Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (77)

Search Parameters:
Keywords = annual glacier mass balance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 17827 KiB  
Article
Examining Glacier Changes Since 1990 and Predicting Future Changes in the Turpan–Hami Area, Eastern Tianshan Mountains (China), Until the End of the 21st Century
by Yuqian Chen, Baozhong He, Xing Jiang, Gulinigaer Yisilayili and Zhihao Zhang
Sustainability 2025, 17(11), 5093; https://doi.org/10.3390/su17115093 - 1 Jun 2025
Viewed by 572
Abstract
Glaciers, often regarded as “frozen reservoirs”, play a crucial role in replenishing numerous rivers in arid regions, contributing to ecological balance and managing river flow. Recently, the rapid shrinkage of the glaciers in the East Tianshan Mountains has affected the water quantity in [...] Read more.
Glaciers, often regarded as “frozen reservoirs”, play a crucial role in replenishing numerous rivers in arid regions, contributing to ecological balance and managing river flow. Recently, the rapid shrinkage of the glaciers in the East Tianshan Mountains has affected the water quantity in the Karez system. However, studies on glacier changes in this region are limited, and recent data are scarce. This study utilizes annual Landsat composite images from 1990 to 2022 obtained via the Google Earth Engine (GEE). It utilizes a ratio threshold approach in conjunction with visual analysis to gather the glacier dataset specific to the Turpan–Hami region. The Open Global Glacier Model (OGGM) is used to model the flowlines and mass balance of around 300 glaciers. The study analyzes the glacier change trends, distribution characteristics, and responses to climate factors in the Turpan–Hami region over the past 30 years. Additionally, future glacier changes through the end of the century are projected using CMIP6 climate data. The findings indicate that the following: (1) From 1990 to 2022, glaciers in the research area underwent considerable retreat. The total glacier area decreased from 204.04 ± 0.887 km2 to 133.52 ± 0.742 km2, a reduction of 70.52 km2, representing a retreat rate of 34.56%. The number of glaciers also decreased from 304 in 1990 to 236 in 2022. The glacier length decreased by an average of 7.54 m·a−1, with the average mass balance at −0.34 m w.e.·a−1, indicating a long-term loss of glacier mass. (2) Future projections to 2100 indicate that under three climate scenarios, the area covered by glaciers could diminish by 89%, or 99%, or even vanish entirely. In the SSP585 scenario, glaciers are projected to nearly disappear by 2057. (3) Rising temperatures and solar radiation are the primary factors driving glacier retreat in the Turpan–Hami area. Especially under high emission scenarios, climate warming will accelerate the glacier retreat process. Full article
Show Figures

Figure 1

17 pages, 10073 KiB  
Article
Impact of Extreme Weather Events on the Surface Energy Balance of the Low-Elevation Svalbard Glacier Aldegondabreen
by Uliana V. Prokhorova, Anton V. Terekhov, Vasiliy E. Demidov, Kseniia V. Romashova, Kirill V. Barskov, Dmitry G. Chechin, Igor I. Vasilevich, Mikhail V. Tretiakov, Boris V. Ivanov, Irina A. Repina and Sergey R. Verkulich
Water 2025, 17(2), 274; https://doi.org/10.3390/w17020274 - 19 Jan 2025
Viewed by 916
Abstract
The summer of 2022 was notable for the Svalbard archipelago due to the occurrence of several longstanding heatwaves, making it one of the warmest summers on the regional record. This study used an energy balance model forced with in situ weather observations to [...] Read more.
The summer of 2022 was notable for the Svalbard archipelago due to the occurrence of several longstanding heatwaves, making it one of the warmest summers on the regional record. This study used an energy balance model forced with in situ weather observations to investigate the influence of extreme weather events on the surface energy balance of the low-elevation Aldegondabreen glacier (5.2 km2), located near Barentsburg town, with a focus on the turbulent heat exchange. The annual mass balance for 2022 (−2.13 m w.e.) was one of the most negative on record for Aldegondabreen since 2002/2003 when glaciological monitoring was first initiated. We identified four heatwaves that lasted from 9 to 19 days, the most prominent of which were observed in May and in September–October, which resulted in an anomalously prolonged melt season. In addition, several shorter, 1- to 3-day extreme melt events were identified, representing up to 75 mm w.e. day−1 of glacier-averaged melt. These events were well correlated (r = 0.87, p < 0.01), with discharge from a stream originating from the glacier terminus, and all cases were associated with significant increases in mean daily wind speeds (up to 10.3 m s−1). Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

