Visualizing Changes in Global Glacier Surface Mass Balances before and after 1990
Abstract
:1. Introduction
2. Materials and Methods
2.1. Observed Glacier Surface Mass Balances
2.2. Mass Balance Changes from 1961–1990 to 1991–2020
3. Results
3.1. Using Cumulative Balance Plots to Visualize Mass Balance Changes
3.2. Mass Balance Changes in Five Regions
3.3. The ‘Scandinavian Anomaly’
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Glacier Name | WGMS | Country | Lat. | Long. | Bw | Start | End | |
---|---|---|---|---|---|---|---|---|
(° N) | (° E) | (Y/N) | (a) | (a) | ||||
Meighen Ice Cap | 16 | Canada | 79.9 | −99.1 | Y | 1960 | 2022 | |
White Glacier | 1 | Canada | 79.5 | −90.9 | N | 1960 | 2022 | |
Devon Ice Cap NW | 39 | Canada | 75.4 | −83.3 | Y | 1961 | 2022 | |
Melville Ice Cap | 3690 | Canada | 75.4 | −115.0 | N | 1963 | 2022 | |
Gulkana | 90 | USA | 63.3 | −145.4 | Y | 1966 | 2022 | |
Wolverine | 94 | USA | 60.4 | −148.9 | Y | 1966 | 202 | |
Lemon Creek | 3334 | USA | 58.4 | −134.3 | N | 1953 | 2022 | |
Peyto | 57 | Canada | 51.7 | −116.5 | Y | 1966 | 2022 | |
Place | 41 | Canada | 50.4 | −122.6 | Y | 1965 | 2022 | |
South Cascade | 205 | USA | 48.3 | −121.0 | Y | 1953 | 2022 | |
Aust. Brøggerbreen | 292 | Svalbard | 78.9 | 11.8 | Y | 1967 | 2022 | |
Midtre Løvenbreen | 291 | Svalbard | 78.9 | 12.0 | Y | 1968 | 2022 | |
Ålfotbreen | 317 | Norway | 61.8 | 5.7 | Y | 1963 | 2022 | |
Engabreen | 298 | Norway | 66.7 | 13.9 | Y | 1970 | 2021 | |
Gråsubreen | 299 | Norway | 61.7 | 6.6 | Y | 1962 | 2021 | |
Hellstugubreen | 300 | Norway | 61.6 | 8.4 | Y | 1962 | 2021 | |
Nigardsbreen | 290 | Norway | 61.7 | 7.1 | Y | 1962 | 2022 | |
Rembesdal | 2296 | Norway | 60.5 | 7.4 | Y | 1963 | 2022 | |
Storbreen | 302 | Norway | 61.6 | 8.1 | Y | 1949 | 2021 | |
Storglaciären | 332 | Sweden | 67.9 | 18.5 | Y | 1946 | 2022 | |
Allalin | 394 | Switzerland | 46.0 | 7.9 | Y | 1956 | 2022 | |
Careser | 635 | Italy | 46.5 | 10.7 | N | 1967 | 2022 | |
Clariden | 260 | Switzerland | 46.8 | 8.9 | Y | 1915 | 2021 | |
Gietro | 367 | Switzerland | 46.0 | 7.4 | Y | 1967 | 2022 | |
Gries | 359 | Switzerland | 46.4 | 8.3 | Y | 1962 | 2022 | |
Hintereis | 491 | Austria | 46.8 | 10.8 | N | 1953 | 2022 | |
Hohlaub | 3332 | Switzerland | 46.1 | 7.9 | Y | 1957 | 2021 | |
Kesselwand | 507 | Austria | 46.8 | 10.8 | N | 1953 | 2022 | |
Sarennes | 357 | France | 45.1 | 6.1 | Y | 1949 | 2022 | |
Schwarzberg | 395 | Switzerland | 46.0 | 7.9 | Y | 1956 | 2021 | |
Silvretta | 408 | Switzerland | 46.8 | 10.1 | Y | 1919 | 2022 | |
St. Sonnblick | 573 | Austria | 47.1 | 12.5 | N | 1957 | 2021 | |
Saint Sorlin | 356 | France | 45.2 | 6.2 | N | 1957 | 2022 | |
Vernagt | 489 | Austria | 46.9 | 10.8 | Y | 1965 | 2022 | |
Djankuat | 726 | Russia | 43.2 | 42.8 | Y | 1968 | 2022 | |
