bonding to the underlying anodized TiO2 layer. Chitosan–HAp coatings were softer (0.05–0.13 GPa) and highly plastic, particularly after laser surface treatment due to their specific porous, polymer-dominated structure. HAp–Cu coatings exhibited an intermediate mechanical behavior with a hardness between 0.1 GPa and 2.9 GPa and enhanced elastic recovery (Wp/We ≈ 3.5–4.7), particularly for anodized substrates. The nanoscratch test results showed that the HAp–Cu coatings exhibited the highest adhesion Lc (≈150–173 mN), confirming a synergistic effect of hybrid composition and heat treatment on interfacial toughness. The present data demonstrate that the optimization of anodizing and EPD processing parameters allows for the manipulation of the mechanical integrity and adhesion of bioactive chitosan-based coatings for titanium biomedical applications. Full article
Show Figures

Figure 1

21 pages, 3086 KB  
Review
Polymer-Based Artificial Solid Electrolyte Interphase Layers for Li- and Zn-Metal Anodes: From Molecular Engineering to Operando Visualization
by Jae-Hee Han and Joonho Bae
Polymers 2025, 17(22), 2999; https://doi.org/10.3390/polym17222999 - 11 Nov 2025
Viewed by 1740
Abstract
Metal anodes promise improvements in energy density and cost; however, their performance is determined within the first several nanometers at the interface. This review reports on how polymer-based artificial solid electrolyte interphases (SEIs) are engineered to stabilize Li and aqueous-Zn anodes, and how [...] Read more.
Metal anodes promise improvements in energy density and cost; however, their performance is determined within the first several nanometers at the interface. This review reports on how polymer-based artificial solid electrolyte interphases (SEIs) are engineered to stabilize Li and aqueous-Zn anodes, and how these designs are now evaluated against operando readouts rather than post-mortem snapshots. We group the related molecular strategies into three classes: (i) side-chain/ionomer chemistry (salt-philic, fluorinated, zwitterionic) to increase cation selectivity and manage local solvation; (ii) dynamic or covalently cross-linked networks to absorb microcracks and maintain coverage during plating/stripping; and (iii) polymer–ceramic hybrids that balance modulus, wetting, and ionic transport characteristics. We then benchmark these choices against metal-specific constraints—high reductive potential and inactive Li accumulation for Li, and pH, water activity, corrosion, and hydrogen evolution reaction (HER) for Zn—showing why a universal preparation method is unlikely. A central element is a system of design parameters and operando metrics that links material parameters to readouts collected under bias, including the nucleation overpotential (ηnuc), interfacial impedance (charge transfer resistance (Rct)/SEI resistance (RSEI)), morphology/roughness statistics from liquid-cell or cryogenic electron microscopy (Cryo-EM), stack swelling, and (for Li) inactive-Li inventory. By contrast, planar plating/stripping and HER suppression are primary success metrics for Zn. Finally, we outline parameters affecting these systems, including the use of lean electrolytes, the N/P ratio, high areal capacity/current density, and pouch-cell pressure uniformity, and discuss closed-loop workflows that couple molecular design with multimodal operando diagnostics. In this view, polymer artificial SEIs evolve from curated “recipes” into predictive, transferable interfaces, paving a path from coin-cell to prototype-level Li- and Zn-metal batteries. Full article
(This article belongs to the Special Issue Advanced Preparation and Characterization of Polymer-Based Thin Films)
Show Figures