17 pages, 18667 KiB  
Article
Enhanced Wide-Area Glacier Velocity Monitoring in Svalbard via Synthetic Aperture Radar Offset Tracking Noise Suppression
by Honglei Yang, Songxue Zhao, Zeping Wang, Ao Yan and Zhenhan Shi
Appl. Sci. 2024, 14(23), 10834; https://doi.org/10.3390/app142310834 - 22 Nov 2024
Viewed by 938
Abstract
Glacier movement is an important indicator of climate change, reflecting the quality and state changes in glacier migration and mass balance in the context of global warming. Although accurately estimating glacier surface flow velocity is crucial for various applications, achieving this is challenging [...] Read more.
Glacier movement is an important indicator of climate change, reflecting the quality and state changes in glacier migration and mass balance in the context of global warming. Although accurately estimating glacier surface flow velocity is crucial for various applications, achieving this is challenging due to factors such as low temporal correlation and high noise effects. This paper presents the pixel offset tracking (POT) technology based on Synthetic Aperture Radar (SAR) data for glacier velocity monitoring, with enhanced cross-correlation matching window and noise suppression approaches. In particular, a noise suppression optimization method and a matching window optimization index suitable for wide-area glacier velocity monitoring are proposed. The inter-annual wide-area two-dimensional plane flow velocity of glaciers in the Svalbard archipelago was obtained by using a total of seven Sentinel-1 data sets from two orbits covering the entire Svalbard archipelago in 2021. The results indicate that 25 large glaciers in Svalbard destabilized in 2021, with a peak flow velocity of 6.18 m/day. At the same time, the influence of climate, topography, and other factors on glacier surface velocity is discussed. The wide-area glacier velocity monitoring method and its application demonstrated in this paper will serve as a valuable reference for studying glacier migration in the Arctic Svalbard archipelago and for other large-scale wide-area deformation monitoring efforts. Full article
(This article belongs to the Special Issue Latest Advances in Radar Remote Sensing Technologies)
Show Figures

Figure 1

15 pages, 1077 KiB  
Technical Note
Quantifying Annual Glacier Mass Change and Its Influence on the Runoff of the Tuotuo River
by Lin Liu, Xueyu Zhang and Zhimin Zhang
Remote Sens. 2024, 16(20), 3898; https://doi.org/10.3390/rs16203898 - 20 Oct 2024
Viewed by 990
Abstract
Glacier meltwater is an indispensable water supply for billions of people living in the catchments of major Asian rivers. However, the role of glaciers on river runoff regulation is seldom investigated due to the lack of annual glacier mass balance observation. In this [...] Read more.
Glacier meltwater is an indispensable water supply for billions of people living in the catchments of major Asian rivers. However, the role of glaciers on river runoff regulation is seldom investigated due to the lack of annual glacier mass balance observation. In this study, we employed an albedo-based model with a daily land surface albedo dataset to derive the annual glacier mass balance over the Tuotuo River Basin (TRB). During 2000–2022, an annual glacier mass balance range of −0.89 ± 0.08 to 0.11 ± 0.11 m w.e. was estimated. By comparing with river runoff records from the hydrometric station, the contribution of glacier mass change to river runoff was calculated to be 0.00–31.14% for the studied period, with a mean value of 9.97%. Moreover, we found that the mean contribution in drought years is 20.07%, which is approximately five times that in wet years (4.30%) and twice that in average years (9.49%). Therefore, our results verify that mountain glaciers act as a significant buffer against drought in the TRB, at least during the 2000–2022 period. Full article
Show Figures

