Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (48)

Search Parameters:
Keywords = angle of seismic incidence

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4763 KiB  
Article
Parametric Investigation of Oblique Incidence Angle Effects in Near-Fault P Waves on Dynamic Response of Concrete Dam
by Shutong Xu, Jiawang Liu and Qiang Xu
Appl. Sci. 2025, 15(12), 6853; https://doi.org/10.3390/app15126853 - 18 Jun 2025
Viewed by 230
Abstract
Using numerical simulations, this study investigated the seismic response of concrete dams when subjected to near-fault obliquely incident P waves. For comparison, several near-fault pulse-like movements with different motion parameters were selected and decomposed into non-pulse residual components. A seismic input procedure for [...] Read more.
Using numerical simulations, this study investigated the seismic response of concrete dams when subjected to near-fault obliquely incident P waves. For comparison, several near-fault pulse-like movements with different motion parameters were selected and decomposed into non-pulse residual components. A seismic input procedure for P wave oblique incidence was developed and verified based on the viscous-spring artificial boundary theory. A finite element model of a concrete dam system was used for nonlinear time history analyses. The damage and displacement responses were analyzed under pulse-like and non-pulse motions with incident angles varying from −90° to 90°. The response differences induced by the pulse characteristics incident direction were examined. The relationship between the seismic parameters and response indices was also determined to obtain the optimal seismic parameter describing the variation under different incident conditions. Moreover, the coupled effect of the pulse feature and oblique incidence on the dynamic response and seismic behavior was examined. Finally, a nonlinear three-dimensional predictive model was proposed based on the optimal seismic parameter Sa(T1) and incident angle, exhibiting high correlation and accuracy. The results demonstrated that incident angles between 60° and 75° (with higher spectral acceleration values) intensified the dam damage and vibration when subjected to the oblique near-fault P waves, a crucial discovery for improving the seismic design and safety measure of concrete dams located in regions prone to near-fault seismic hazards. Full article
Show Figures

Figure 1

30 pages, 11015 KiB  
Article
Seismic Comparison of Hybrid Steel–Reinforced Concrete and Conventional Frames
by Paraskevi K. Askouni
Appl. Sci. 2025, 15(7), 3772; https://doi.org/10.3390/app15073772 - 29 Mar 2025
Viewed by 820
Abstract
Conventional buildings made of reinforced concrete (r/c) or steel are practically encountered daily in common construction practice. Current regulations offer complete guidance on the seismic design and dimensioning of typical structures made of the same structural material throughout. Nevertheless, in the case of [...] Read more.
Conventional buildings made of reinforced concrete (r/c) or steel are practically encountered daily in common construction practice. Current regulations offer complete guidance on the seismic design and dimensioning of typical structures made of the same structural material throughout. Nevertheless, in the case of a structure constructed with r/c structural elements at the lower part and steel structural elements at the upper part, forming a so-called hybrid steel–r/c building is common. The present regulations do not address hybrid buildings in design or dimensioning. This study aims to fill this gap in the literature by comparing the seismic performance of 3D hybrid buildings to conventional r/c and steel buildings. Three sets of buildings are designed and dimensioned, namely r/c buildings, steel ones, and hybrid steel–r/c ones. The considered r/c, steel, and hybrid models are subjected to the same strong ground excitations using a nonlinear time history analysis, considering the potential impact of the excitation orientation. Especially for hybrid models, two limit interconnection conditions are dealt with, characterized here as a “fixed” or “fixed-pinned” support of the steel part upon the r/c one. Unitless parameters are selected to compare the seismic response diagrams to determine the most detrimental structural effect. The advantages and disadvantages of r/c, steel, and hybrid buildings are comparatively discussed in terms of seismic resilience, noting that a hybrid configuration provides a promising alternative for seismic performance compared to typical constructions, thus providing enhanced possibilities in structural design. The analysis results show that fewer structural failures occur for hybrid buildings compared to conventional ones when subjected to the same earthquake excitations. The findings suggest that hybrid buildings could be a viable solution for practical construction projects, particularly in seismic-prone areas. Full article
Show Figures