Figure 1

14 pages, 5797 KB  
Article
Investigation of Blade Printing Technique for Nano-Structuring Piezoelectric Polymer Ink in a Porous Anodic Aluminum Oxide
by Tsvetozar Tsanev and Mariya Aleksandrova
Polymers 2025, 17(21), 2839; https://doi.org/10.3390/polym17212839 - 24 Oct 2025
Viewed by 590
Abstract
In this work, we investigated the use of a piezoelectric flexible device for energy harvesting. The main goal of the study was to fill the nanostructured pores of anodic aluminum oxide (AAO) films with piezoelectric polymer (PVDF-TrFE) via a modified conventional screen printing [...] Read more.
In this work, we investigated the use of a piezoelectric flexible device for energy harvesting. The main goal of the study was to fill the nanostructured pores of anodic aluminum oxide (AAO) films with piezoelectric polymer (PVDF-TrFE) via a modified conventional screen printing technique using blade printing. In this way, it is possible to obtain a composite from nanostructured thin films of polymer nanorods that shows improved charge generation ability compared to other non-nanostructured composites or pure (non-composite) aluminum with similar dimensions. This behavior is due to the effect of the highly developed surface of the material used to fill in the AAO nanopore template and its ability to withstand the application of higher mechanical loads to the structured piezoelectric material during deformation. The contact blade print filling technique can produce nanostructured piezoelectric polymer films with precise geometric parameters in terms of thickness and nanorod diameters, at around 200 nm, and a length of 12 μm. At a low frequency of 17 Hz, the highest root-mean-square (RMS) voltage generated using the nanostructured AAO/PVDF-TrFE sample with aluminum electrodes was around 395 mV. At high frequencies above 1700 Hz, the highest RMS voltage generated using the nanostructured AAO/PVDF-TrFE sample with gold electrodes was around 680 mV. The RMS voltage generated using a uniform (non-nanostructured) layer of PVDF-TrFE was 15% lower across the whole frequency range. Full article
(This article belongs to the Special Issue Advanced Polymers for Harnessing Power and Energy)
Show Figures

Graphical abstract

45 pages, 2145 KB  
Review
MXenes in Solid-State Batteries: Multifunctional Roles from Electrodes to Electrolytes and Interfacial Engineering
by Francisco Márquez
Batteries 2025, 11(10), 364; https://doi.org/10.3390/batteries11100364 - 2 Oct 2025
Cited by 6 | Viewed by 2728
Abstract
MXenes, a rapidly emerging family of two-dimensional transition metal carbides and nitrides, have attracted considerable attention in recent years for their potential in next-generation energy storage technologies. In solid-state batteries (SSBs), they combine metallic-level conductivity (>103 S cm−1), adjustable surface [...] Read more.
MXenes, a rapidly emerging family of two-dimensional transition metal carbides and nitrides, have attracted considerable attention in recent years for their potential in next-generation energy storage technologies. In solid-state batteries (SSBs), they combine metallic-level conductivity (>103 S cm−1), adjustable surface terminations, and mechanical resilience, which makes them suitable for diverse functions within the cell architecture. Current studies have shown that MXene-based anodes can deliver reversible lithium storage with Coulombic efficiencies approaching ~98% over 500 cycles, while their use as conductive additives in cathodes significantly improves electron transport and rate capability. As interfacial layers or structural scaffolds, MXenes effectively buffer volume fluctuations and suppress lithium dendrite growth, contributing to extended cycle life. In solid polymer and composite electrolytes, MXene fillers have been reported to increase Li+ conductivity to the 10−3–10−2 S cm−1 range and enhance Li+ transference numbers (up to ~0.76), thereby improving both ionic transport and mechanical stability. Beyond established Ti-based systems, double transition metal MXenes (e.g., Mo2TiC2, Mo2Ti2C3) and hybrid heterostructures offer expanded opportunities for tailoring interfacial chemistry and optimizing energy density. Despite these advances, large-scale deployment remains constrained by high synthesis costs (often exceeding USD 200–400 kg−1 for Ti3C2Tx at lab scale), restacking effects, and stability concerns, highlighting the need for greener etching processes, robust quality control, and integration with existing gigafactory production lines. Addressing these challenges will be crucial for enabling MXene-based SSBs to transition from laboratory prototypes to commercially viable, safe, and high-performance energy storage systems. Beyond summarizing performance, this review elucidates the mechanistic roles of MXenes in SSBs—linking lithiophilicity, field homogenization, and interphase formation to dendrite suppression at Li|SSE interfaces, and termination-assisted salt dissociation, segmental-motion facilitation, and MWS polarization to enhanced electrolyte conductivity—thereby providing a clear design rationale for practical implementation. Full article
(This article belongs to the Collection Feature Papers in Batteries)
Show Figures