Figure 1

21 pages, 6058 KiB  
Article
Unveiling Glacier Mass Balance: Albedo Aggregation Insights for Austrian and Norwegian Glaciers
by Fan Ye, Qing Cheng, Weifeng Hao, Anxun Hu and Dong Liang
Remote Sens. 2024, 16(11), 1914; https://doi.org/10.3390/rs16111914 - 26 May 2024
Cited by 1 | Viewed by 1684
Abstract
Assessing the regional mass balance of European glaciers presents significant challenges due to limited measurements. While various albedo methods have been explored for individual glaciers, a comprehensive analysis of aggregated albedo methods is lacking. Addressing this gap, in our study, we examined five [...] Read more.
Assessing the regional mass balance of European glaciers presents significant challenges due to limited measurements. While various albedo methods have been explored for individual glaciers, a comprehensive analysis of aggregated albedo methods is lacking. Addressing this gap, in our study, we examined five MODIS aggregated albedos (raw average, minimum average, average minimum, interpolated average, and cumulative) versus the annual mass balance for 12 Austrian and Norwegian glaciers from 2001 to 2020 to establish connections between them. We find that the raw average albedo is strongly correlated with the annual mass balance of Austrian glaciers (r = 0.91), while the interpolated average albedo is significantly correlated with the annual mass balance of Norwegian glaciers (r = 0.90). Moreover, we observe that high-elevation glaciers experience fewer cloud cover days, allowing the raw average albedo to reliably estimate the annual mass balance, whereas low-elevation glaciers are often obscured by clouds, potentially masking the true minimum albedo. Additionally, traditional indicators, such as the equilibrium-line altitude and accumulation area ratio, exhibit significant correlations with the annual mass balance of Norwegian and Austrian glaciers (r = 0.90 and 0.87, respectively), yet albedo demonstrates higher robustness. These findings provide a reference for selecting appropriate aggregation methods to reconstruct glacier mass balance from albedo observations. Full article
Show Figures

Figure 1

12 pages, 4335 KiB  
Article
Visualizing Changes in Global Glacier Surface Mass Balances before and after 1990
by Roger J. Braithwaite and Philip D. Hughes
Atmosphere 2024, 15(3), 362; https://doi.org/10.3390/atmos15030362 - 16 Mar 2024
Cited by 1 | Viewed by 2199
Abstract
Recent satellite measurements of glacier mass balances show mountain glaciers all over the world had generally negative mass balances in the first decades of the 21st century. Mean summer temperatures all over the world rose from the 1961–1990 period to the 1991–2020 period, [...] Read more.
Recent satellite measurements of glacier mass balances show mountain glaciers all over the world had generally negative mass balances in the first decades of the 21st century. Mean summer temperatures all over the world rose from the 1961–1990 period to the 1991–2020 period, implying increasingly negative mass balances. We studied archived annual balances for 38 northern hemisphere glaciers to assess changes within the 1961–2020 period. We used a modified double-mass curve to visualize mass balance changes occurring around 1990. Mean balances in 1961–1990 were already small negative for many of the studied glaciers and became even more negative in 1991–2020 for glaciers in the Alps, at high latitudes and in western North America. The largest mass balance changes were for some glaciers in the Alps. We are unable to explain the lack of change in mean balance for one glacier in High Mountain Asia. We found complex changes for eight glaciers in Scandinavia, even including one glacier with a positive balance. We explain these changes by visualizing the deviations in winter and summer balances from their respective 1961–1990 mean values. High winter balances in the 1990s for Scandinavia partly obscured the emerging trend of increasingly negative summer balances, which we expect to continue in the future. Full article
(This article belongs to the Special Issue Analysis of Global Glacier Mass Balance Changes and Their Impacts)
Show Figures