Figure 1

21 pages, 33924 KiB  
Article
Multiparameter Inversion of Seismic Pre-Stack Amplitude Variation with Angle Based on a New Propagation Matrix Method
by Qianlong Ding, Shuangquan Chen, Jinsong Shen, Zuzhi Hu and Guoquan Wang
Appl. Sci. 2025, 15(5), 2636; https://doi.org/10.3390/app15052636 - 28 Feb 2025
Cited by 1 | Viewed by 838
Abstract
The classical pre-stack seismic inversion technique uses the Zoeppritz equation and its simplified versions to calculate the PP and PS reflection coefficients at different incidence angles, aiding in inverting the subsurface velocity and density parameters. Despite its widespread application, the amplitude variation with [...] Read more.
The classical pre-stack seismic inversion technique uses the Zoeppritz equation and its simplified versions to calculate the PP and PS reflection coefficients at different incidence angles, aiding in inverting the subsurface velocity and density parameters. Despite its widespread application, the amplitude variation with angle (AVA) inversion based on the Zoeppritz equation has limitations regarding the accuracy. The AVA neglects transmission losses and the effects of multiple reflections during seismic wave propagation, resulting in reduced resolution. In contrast, the propagation matrix theory offers a comprehensive range of reflection coefficients for P- and S-waves in multilayered media at arbitrary incidence angles, thereby theoretically enhancing the inversion accuracy. However, the seismic responses obtained using this method exist in the slowness–frequency domain and require constant slowness for consistency along a profile. This assumption is violated when variations in the P-wave velocity occur within the subsurface, affecting the incidence angle of propagating seismic waves. This study modifies the propagation matrix theory to compute AVA seismic responses and applies it to pre-stack multiparameter inversion. The effectiveness of the modified method was validated by deriving theoretical AVA seismic responses and comparing them to solutions from a typical layered media model. The modified theory was also employed for seismic pre-stack inversion. Numerical simulations and field data tests demonstrated that the new propagation matrix method offers a high accuracy and stability. Full article
Show Figures

Figure 1

13 pages, 1465 KiB  
Article
Pre-Stack Nonlinear Direct Exact Inversion of Fracture Parameters in Deep Shale Reservoirs
by Meng Wang, Liang Yu, Tianchao Guo, Xiuyan Song, Xiaoxin Zhang and Yurun Rui
Processes 2025, 13(2), 426; https://doi.org/10.3390/pr13020426 - 5 Feb 2025
Viewed by 557
Abstract
A conventional linear pre-stack inversion method under the conventional stationary convolution model is limited by the assumptions of weak formation contrast change and small angle incidence and fails to take into account the amplitude attenuation of seismic wave propagation. Meanwhile, the resolution and [...] Read more.
A conventional linear pre-stack inversion method under the conventional stationary convolution model is limited by the assumptions of weak formation contrast change and small angle incidence and fails to take into account the amplitude attenuation of seismic wave propagation. Meanwhile, the resolution and precision of oil and gas evaluation and fracture characterization of shale reservoirs under complex geological conditions are low because the compaction and non-connectivity characteristics of deep shale reservoirs are not fully considered. Therefore, porous rock pores are divided into connected pores and disconnected pores. Combined with the effect of compaction on dry rock skeleton, a petrophysical model considering the compaction and pore dysconnectivity of deep shale reservoir is developed. The quantitative relationship between transverse isotropy with a vertical axis of symmetry (VTI) stiffness matrix, rock physical properties, and fracture parameters is established in this model. It provides a more accurate scheme for the original physical modeling of deep shale. This relationship is incorporated into the exact VTI reflection coefficient equation, and a nonstationary convolution operator is derived by using the attenuation theory of seismic wave propagation. A nonstationary pre-stack nonlinear direct inversion method of fracture parameters of shale reservoirs with horizontal fractures is proposed, which Improves the resolution and accuracy of shale reservoir gas bearing and fracture characteristics prediction. It provides a new way to accurately characterize the fracture development and oil-bearing property of shale reservoirs. A model test and field data test verify the effectiveness of this method. Full article
Show Figures