Maliy Aktru | 795 | Russia | 50.0 | 87.7 | N | 1962 | 2012 | |
Urumqi No. 1 | 853 | China | 43.1 | 86.8 | N | 1959 | 2022 | |
Ts. Tuyuksuyskiy | 817 | Kazakhstan | 43.0 | 77.1 | Y | 1957 | 2022 |
References
- Zemp, M.; Frey, H.; Gärtner-Roer, I.; Nussbaumer, S.U.; Hoelzle, M.; Paul, F.; Haeberli, W.; Denzinger, F.; Ahlstrøm, A.P.; Anderson, B.; et al. Historically unprecedented global glacier decline in the early 21st century. J. Glaciol. 2015, 61, 745–762. [Google Scholar] [CrossRef]
- Zemp, M.; Huss, M.; Thibert, E.; Eckert, N.; McNabb, R.; Huber, J.; Barandun, M.; Machguth, H.; Nussbaumer, S.U.; Gärtner-Roer, I.; et al. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature 2019, 568, 382–386. [Google Scholar] [CrossRef] [PubMed]
- Marzeion, B.; Kaser, G.; Maussion, F.; Champollion, N. Limited influence of climate change mitigation on short-term glacier mass loss. Nat. Clim. Chang. 2018, 8, 305–308. [Google Scholar] [CrossRef]
- Wouters, B.; Gardner, A.S.; Moholdt, G. Global glacier mass loss during the GRACE satellite mission (2002–2016). Front. Earth Sci. 2019, 7, 96. [Google Scholar] [CrossRef]
- Hugonnet, R.; McNabb, R.; Berthier, E.; Menounos, B.; Nuth, C.; Girod, L.; Farinotti, D.; Huss, M.; Dussaillant, I.; Brun, F.L.; et al. Accelerated global glacier mass loss in the early twenty-first century. Nature 2021, 592, 726–731. [Google Scholar] [CrossRef] [PubMed]
- Thomson, L.; Brun, F.; Braun, M.; Zemp, M. Editorial: Observational assessments of glacier mass changes at regional and global level. Front. Earth Sci. 2021, 8, 641710. [Google Scholar] [CrossRef]
- Hansen, J.; Johnson, D.; Lacis, A.; Lebedeff, S.; Lee, P.; Rind, D.; Russell, G. Climatic impact of increasing atmospheric carbon dioxide. Science 1981, 213, 957–966. [Google Scholar] [CrossRef]
- National Research Council. Glaciers, Ice Sheets, and Sea Level: Effect of a CO2-Induced Climatic Change; The National Academies Press: Washington, DC, USA, 1985. [Google Scholar] [CrossRef]
- Braithwaite, R.J.; Hughes, P.D. Positive degree-day sums in the Alps: A direct link between glacier melt and international climate policy. J. Glaciol. 2022, 68, 901–911. [Google Scholar] [CrossRef]
- Braithwaite, R.J.; Hughes, P.D. Changes in surface mass balance and summer temperature from 1961–1990 to 1991–2020 for 37 glaciers with long records. Ann. Glaciol. 2023, 1–8. [Google Scholar] [CrossRef]
- Lenssen, N.; Schmidt, G.; Hansen, J.; Menne, M.; Persin, A.; Ruedy, R.; Zyss, D. Improvements in the GISTEMP uncertainty model. J. Geophys. Res. Atmos. 2019, 124, 6307–6326. [Google Scholar] [CrossRef]
- GISTEMP Team. GISS Surface Temperature Analysis (GISTEMP), Version 4. NASA Goddard Institute for Space Studies. Available online: https://data.giss.nasa.gov/gistemp/maps/ (accessed on 25 October 2023).