Figure 1

20 pages, 6281 KiB  
Article
Comparison of Machine Learning Models in Simulating Glacier Mass Balance: Insights from Maritime and Continental Glaciers in High Mountain Asia
by Weiwei Ren, Zhongzheng Zhu, Yingzheng Wang, Jianbin Su, Ruijie Zeng, Donghai Zheng and Xin Li
Remote Sens. 2024, 16(6), 956; https://doi.org/10.3390/rs16060956 - 8 Mar 2024
Cited by 9 | Viewed by 2771
Abstract
Accurately simulating glacier mass balance (GMB) data is crucial for assessing the impacts of climate change on glacier dynamics. Since physical models often face challenges in comprehensively accounting for factors influencing glacial melt and uncertainties in inputs, machine learning (ML) offers a viable [...] Read more.
Accurately simulating glacier mass balance (GMB) data is crucial for assessing the impacts of climate change on glacier dynamics. Since physical models often face challenges in comprehensively accounting for factors influencing glacial melt and uncertainties in inputs, machine learning (ML) offers a viable alternative due to its robust flexibility and nonlinear fitting capability. However, the effectiveness of ML in modeling GMB data across diverse glacier types within High Mountain Asia has not yet been thoroughly explored. This study addresses this research gap by evaluating ML models used for the simulation of annual glacier-wide GMB data, with a specific focus on comparing maritime glaciers in the Niyang River basin and continental glaciers in the Manas River basin. For this purpose, meteorological predictive factors derived from monthly ERA5-Land datasets, and topographical predictive factors obtained from the Randolph Glacier Inventory, along with target GMB data rooted in geodetic mass balance observations, were employed to drive four selective ML models: the random forest model, the gradient boosting decision tree (GBDT) model, the deep neural network model, and the ordinary least-square linear regression model. The results highlighted that ML models generally exhibit superior performance in the simulation of GMB data for continental glaciers compared to maritime ones. Moreover, among the four ML models, the GBDT model was found to consistently exhibit superior performance with coefficient of determination (R2) values of 0.72 and 0.67 and root mean squared error (RMSE) values of 0.21 m w.e. and 0.30 m w.e. for glaciers within Manas and Niyang river basins, respectively. Furthermore, this study reveals that topographical and climatic factors differentially influence GMB simulations in maritime and continental glaciers, providing key insights into glacier dynamics in response to climate change. In summary, ML, particularly the GBDT model, demonstrates significant potential in GMB simulation. Moreover, the application of ML can enhance the accuracy of GMB modeling, providing a promising approach to assess the impacts of climate change on glacier dynamics. Full article
(This article belongs to the Special Issue Monitoring Cold-Region Water Cycles Using Remote Sensing Big Data)
Show Figures

Graphical abstract

13 pages, 4446 KiB  
Communication
The Expanding of Proglacial Lake Amplified the Frontal Ablation of Jiongpu Co Glacier since 1985
by Xuanru Zhao, Jinquan Cheng, Weijin Guan, Yuxuan Zhang and Bo Cao
Remote Sens. 2024, 16(5), 762; https://doi.org/10.3390/rs16050762 - 22 Feb 2024
Viewed by 1491
Abstract
In High Mountain Asia, most glaciers and glacial lakes have undergone rapid variations throughout changes in the climate. Unlike land-terminating glaciers, lake-terminating glaciers show rapid shrinkage due to dynamic interactions between proglacial lakes and glacier dynamics. In this study, we conducted a detailed [...] Read more.
In High Mountain Asia, most glaciers and glacial lakes have undergone rapid variations throughout changes in the climate. Unlike land-terminating glaciers, lake-terminating glaciers show rapid shrinkage due to dynamic interactions between proglacial lakes and glacier dynamics. In this study, we conducted a detailed analysis of the changes in the surface elevation, velocity, and especially frontal ablation on Jiongpu Co lake-terminating glacier. The results show that the Jiongpu Co glacier has twice as much negative mass balance compared to other glaciers, and the annual surface velocity has anomalously increased (3.6 m a−1 per decade) while other glaciers show a decreased trend. The frontal ablation fraction in the net mass loss of the Jiongpu Co glacier increased from 26% to 52% with the accelerated expansion of the proglacial lake. All available evidence indicates the presence of positive feedback between the proglacial lake and its host glacier. Our findings highlight the existence of proglacial lake affects the spatial change patterns of the lake-terminating glacier. Furthermore, the ongoing enlargement of the lake area amplifies the changes associated with the evolution of the lake-terminating glacier. Full article
Show Figures