Figure 1

25 pages, 16213 KiB  
Article
Imaging Shallow Velocity Structure of an Inactive Fault by Airgun Seismic Source: A Case Study of Xiliushui Fault in Qiliang Mountain
by Manzhong Qin, Baichen Wu, Yi Wang, Xueyi Shang, Yuansheng Zhang, Xuzhou Liu, Xiao Guo, Rui Zou, Yahong Wang and Dianfeng Sun
Geosciences 2025, 15(1), 16; https://doi.org/10.3390/geosciences15010016 - 7 Jan 2025
Viewed by 889
Abstract
We observed high-quality waves from a repeatable airgun seismic source recorded by a linear ultra-dense seismic array across the Xiliushui fault zone, one of the inactive faults in the Qilian Mountain, on the northeastern margin of the Tibetan Plateau, China. We used Snell’s [...] Read more.
We observed high-quality waves from a repeatable airgun seismic source recorded by a linear ultra-dense seismic array across the Xiliushui fault zone, one of the inactive faults in the Qilian Mountain, on the northeastern margin of the Tibetan Plateau, China. We used Snell’s law of seismic ray propagation to determine a simplified ambient velocity model. Based on the flexible and precise spectral element method, we computed broadband synthetic seismograms for a shallow low-velocity fault zone (FZ) to model the direct P-wave travel time delay and incident angle of the wavefield near the FZ. The FZ extent range and boundaries were inverted by apparent travel time delays and amplification patterns across the fault. According to prior information on the properties of the direct P-waves, we could constrain the inverse modeling and conduct a grid search for the fault parameters. The velocity reduction between the FZ and host rock, along with the dip angle of the FZ, were also constrained by the P-wave travel time delay systematic analysis and incoming angle of the P-waves. We found that the Xiliushui fault has a 70~80 m-wide low-velocity fault damage zone in which the P-wave velocity is reduced to ~40% with respect to the host rock. The fault damage zone dips ~35°southwest and extends to ~165 m in depth. The repeatability and environment protection characteristics of the airgun seismic survey and the economic benefits of a limited number of instruments setting are prominent. Full article
(This article belongs to the Special Issue Geophysical Inversion)
Show Figures

Figure 1

22 pages, 8293 KiB  
Article
Influence of SV Wave Oblique Incidence on the Dynamic Response of Arch Dams Under Canyon Contraction
by Fei Wang, Zhen Yang, Zhiqiang Song, Yunhe Liu, Yuxian Tan and Xiaoqing Liu
Water 2024, 16(24), 3630; https://doi.org/10.3390/w16243630 - 17 Dec 2024
Cited by 1 | Viewed by 658
Abstract
Current dynamic response analyses of arch dams under an oblique incidence of seismic waves have overlooked the effects of canyon contraction deformation. This study investigated the influence of the incident direction and incident angle of seismic waves on the comprehensive displacements, as well [...] Read more.
Current dynamic response analyses of arch dams under an oblique incidence of seismic waves have overlooked the effects of canyon contraction deformation. This study investigated the influence of the incident direction and incident angle of seismic waves on the comprehensive displacements, as well as the damage, of arch dams under canyon contraction conditions. When SV waves are incident obliquely along the river direction, the peak displacements of the dam crest and arch crown beam increase with increasing canyon contraction. The displacement of the dam reaches its maximum when the incident angle is 0°, indicating that the SV wave vertical incidence is the most unfavourable incidence mode affecting the displacement. Dam damage cracking is most severe in the case of a canyon contraction of 60 mm and an incidence angle of 0°. The dam damage cracking index in this case increases only by 7.6% compared to a canyon contraction of 0 mm and an angle of incidence of 0°. However, the change in canyon contraction when a seismic wave is incident obliquely can cause serious damage cracking to the dam. When the SV wave is incident obliquely along the cross-river direction, the dam damage cracking index in this case increases by 110% compared to the case where the canyon contraction is 0 mm, and the incidence angle is 0°. Therefore, it is necessary to comprehensively consider the influences of canyon contraction and the oblique incidence of seismic waves in the seismic design and safety review of arch dams. Full article
Show Figures