Figure 1

13 pages, 3844 KB  
Article
Atypical Analysis of a Graphite-Based Anode Prepared Using Aqueous Processes
by Kuan-Yi Liao, Chia-Chin Chang, Yuh-Lang Lee and Ten-Chin Wen
Molecules 2025, 30(19), 3947; https://doi.org/10.3390/molecules30193947 - 1 Oct 2025
Cited by 1 | Viewed by 660
Abstract
In order to form a solid electrolyte interphase (SEI) layer using aqueous processes, a graphite anode called MG-AQP was designed by wrapping and crosslinking graphite particles with aqueous composites (AQCs), which contained zwitterionic polymer, zwitterion molecules, and lithium salts. First, MG-AQP was used [...] Read more.
In order to form a solid electrolyte interphase (SEI) layer using aqueous processes, a graphite anode called MG-AQP was designed by wrapping and crosslinking graphite particles with aqueous composites (AQCs), which contained zwitterionic polymer, zwitterion molecules, and lithium salts. First, MG-AQP was used to fabricate a full lithium-ion battery (LIB) cell with Li[Ni0.8Mn0.1Co0.1]O2 (NMC811) as the cathode, denoted as LIB-MG-AQP//NMC811, to demonstrate its performance via a 0.5 C-rate break-in and 1 C-rate cycling. Accordingly, this showed that LIB-MG-AQP exhibits outstanding cyclic stability. To evaluate its electrochemical performance, MG-AQP and lithium metal were used to fabricate a half cell named LIBs-MG-AQP. According to the initial cyclic voltammetry curve, almost no surface reaction for forming an SEI layer exists in LIBs-MG-AQP, illustrating its high initial coulombic efficiency of 92% at a 0.5 C-rate break-in. These outstanding results are due to the fact that the AQC has fewer cracks, thus blocking solvent molecules from passing from the electrolyte into the graphite anode. This study provides new insights to optimize graphite anodes via 0.5 C-rate break-in rather than conventional SEI formation to save time and energy. Full article
(This article belongs to the Special Issue Carbon-Based Electrochemical Materials for Energy Storage)
Show Figures

Figure 1

14 pages, 6680 KB  
Article
In Situ Engineered Plastic–Crystal Interlayers Enable Li-Rich Cathodes in PVDF-HFP-Based All-Solid-State Polymer Batteries
by Fei Zhou, Jinwei Tan, Feixiang Wang and Meiling Sun
Batteries 2025, 11(9), 334; https://doi.org/10.3390/batteries11090334 - 6 Sep 2025
Viewed by 2393
Abstract
All-solid-state lithium batteries (ASSLBs) employing Li-rich layered oxide (LLO) cathodes are regarded as promising next-generation energy storage systems owing to their outstanding energy density and intrinsic safety. Polymer-in-salt solid electrolytes (PISSEs) offer advantages such as high room-temperature ionic conductivity, enhanced Li anode interfacial [...] Read more.
All-solid-state lithium batteries (ASSLBs) employing Li-rich layered oxide (LLO) cathodes are regarded as promising next-generation energy storage systems owing to their outstanding energy density and intrinsic safety. Polymer-in-salt solid electrolytes (PISSEs) offer advantages such as high room-temperature ionic conductivity, enhanced Li anode interfacial compatibility, and low processing costs; however, their practical deployment is hindered by poor oxidative stability especially under high-voltage conditions. In this study, we report the rational design of a bilayer electrolyte architecture featuring an in situ solidified LiClO4-doped succinonitrile (LiClO4–SN) plastic–crystal interlayer between a Li1.2Mn0.6Ni0.2O2 (LMNO) cathode and a poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP)-based PISSE. This PISSE/SN–LiClO4 configuration exhibits a wide electrochemical stability window up to 4.7 V vs. Li+/Li and delivers a high ionic conductivity of 5.68 × 10−4 S cm−1 at 25 °C. The solidified LiClO4-SN layer serves as an effective physical barrier, shielding the PVDF-HFP matrix from direct interfacial contact with LMNO and thereby suppressing its oxidative decomposition at elevated potentials. As a result, the bilayer polymer-based cells with the LMNO cathode demonstrate an initial discharge capacity of ∼206 mAh g−1 at 0.05 C and exhibit good cycling stability with 85.7% capacity retention after 100 cycles at 0.5 C under a high cut-off voltage of 4.6 V. This work not only provides a promising strategy to enhance the compatibility of PVDF-HFP-based electrolytes with high-voltage cathodes through the facile in situ solidification of plastic interlayers but also promotes the application of LMNO cathode material in high-energy ASSLBs. Full article
Show Figures