Graphical abstract

22 pages, 9859 KiB  
Article
Recent Mass Balance Anomalies on the Djankuat Glacier, Northern Caucasus
by Victor Popovnin, Afanasiy Gubanov, Valentina Lisak and Pavel Toropov
Atmosphere 2024, 15(1), 107; https://doi.org/10.3390/atmos15010107 - 16 Jan 2024
Cited by 5 | Viewed by 1221
Abstract
A 54-year-long series of continuous instrumental measurements of mass balance and its main components has already been accumulated at the Djankuat Glacier, which is representative of the Caucasus and the most studied glacier in Russia. The anomalies of these indicators in 2017/2018–2020/2021 were [...] Read more.
A 54-year-long series of continuous instrumental measurements of mass balance and its main components has already been accumulated at the Djankuat Glacier, which is representative of the Caucasus and the most studied glacier in Russia. The anomalies of these indicators in 2017/2018–2020/2021 were evaluated against an analysis of meteorological reasons that predetermined them. Each of the four balance years under consideration represents a particular anomaly of varying severity. As for conditions of mass income, three years saw accumulation higher than average, and in one year (2018/2019) it approached the norm. As for summer ablation conditions, similarly, in one season (2019) the melting differed from the average only slightly, but in the other three it was much higher. Consequently, in one year (2020/2021) the state of the glacier was close to normal, in another (2017/2018) the budget situation was much more favorable for Djankuat, and in the other two the final losses significantly exceeded the average annual mass loss rate. At the same time, in 2019/2020, an absolute record of ablation since the beginning of monitoring in 1967/1968 was recorded (4360 mm w.e.). Nevertheless, although negative mass balance values continue to be recorded annually, signs of an inevitable slowdown in the rate of glacier degradation in the Caucasus have appeared in the last 4-year-long period: the continued growth of winter snow accumulation overlaps the ongoing intensification of summer melting. The growth of debris cover in terms of area and thickness also affects this mass loss slowdown to some extent. This inhibits ablation, exerting a heat-insulating effect. Because of this, the congruence of mass balance parameters vs. altitude curves is distorted. Also, a tendency toward increasing annual glacier mass turnover was revealed for the last half-century. This fact gradually increases the energy of glaciation and indirectly indicates a weakening of continentality in the climate of the Caucasian highlands. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

25 pages, 33171 KiB  
Article
Spatial Estimation of Snow Water Equivalent for Glaciers and Seasonal Snow in Iceland Using Remote Sensing Snow Cover and Albedo
by Andri Gunnarsson and Sigurdur M. Gardarsson
Hydrology 2024, 11(1), 3; https://doi.org/10.3390/hydrology11010003 - 26 Dec 2023
Cited by 2 | Viewed by 3675
Abstract
Efficient water resource management in glacier- and snow-dominated basins requires accurate estimates of the snow water equivalent (SWE) in late winter and spring and melt onset timing and intensity. To understand the high spatio-temporal variability of snow and glacier ablation, a spatially distributed [...] Read more.
Efficient water resource management in glacier- and snow-dominated basins requires accurate estimates of the snow water equivalent (SWE) in late winter and spring and melt onset timing and intensity. To understand the high spatio-temporal variability of snow and glacier ablation, a spatially distributed energy balance model combining satellite-based retrievals of albedo and snow cover was applied. Incoming short-wave energy, contributing to daily estimates of melt energy, was constrained by remotely sensed surface albedo for snow-covered surfaces. Fractional snow cover was used for non-glaciated areas, as it provides estimates of snow cover for each pixel to better constrain snow melt. Thus, available daily estimates of melt energy in a given area were the product of the possible melt energy and the fractional snow cover of the area or pixel for non-glaciated areas. This provided daily estimates of melt water to determine seasonal snow and glacier ablation in Iceland for the period 2000–2019. Observations from snow pits on land and glacier summer mass balance were used for evaluation, and observations from land and glacier-based automatic weather stations were used to evaluate model inputs for the energy balance model. The results show that the interannual SWE variability was generally high both for seasonal snow and glaciers. For seasonal snow, the largest SWE (>1000 mm) was found in mountainous and alpine areas close to the coast, notably in the East- and Westfjords, Tröllaskaga, and in the vicinity of glacier margins. Lower SWE values were observed in the central highlands, flatter inland areas, and at lower elevations. For glaciers, more SWE (glacier ablation) was associated with lower glacier elevations while less melt was observed at higher elevations. For the impurity-rich bare-ice areas that are exposed annually, observed SWE was more than 3000 mm. Full article
(This article belongs to the Topic Hydrology and Water Resources Management)
Show Figures