Figure 1

21 pages, 10649 KiB  
Article
Research on the Seismic Response of Hybrid Concrete/Steel Structures Equipped with the Seesaw System
by George A. Papagiannopoulos, Panagiota S. Katsimpini and George D. Hatzigeorgiou
Vibration 2024, 7(4), 1190-1209; https://doi.org/10.3390/vibration7040061 - 1 Dec 2024
Viewed by 1323
Abstract
This research investigates the seismic performance of structures equipped with the seesaw system in relation to conventional structures within two- and five-storey mixed concrete and steel buildings. Through time history analysis, the study assesses structural responses to severe ground motion accelerograms, taking into [...] Read more.
This research investigates the seismic performance of structures equipped with the seesaw system in relation to conventional structures within two- and five-storey mixed concrete and steel buildings. Through time history analysis, the study assesses structural responses to severe ground motion accelerograms, taking into account both fixed-base conditions and soil–structure interaction (SSI) scenarios. The focus is on essential performance indicators such as maximum and residual displacements, inter-storey drift ratios, and floor accelerations. By comparing the structures with the seesaw system with bare structures, the research seeks to quantify the benefits of this novel design in mitigating seismic effects. A significant component of this study is the examination of various seismic incidence angles, specifically 0°, 90°, 180°, and 270°. This extensive approach facilitates a comprehensive evaluation of structural behavior under diverse directional loadings, thereby capturing a wide range of potential seismic responses. The analysis of these different incidence angles is vital for understanding how the orientation of structural elements, particularly steel columns in the mixed system, affects the seismic performance of the building. Additionally, incorporating SSI effects yields a more precise depiction of structural behavior during earthquakes, considering the impact of soil flexibility on the overall system response. Full article
Show Figures

Figure 1

21 pages, 4943 KiB  
Article
Three-Dimensional Numerical Analysis of Seismic Response of Steel Frame–Core Wall Structure with Basement Considering Soil–Structure Interaction Effects
by Fujian Yang, Haonan Zhao, Tianchang Ma, Yi Bao, Kai Cao and Xiaoshuang Li
Buildings 2024, 14(11), 3522; https://doi.org/10.3390/buildings14113522 - 4 Nov 2024
Cited by 2 | Viewed by 1577
Abstract
In recent years, numerous studies highlighted the crucial role of the soil–structure interaction (SSI) in the seismic performance of basement structures. However, there remains a limited understanding of how this interaction affects buildings with basement structures under varying site conditions. Based on the [...] Read more.
In recent years, numerous studies highlighted the crucial role of the soil–structure interaction (SSI) in the seismic performance of basement structures. However, there remains a limited understanding of how this interaction affects buildings with basement structures under varying site conditions. Based on the three-dimensional (3D) numerical analysis method, the influence of the SSI on the seismic response of high-rise steel frame–core wall (SFCW) structures situated on shallow-box foundations were investigated in this study. To further investigate the effects of the SSI and site conditions, three types of soil profiles—soft, medium, and hard—were considered, along with a fixed-foundation model. The results were compared in terms of the maximum lateral displacement, inter-story drift ratio (IDR), acceleration amplification coefficient, and tensile damage for the SFCW structure under different site conditions, with both fixed-base and shallow-box foundation configurations. The findings highlight that the site conditions significantly affected the seismic performance of the SFCW structure, particularly in the soft soil, which increased the lateral deflection and inter-story drift. Moreover, compared with non-pulse-like ground motion, pulse-like ground motion resulted in a higher acceleration amplification coefficient and greater structural response in the SFCW structure. The RC core wall–basement slab junction was a critical region of stress concentration that exhibited a high sensitivity to the site conditions. Additionally, the maximum IDRs showed a more significant variation at incidence angles between 20 and 30 degrees, with a more pronounced effect at a seismic input intensity of 0.3 g than at 0.2 g. Full article
(This article belongs to the Special Issue Advances in Soil-Structure Interaction for Building Structures)
Show Figures