Graphical abstract

13 pages, 6776 KB  
Article
Bimetallic Ir-Sn Non-Carbon Supported Anode Catalysts for PEM Water Electrolysis
by Iveta Boshnakova, Elefteria Lefterova, Galin Borisov, Denis Paskalev and Evelina Slavcheva
Inorganics 2025, 13(7), 210; https://doi.org/10.3390/inorganics13070210 - 20 Jun 2025
Viewed by 1020
Abstract
Nanostructured bimetallic IrSn composites deposited on the natural aluminosilicate montmorillonite were synthesized and evaluated as anode electrocatalysts for polymer electrolyte membrane electrolysis cells (PEMECs). The test series prepared via the sol–gel method consisted of samples with 30 wt. % total metal content and [...] Read more.
Nanostructured bimetallic IrSn composites deposited on the natural aluminosilicate montmorillonite were synthesized and evaluated as anode electrocatalysts for polymer electrolyte membrane electrolysis cells (PEMECs). The test series prepared via the sol–gel method consisted of samples with 30 wt. % total metal content and varying Ir:Sn ratio. The performed X-ray diffraction analysis and high-resolution transmission electron icroscopy registered very fine nanostructure of the composites with metal particles size of 2–3 nm homogeneously dispersed on the support surface and also intercalated in the basal space of its layered structure. The electrochemical behavior was investigated by cyclic voltammetry and steady-state polarization techniques. The initial screening was performed in 0.5 M H2SO4. Then, the catalysts were integrated as anodes in membrane electrode assemblies (MEAs) and tested in a custom-made PEMEC. The electrochemical tests revealed that the catalysts with Ir:Sn ratio 15:15 and 18:12 wt. % demonstrated high efficiency toward the oxygen evolution reaction during repetitive potential cycling and sustainable performance with current density in the range 140–120 mA cm−2 at 1.6 V vs. RHE during long-term stability tests. The results obtained give credence to the studied IrSn/MMT nanocomposites to be considered promising, cost-efficient catalysts for the oxygen evolution reaction (OER). Full article
Show Figures

Graphical abstract

27 pages, 11185 KB  
Article
The Impact of Flow Rate Variations on the Power Performance and Efficiency of Proton Exchange Membrane Fuel Cells: A Focus on Anode Flooding Caused by Crossover Effect and Concentration Loss
by Byung-Yeon Seo and Hyun Kyu Suh
Energies 2025, 18(12), 3084; https://doi.org/10.3390/en18123084 - 11 Jun 2025
Cited by 1 | Viewed by 1006
Abstract
This study investigates the effects of anode and cathode inlet flow rates (ṁ) on the power performance of bipolar plates in a polymer electrolyte membrane fuel cell (PEMFC). The primary objective is to derive optimal flow rate conditions by comparatively analyzing concentration loss [...] Read more.
This study investigates the effects of anode and cathode inlet flow rates (ṁ) on the power performance of bipolar plates in a polymer electrolyte membrane fuel cell (PEMFC). The primary objective is to derive optimal flow rate conditions by comparatively analyzing concentration loss in the I−V curve and crossover phenomena at the anode, thereby establishing flow rates that prevent reactant depletion and water flooding. A single-cell computational model was constructed by assembling a commercial bipolar plate with a gas diffusion layer (GDL), catalyst layer (CL), and proton exchange membrane (PEM). The model simulates current density generated by electrochemical oxidation-reduction reactions. Hydrogen and oxygen were supplied at a 1:3 ratio under five proportional flow rate conditions: hydrogen (m˙H2 = 0.76–3.77 LPM) and oxygen (m˙O2 = 2.39–11.94 LPM). The Butler–Volmer equation was employed to model voltage drop due to overpotential, while numerical simulations incorporated contact resistivity, surface permeability, and porous media properties. Simulation results demonstrated a 24.40% increase in current density when raising m˙H2 from 2.26 to 3.02 LPM and m˙O2 from 7.17 to 9.56 LPM. Further increases to m˙H2 = 3.77 LPM and m˙O2 = 11.94 LPM yielded a 10.20% improvement, indicating that performance enhancements diminish beyond a critical threshold. Conversely, lower flow rates (m˙H2 = 0.76 and 1.5 LPM, m˙O2 = 2.39 and 4.67 LPM) induced hydrogen-depleted regions, triggering crossover phenomena that exacerbated anode contamination and localized flooding. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Figure 1