- Braithwaite, R.J.; Raper, S.C.B. Glaciological conditions in seven contrasting regions estimated with the degree-day model. Ann. Glaciol. 2007, 46, 297–302. [Google Scholar] [CrossRef]
- Cogley, J.G.; Adams, W.P. Mass balance of glaciers other than the ice sheets. J. Glaciol. 1998, 44, 315–325. [Google Scholar] [CrossRef]
- Braithwaite, R.J. Glacier mass balance: The first 50 years of international monitoring. Prog. Phys. Geogr. 2002, 26, 76–95. [Google Scholar] [CrossRef]
- Kaser, G.; Fountain, A.; Jansson, P. A Manual for Monitoring the Mass Balance of Mountain Glaciers; IHP-VI Technial Socuments in Gydrology, No. 59; UNESCO: Paris, France, 2003. [Google Scholar]
- Cogley, J.G.; Hock, R.; Rasmussen, L.A.; Arendt, A.A.; Bauder, A.; Braithwaite, R.J.; Jansson, P.; Kaser, G.; Möller, M.; Nicholson, L.; et al. Glossary of Glacier Mass Balance Terms and Related Terms (IHP-VII Technical Documents in Hydrology No. 86, 2011. IACS Contribution No. 2); UNESCO-International Hydrological Programme: Paris, France, 2011. [Google Scholar]
- Raup, B.H.; Andreassen, L.M.; Bolch, T.; Bevan, S. Remote sensing of glaciers. In Remote Sensing of the Cryoshere; Tedesco, M., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 123–155. [Google Scholar]
- Ahlmann, H.W. Glaciological Research on the North Atlantic Coasts; Research Series 1; Royal Geographical Society: London, UK, 1948. [Google Scholar]
- Meier, M.F. Proposed Definitions for Glacier Mass Budget Terms. J. Glaciol. 1962, 4, 252–263. [Google Scholar] [CrossRef]
- Schytt, V. Mass Balance Studies in Kebnekajse. J. Glaciol. 1962, 4, 281–288. [Google Scholar] [CrossRef]
- Glen, J.W. Variations of the Regime of Existing Glaciers. J. Glaciol. 1963, 4, 485–488. [Google Scholar] [CrossRef]
- Østrem, G.; Stanley, A. Glacier Mass-Balance Measurements—A Manual for Field and Office Work; The Canadian Department of Energy, Mines and Resources: Ottawa, Canada; The Norwegian Water Resources and Electricity Board: Oslo, Norway, 1969. [Google Scholar]
- Anonymous. Mass-Balance Terms. J. Glaciol. 1969, 8, 3–7. [Google Scholar] [CrossRef]
- Hoinkes, H. Methoden und Möglichkeiten von Massenhaushaltsstudien auf Gletschern: Ergebnisse des Messreihe Hintereisferner (Ötztaler Alpen) 1953–1968. Z. Gletscherkunde Glazialgeol. 1970, 6, 37–89. [Google Scholar]
- Østrem, G.; Brugman, M. Glacier Mass-Balance Measurements. A Manual for Field and Office Work; Scientific Report No. 4; National Hydrology Research Institute (NHRI): Saskatoon, SK, Canada; Norwegian Water Resources and Energy Directorate: Oslo, Norway, 1991; 224p, p. 36. [Google Scholar]
- Meier, M.F. UNESCO/IASH Technical Papers in Hydrology. J. Glaciol. 1970, 9, 405–406. [Google Scholar] [CrossRef]
- WGMS. Fluctuations of Glaciers Database; World Glacier Monitoring Service (WGMS): Zurich, Switzerland, 2024. [Google Scholar] [CrossRef]
- Huss, M.; Bauder, A.; Linsbauer, A.; Gabbi, J.; Kappenberger, G.; Steinegger, U.; Farinotti, D. More than a century of direct glacier mass-balance observations on Claridenfirn, Switzerland. J. Glaciol. 2021, 67, 697–713. [Google Scholar] [CrossRef]