Figure 1

27 pages, 18936 KiB  
Article
Seismic Vulnerability Assessment of the Cliff-Attached Buildings Equipped with Energy Dissipation Devices Under Obliquely Incident Seismic Waves
by Zhuoxin Yang, Dewen Liu, Jiayu Zhou, Li Zhang and Wenyuan Liao
Buildings 2024, 14(11), 3488; https://doi.org/10.3390/buildings14113488 - 31 Oct 2024
Cited by 1 | Viewed by 1047
Abstract
Cliff-attached structures are structures attached to slopes and connected tightly, which is particularly complex to analyze due to the foundations’ unequal grounding and the lateral stiffness’ irregularity. In rare earthquakes, seismic waves are usually obliquely incident on the foundation at a certain angle. [...] Read more.
Cliff-attached structures are structures attached to slopes and connected tightly, which is particularly complex to analyze due to the foundations’ unequal grounding and the lateral stiffness’ irregularity. In rare earthquakes, seismic waves are usually obliquely incident on the foundation at a certain angle. Therefore, it is not appropriate to consider only seismic waves’ vertical incidence, and it is necessary to consider multi-angle oblique incidence. In this paper, based on the theory of viscous-spring artificial boundary and the principle of equivalent nodes at the interface of oblique incidence of ground shaking P-waves, and combined with the dynamic properties related to Buckling-Restrained Brace, the numerical models of slopes and two kinds of cliff-attached structures considering the slope amplification effect and soil-structure interaction are established. The dynamic response of the obliquely incident seismic waves under the action of the cliff-attached vibration reduction structure is studied in depth, and the additional effective damping ratios of the nonlinear energy-dissipated units based on the deformation energy are compared and analyzed. It is shown that under the four oblique incidence angles of incidence (compression waves in the vertical plane) studied in this paper, the seismic dynamic response and damage degree peaked at an angle of incidence of 60°, with a tendency to increase and then decrease with increasing angles of incidence. The ability of an energy-dissipating vibration reduction device to change structural vibration characteristics decreases with an increase in incidence angle. The difference between the total strain energy of the structure in the X-direction (Transverse slope direction) and Y-direction (Down-slope direction) and the total energy dissipation of the dissipative components is obvious, with the X-direction being about 10 times that of the Y-direction. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

30 pages, 13443 KiB  
Article
Implementation of PMDL and DRM in OpenSees for Soil-Structure Interaction Analysis
by Sefa Uzun and Yusuf Ayvaz
Appl. Sci. 2024, 14(18), 8519; https://doi.org/10.3390/app14188519 - 21 Sep 2024
Viewed by 3740
Abstract
It is widely acknowledged that the effects of soil-structure interaction (SSI) can have substantial implications during periods of intense seismic activity; therefore, accurate quantification of these effects is of paramount importance in the design of earthquake-resistant structures. The analysis of SSI is typically [...] Read more.
It is widely acknowledged that the effects of soil-structure interaction (SSI) can have substantial implications during periods of intense seismic activity; therefore, accurate quantification of these effects is of paramount importance in the design of earthquake-resistant structures. The analysis of SSI is typically conducted using either direct or substructure methods. Both of these approaches involve the use of numerical models with truncated or reduced-order computational domains. To ensure effective truncation, it is crucial to employ boundary representations that are capable of perfectly absorbing outgoing waves and allowing for the consistent application of input motions. At present, such capabilities are not widely available to researchers and practicing engineers. In order to address this issue, this study implemented the Domain Reduction Method (DRM) and Perfectly Matched Discrete Layers (PMDLs) in OpenSees. The accuracy and stability of these implementations were verified through the use of vertical and inclined incident SV waves in a two-dimensional problem. In terms of computational efficiency, PMDLs require a shorter analysis time (e.g., with PMDLs, the analysis concluded in 35 min as compared to 250 min with extended domain method) and less computational power (one processor for PMDLs against 20 processors for the extended domain method) thus offering a balance between accuracy and efficiency. Furthermore, illustrative examples of the aforementioned implemented features are presented, namely the response analysis of single-cell and double-cell tunnels exposed to plane waves inclined at an angle. Full article
(This article belongs to the Special Issue Soil-Structure Interaction in Structural and Geotechnical Engineering)
Show Figures