23 pages, 3687 KB  
Review
Challenges and Research Progress in Zinc Anode Interfacial Stability
by Jing Li, Qianxin Liu, Zixuan Zhou, Yaqi Sun, Xidong Lin, Tao Yang and Funian Mo
Energies 2025, 18(10), 2592; https://doi.org/10.3390/en18102592 - 16 May 2025
Cited by 3 | Viewed by 2158
Abstract
Aqueous zinc-ion batteries are regarded a promising energy storage system due to their high safety, low cost, high theoretical specific capacity (820 mAh g−1), and low redox potential (−0.76 V). However, in practice, uneven Zn2+ deposition on the surface of [...] Read more.
Aqueous zinc-ion batteries are regarded a promising energy storage system due to their high safety, low cost, high theoretical specific capacity (820 mAh g−1), and low redox potential (−0.76 V). However, in practice, uneven Zn2+ deposition on the surface of the zinc anode can lead to the uncontrolled growth of zinc dendrites, which can puncture the separator and trigger a short-circuit in the cell. In addition, the inherent thermodynamic instability of weakly acidic electrolytes is prone to trigger side reactions like hydrogen evolution reaction and corrosion, further weakening the stability of the zinc anode. These problems not only affect the cycle life of the battery, but also lead to a significant decrease in electrochemical performance. Therefore, how to effectively inhibit the unwanted side reactions and guide the uniform deposition of Zn2+ to suppress the growth of dendrites becomes a key challenge in constructing a stable zinc anode/electrolyte interface. Therefore, this paper systematically combs through the main bottlenecks and root causes that hinder the interfacial stability of zinc anodes at present, and summarizes the existing solutions and the progress made. On this basis, this paper also analyzes the application potential of polymer materials in enhancing the interfacial stability of zinc anodes, which provides new ideas for the direction of subsequent research. Full article
Show Figures

Figure 1

25 pages, 4525 KB  
Review
Advancement in Research on Silicon/Carbon Composite Anode Materials for Lithium-Ion Batteries
by Binbin Jin, Liwei Liao, Xinyi Shen, Zhe Mei, Qingcheng Du, Liying Liang, Bingxin Lei and Jun Du
Metals 2025, 15(4), 386; https://doi.org/10.3390/met15040386 - 29 Mar 2025
Cited by 15 | Viewed by 10968
Abstract
Silicon stands out as an exceptionally viable anode material, distinguished by its substantial capacity, plentiful natural reserves, eco-friendliness, and favorable low working potential. Nonetheless, the material’s pronounced volume fluctuations readily induce particle fragmentation, detachment of active components, and repeated disruption of the solid [...] Read more.
Silicon stands out as an exceptionally viable anode material, distinguished by its substantial capacity, plentiful natural reserves, eco-friendliness, and favorable low working potential. Nonetheless, the material’s pronounced volume fluctuations readily induce particle fragmentation, detachment of active components, and repeated disruption of the solid electrolyte interphase (SEI) layer. These factors contribute to a shortened cycle life and rapid capacity fading, thus hindering its practical application. The carbon composite approach can efficiently counteract these issues by capitalizing on silicon’s high capacity and employing carbon as a cushioning agent to diminish volume swelling, thus enhancing the deployment of silicon-based anode materials. This paper offers an exhaustive examination of the lithiation processes involved in Si/C anodes and delves into the strategic utilization of diverse carbon materials, including graphite, graphene, graphdiyne, carbon nanotubes, carbon fibers, MXenes, pitch, heteroatom-doped polymers, biomass-derived carbon, carbon-containing gas-derived carbon, MOFs, and g-C3N4 to advance the application of silicon in lithium-ion battery (LIB) anodes. Overall, this paper concentrates on summarizing the current research status and technological advancement and juxtaposes the merits and demerits of various carbon sources in Si/C anodes, thus providing a comprehensive assessment and forward-looking perspective on their future development. Full article
Show Figures