- Geibel, L.; Huss, M.; Kurzböck, C.; Hodel, E.; Bauder, A.; Farinotti, D. Rescue and homogenization of 140 years of glacier mass balance data in Switzerland. Earth Syst. Sci. Data 2022, 14, 3293–3312. [Google Scholar] [CrossRef]
- WMO. WMO. WMO guidelines on the calculation of climate normal. In WMO Report 1203, 2017 ed.; World Meteolorological Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Braithwaite, R.J.; Hughes, P.D. Regional geography of glacier mass balance variability over seven decades 1946–2015. Front. Earth Sci. 2020, 8, 302. [Google Scholar] [CrossRef]
- Searcy, J.K.; Hardison, C.H. Double-Mass Curves; Geological Survey Water-Supply Paper 1541-B; U.S. Geological Survey: Washington, DC, USA, 1969. [Google Scholar]
- Tangborn, W. Two Models for Estimating Climate–Glacier Relationships in the North Cascades, Washington, U.S.A. J. Glaciol. 1980, 25, 3–22. [Google Scholar] [CrossRef]
- Kjøllmoen, B.; Andreassen, L.M.; Elvehøv, H.; Melvold, K. Glaciological Investigations in Norway 2020; NVE Rapport 31; Norwegian Water Resources and Energy Directorate: Oslo, Norway, 2020. [Google Scholar]
- Liestøl, O. Storbreen Glacier in Jotunheimen, Norway; Norsk Polarinstitutt Skrifter: Tromsø, Norway, 1967; Volume 141. [Google Scholar]
- Braithwaite, R.J. Herfried Hoinkes: Pioneer of degree-day methods to calculate glacier mass-balance from air temperature. Z. Gletscherkunde Glazialgeol. 2015, 47/48, 147–165. [Google Scholar]
- Andreassen, L.M.; Elvehøy, H.; Kjøllmoen, B.; Belart, J.M.C. Glacier change in Norway since the 1960s—An overview of mass balance, area, length and surface elevation changes. J. Glaciol. 2020, 66, 313–328. [Google Scholar] [CrossRef]
- Lai, Z.; Huang, M. A Numerical Classification of Glaciers in China by Means of Glaciological Indices at the Equilibrium Line; IAHS Publication: Wallingford, UK, 1989; Volume 183, pp. 103–111. [Google Scholar]
- Grosval’d, M.G.; Kotlyakov, V.M. Present-Day Glaciers in the U.S.S.R. and Some Data on their Mass Balance. J. Glaciol. 1969, 8, 9–22. [Google Scholar] [CrossRef]
- Pelto, M.S. How Unusual Was 2015 in the 1984–2015 Period of the North Cascade Glacier Annual Mass Balance? Water 2018, 10, 543. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Braithwaite, R.J.; Hughes, P.D. Visualizing Changes in Global Glacier Surface Mass Balances before and after 1990. Atmosphere 2024, 15, 362. https://doi.org/10.3390/atmos15030362
Braithwaite RJ, Hughes PD. Visualizing Changes in Global Glacier Surface Mass Balances before and after 1990. Atmosphere. 2024; 15(3):362. https://doi.org/10.3390/atmos15030362
Chicago/Turabian StyleBraithwaite, Roger J., and Philip D. Hughes. 2024. "Visualizing Changes in Global Glacier Surface Mass Balances before and after 1990" Atmosphere 15, no. 3: 362. https://doi.org/10.3390/atmos15030362
APA StyleBraithwaite, R. J., & Hughes, P. D. (2024). Visualizing Changes in Global Glacier Surface Mass Balances before and after 1990. Atmosphere, 15(3), 362. https://doi.org/10.3390/atmos15030362