Figure 1

17 pages, 17484 KiB  
Article
Glacier Surface Velocity Variations in the West Kunlun Mts. with Sentinel-1A Image Feature-Tracking (2014–2023)
by Zhenfeng Wang, Tanguang Gao, Yulong Kang, Wanqin Guo and Zongli Jiang
Remote Sens. 2024, 16(1), 63; https://doi.org/10.3390/rs16010063 - 23 Dec 2023
Cited by 1 | Viewed by 1909
Abstract
Glacier velocity is a crucial parameter in understanding glacier dynamics and mass balance, especially in response to climate change. Despite numerous studies on glaciers in the West Kunlun Mts., there is still insufficient knowledge about the details of inter- and intra-annual velocity changes [...] Read more.
Glacier velocity is a crucial parameter in understanding glacier dynamics and mass balance, especially in response to climate change. Despite numerous studies on glaciers in the West Kunlun Mts., there is still insufficient knowledge about the details of inter- and intra-annual velocity changes under global warming. This study analyzed the glacier velocity changes in the West Kunlun Mts. using Sentinel-1A satellite data. Our results revealed that: (1) The velocity of glaciers across the region shows an increasing trend from 2014 to 2023. (2) Five glaciers were found to have been surged during the study period, among which two of them were not reported before. (3) The surges in the study region were potentially controlled through a combination of hydrological and thermal mechanisms. (4) The glacier N2, Duofeng Glacier, and b2 of Kunlun Glacier exhibit higher annual velocities (32.82 m a−1) compared to surging glaciers in quiescent phases (13.22 m a−1), and were speculated as advancing or fast-flowing glaciers. Full article
Show Figures

Figure 1

22 pages, 5849 KiB  
Article
Micrometeorological Analysis and Glacier Ablation Simulation in East Kunlun
by Weisheng Wang, Meiping Sun, Yanjun Che, Xiaojun Yao, Mingjun Zhang and Shuting Niu
Water 2023, 15(19), 3517; https://doi.org/10.3390/w15193517 - 9 Oct 2023
Cited by 2 | Viewed by 1723
Abstract
Worldwide, there are great challenges for meteorological monitoring and glacier ablation monitoring in high-altitude mountain areas. It is often difficult to capture fine-scale climate and glacial changes in high-altitude mountainous areas due to the harsh natural environment and the extreme lack of observational [...] Read more.
Worldwide, there are great challenges for meteorological monitoring and glacier ablation monitoring in high-altitude mountain areas. It is often difficult to capture fine-scale climate and glacial changes in high-altitude mountainous areas due to the harsh natural environment and the extreme lack of observational sites. Based on high-altitude meteorological stations erected on the eastern shore of Aqikkule Lake (AQK) and at the terminus of Shenshechuan Glacier (SSG), as well as on mass balance data from SSG, the characteristics and correlation of temperature, solar radiation, relative humidity, precipitation, wind speed and direction of the two regions, and the mass balance in the ablation area of SSG from 30 May 2022 to 18 May 2023 were analyzed, and the average melting depth of SSG was simulated. The results indicate the following: (1) The average annual temperature of AQK and the terminus of SSG is −3.7 °C and −7.7 °C, respectively, and the vertical lapse rate of temperature in the summer half of the year is greater than that in the winter half of the year. Precipitation timing has a great influence on daily temperature differences. (2) Precipitation in both places is concentrated in summer; the glaciers in this area are of the summer recharge type, and precipitation has a significant reducing effect on the solar incident radiation and increases the relative humidity in this region. (3) AQK and SSG both have local circulation development, in the area of AQK all year round due to the lake effect, while the terminus of SSG only has the development of valley winds in the summer, being controlled in the winter by the westerly wind belt. (4) The average mass balance value of the ablation area of SSG was −1786 mm as measured by the range poles method. The average annual ablation depth of SSG simulated by using the empirical formula was 587–597 mm, which is not large compared with other glacier areas in the Tibetan Plateau, and it has the characteristics of typical continental-type glaciers. Full article
(This article belongs to the Special Issue Assessment of Glacier Changes)
Show Figures