Figure 1

28 pages, 4151 KB  
Article
Development of Deep Learning Simulation and Density Functional Theory Framework for Electrocatalyst Layers for PEM Electrolyzers
by Jaydev Zaveri, Shankar Raman Dhanushkodi, Michael W. Fowler, Brant A. Peppley, Dawid Taler, Tomasz Sobota and Jan Taler
Energies 2025, 18(5), 1022; https://doi.org/10.3390/en18051022 - 20 Feb 2025
Cited by 8 | Viewed by 2001
Abstract
The electrocatalyst layers (ECLs) in polymer electrolyte membrane (PEM) electrolyzers are fundamentally comprised of IrOx catalysts, support material, and an ionomer. Their stability is critically dependent on structure and composition, necessitating a thorough understanding of ionization potential and work function. We employ Density [...] Read more.
The electrocatalyst layers (ECLs) in polymer electrolyte membrane (PEM) electrolyzers are fundamentally comprised of IrOx catalysts, support material, and an ionomer. Their stability is critically dependent on structure and composition, necessitating a thorough understanding of ionization potential and work function. We employ Density Functional Theory (DFT) to determine the ionization states of ECLs and to optimize their electronic properties. Furthermore, advanced deep learning simulations (DLSs) significantly enhance the kinetic and transport behaviors of these layers. This work integrates DFT and DLS to elucidate the characteristics of ECLs within PEM electrolyzer cells. We strategically utilize DFT to refine catalyst molecules and assess their electronic properties, while DLS is employed to predict the potential energy of support molecules in the catalyst layers. We establish a clear relationship between the energy and geometry of IrOx molecules. The DFT-DLS framework robustly calculates potential energy and reaction coordinates, effectively bridging theoretical computations with the dynamic behavior of molecules in catalyst layers. We validate our model by comparing it with the experimental polarization curve of the IrOx-based anode catalyst layer in a functioning electrolyzer. The observed Tafel slope and exchange current density unequivocally confirm that the oxygen evolution reaction (OER) occurs through a well-defined electrochemical pathway, with oxygen generation proceeding according to the charge transfer mechanism predicted by the DFT-DLS framework. Full article
(This article belongs to the Special Issue Nanomaterials and Their Applications in Energy Storage and Conversion)
Show Figures

Figure 1

18 pages, 6925 KB  
Article
Improvement of Polymer/Metal Adhesion Using Anodizing Treatment and 3D Printing Process
by Seung Wan Ryu, Dong Hyun Kim, Wonhwa Lee, Jin-Yong Hong, Young-Pyo Jeon and Jea Uk Lee
Polymers 2025, 17(3), 299; https://doi.org/10.3390/polym17030299 - 23 Jan 2025
Cited by 7 | Viewed by 3241
Abstract
Joining materials with different physicochemical properties presents significant challenges. This study investigates the one-step anodization of aluminum in a mixed phosphoric acid and hydrogen peroxide solution, followed by the direct injection molding of polymer resin to enhance joint properties. The anodizing treatment is [...] Read more.
Joining materials with different physicochemical properties presents significant challenges. This study investigates the one-step anodization of aluminum in a mixed phosphoric acid and hydrogen peroxide solution, followed by the direct injection molding of polymer resin to enhance joint properties. The anodizing treatment is performed at constant electrical current with phosphoric acid solutions of various concentrations. Phosphoric acid anodizing enables the formation of 3D channeling pore structure with micropits and uniform nanopores on the aluminum surface. Hydrogen peroxide acts as an oxidizing agent and promotes the dissolution reaction, thereby increasing the size of the nanopores. Larger pores facilitated the penetration of polymer resin into the aluminum oxide layer during injection molding, resulting in bonding strengths up to 40.34 MPa. This improvement is substantial when compared to the bonding strengths achieved through conventional injection molding processes. These results highlight that the increase in nanopore size due to hydrogen peroxide addition played a critical role in enhancing the bonding strength, as it facilitated better penetration and interlocking of the polymer resin within the anodized aluminum layer. Furthermore, a three-dimensional (3D) printing process was able to join polymer resins to the anodized aluminum surface, where the larger nanopores with the addition of the hydrogen peroxide is more beneficial to the bonding strengths than the direct injection molding is. This alternative approach addresses the environmental issues associated with the use of Cr(VI)-based anodizing solutions and the lightweight composites with applicability to various industries that could be produced using this method. Full article
(This article belongs to the Special Issue 3D Printing of Polymer Composites, 2nd Edition)
Show Figures

Graphical abstract

Back to TopTop