Figure 1

24 pages, 13895 KiB  
Article
Spatiotemporal Variations of Glacier Mass Balance in the Tomur Peak Region Based on Multi-Source Altimetry Remote Sensing Data
by Chaoying Cheng, Weibing Du, Junli Li, Anming Bao, Wen Ge, Shuangting Wang, Dandan Ma and Yaming Pan
Remote Sens. 2023, 15(17), 4143; https://doi.org/10.3390/rs15174143 - 24 Aug 2023
Cited by 5 | Viewed by 1810
Abstract
Alpine glaciers are sensitive indicators of regional climate change, which can affect regional ecological stability and social development. Variations in glacier mass balance (GMB) are an important parameter in studying glacier change. In this study, data from the Ice, Cloud, and Land Elevation [...] Read more.
Alpine glaciers are sensitive indicators of regional climate change, which can affect regional ecological stability and social development. Variations in glacier mass balance (GMB) are an important parameter in studying glacier change. In this study, data from the Ice, Cloud, and Land Elevation Satellite-1 (ICESat-1), the Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2), and CryoSat-2 (Ku-band) were combined, and high-resolution ALOS DEM was employed to denoise. After that, the polynomial fitting method was used to analyze the characteristics of glacier surface elevation (GSE) variations from 2003–2020 in the Tomur Peak Region of the Central Asian Tianshan Mountains and the regional GMB was calculated. Research results showed that: (1) From 2003–2020, the GSE of the Tomur Peak Region had an overall −8.95 ± 4.48 m variation, the average rate of which was −0.53 ± 0.26 m/yr (/yr is /year). Overall, elevations of most glaciers in the Tomur Peak Region had downward trends, with a rate of change of −0.5 to 0 m/yr. The fastest rate of elevation decline in the Koxkar Glacier Tongue was −1.5 m/yr. The elevation of some altimetric points in the Eastern Tomur Peak Region showed a rising state, with a maximum rate of variation of 1.0 m/yr. (2) From 2003–2020, the average GMB in the Tomur Peak Region was −1.51 ± 0.04 Gt/yr. In the region of elevation below 4000 m, small glaciers dominated, with a GMB of −0.61 ± 0.04 Gt/yr. With increasing elevation, the melting rate of glaciers gradually slowed down, but overall, the mass balance remained in a state of decline. (3) Climate was the main driving factor of GMB change in the study area. From 2003–2020, in the Tomur Peak Region, the average annual temperature continued to increase at a rate of 0.04 ± 0.02 °C/yr, and this was the main influencing factor for the negative GMB in the Tomur Peak Region. In the same period, the annual precipitation showed a rising trend with a linear variation rate of 0.12 ± 0.06 mm/yr, and the rising precipitation was the influencing factor for the gradually slowing change in the GMB in the study area. Full article
Show Figures

Graphical abstract

24 pages, 9680 KiB  
Article
The Influence of Glacier Mass Balance on River Runoff in the Typical Alpine Basin
by Bin Yang, Weibing Du, Junli Li, Anming Bao, Wen Ge, Shuangting Wang, Xiaoxuan Lyu, Xin Gao and Xiaoqian Cheng
Water 2023, 15(15), 2762; https://doi.org/10.3390/w15152762 - 30 Jul 2023
Cited by 5 | Viewed by 2161
Abstract
Quantifying the effects of alpine GMB (Glacier Mass Balance) on river runoff is an important content of climate change. Uncertainty exists in GMB monitoring when applying remote-sensing technology. There are several reasons for these uncertainties, such as terrain deviation co-registration among different topographic [...] Read more.
Quantifying the effects of alpine GMB (Glacier Mass Balance) on river runoff is an important content of climate change. Uncertainty exists in GMB monitoring when applying remote-sensing technology. There are several reasons for these uncertainties, such as terrain deviation co-registration among different topographic data, the mismatch between GSE (Glacier Surface Elevation) from satellite monitoring and the GMB that comprises the physical glacier properties, the driving factors of GMB, and the response patterns of the runoff within the basin. This paper proposed a method based on the ridge line co-registration of DEMs (Digital Elevation Models), and the Tailan River basin, which is a typical glacier melt runoff recharge basin located in the southern Tianshan Mountains, was selected. Abnormal values in GSE changes were removed using ice thickness data, and the GSE results were optimized based on the regularity of the GSE change with altitude to estimate the GMB. The driving factors of the GMB and the response characteristics of the runoff in the basin were also explored. The results showed that the accuracy of the optimized GSE results across different periods has improved by more than 25%. The mean annual thinning value of GSE in the basin from 2000 to 2022 was −0.25 ± 0.02 m·a−1, corresponding to a GMB value of −0.30 ± 0.02 m w.e.a−1, indicating a consistent GMB loss state. Combined with climate data, the glaciers in the basin were impacted by rising temperatures, and the smallest increase in annual precipitation in the basin was insufficient to compensate for the GMB loss. Moreover, in the past 22 years, glacier meltwater accounts for 46.15% of the total runoff in the Tailan River basin. Full article
Show Figures

Figure 1

22 pages, 29803 KiB  
Article
Mountain Glacier Flow Velocity Retrieval from Ascending and Descending Sentinel-1 Data Using the Offset Tracking and MSBAS Technique: A Case Study of the Siachen Glacier in Karakoram from 2017 to 2021
by Qian Liang and Ninglian Wang
Remote Sens. 2023, 15(10), 2594; https://doi.org/10.3390/rs15102594 - 16 May 2023
Cited by 8 | Viewed by 3098
Abstract
Synthetic Aperture Radar images have recently been utilized in glacier surface flow velocity research due to their continuously improving imaging technology, which increases the resolution and scope of research. In this study, we employed the offset tracking and multidimensional small baseline subset (MSBAS) [...] Read more.
Synthetic Aperture Radar images have recently been utilized in glacier surface flow velocity research due to their continuously improving imaging technology, which increases the resolution and scope of research. In this study, we employed the offset tracking and multidimensional small baseline subset (MSBAS) technique to extract the surface flow velocity of the Siachen Glacier from 253 Sentinel-1 images. From 2017 to 2021, the Siachen Glacier had an average flow velocity of 38.25 m a−1, with the highest flow velocity of 353.35 m a−1 located in the upper part of a tributary due to the steep slope and narrow valley. The inter-annual flow velocity fluctuations show visible seasonal patterns, with the highest flow velocity observed between May and July and the lowest between December and January. Mass balance calculated by the geodetic method based on AST14DEM indicates that the Siachen Glacier experienced a positive mass change (0.07 ± 0.23 m w.e. a−1) between 2008 and 2021. However, there was significant spatial heterogeneity revealed in the distribution, with surface elevation changes showing a decrease in the glacier tongue while thickness increased in two other western tributaries of the Siachen Glacier. The non-surface parallel flow component is correlated with the strain rate and mass balance process, and correlation analysis indicates a positive agreement between these two variables. Therefore, using glacier flow velocities obtained from the SAR approach, we can evaluate the health of the glacier and obtain crucial factors for the glacier’s dynamic model. Two western tributaries of the Siachen Glacier experienced mass gain in the past two decades, necessitating close monitoring of flow velocity changes in the future to detect potential glacier surges. Full article
Show Figures

Figure 1

Back to TopTop