Figure 1

28 pages, 9760 KiB  
Article
Nonlinear Seismic Response of Tunnel Structures under Traveling Wave Excitation
by Xiaoqing Suo, Lilong Liu, Dan Qiao, Zhengsong Xiang and Yuanfu Zhou
Buildings 2024, 14(9), 2940; https://doi.org/10.3390/buildings14092940 - 17 Sep 2024
Viewed by 1465
Abstract
Tunnels traditionally regarded as resilient to seismic events have recently garnered significant attention from engineers owing to a rise in incidents of seismic damage. In this paper, the reflection characteristics of the elastic plane wave incident on the free surface are analyzed, and [...] Read more.
Tunnels traditionally regarded as resilient to seismic events have recently garnered significant attention from engineers owing to a rise in incidents of seismic damage. In this paper, the reflection characteristics of the elastic plane wave incident on the free surface are analyzed, and the matrix analysis method SWIM (Seismic Wave Input Method) for the calculation of equivalent nodal loads with artificial truncated boundary conditions for seismic wave oblique incidence is established by using coordinate transformation technology, according to the displacement velocity and stress characteristics of a plane wave. The results show that the oblique incidence method is more effective in reflecting the traveling wave effect, and the “rotational effect” induced by oblique incidence must be considered for P wave and SV wave incidence, including the associated stress and deformation. This effect exhibits markedly distinct rotational phenomenon. In particular, the P wave incidence should be focused on the vault and the inverted arch due to the expansion wave. With the increase of the oblique incidence angle, the structural stress and deformation are rotated to a certain extent, and the values are significantly increased. Simultaneously, the shear action of the SV wave may result in “ovaling” of the tunnel structure, thereby facilitating damage to the arch shoulder and the sidewall components. As the oblique incidence angle, the potentially damaging effects of the “rotational effect” to the vault and the inverted arch, but the numerical value does not change significantly. In addition, in comparison to a circular cross-section, the low-frequency amplification of seismic waves in the surrounding rock and the difference of frequency response function in different parts of the lining are more pronounced. In particular, the dominant frequency characteristics are significant at P wave incidence and the seismic wave signal attenuation tends to be obvious with increasing incidence angle. In contrast, SV waves exhibit more uniform characteristics. Full article
Show Figures

Figure 1

12 pages, 4460 KiB  
Article
Identification and Application of Wave Field Characteristics of Channel Waves in Extra-Thick Coal Seams
by Tao Ding, Yanhui Wu, Yiran Hu, Zhen Nie, Xianhua Hou and Mianping Zheng
Appl. Sci. 2024, 14(18), 8286; https://doi.org/10.3390/app14188286 - 14 Sep 2024
Cited by 1 | Viewed by 929
Abstract
Channel wave seismic activity often occurs with thin and medium-thick coal seams being the main target layer. To address the problem of channel wave applicability detection in extremely thick coal seams, the propagation and identification characteristics of channel waves remain the focus of [...] Read more.
Channel wave seismic activity often occurs with thin and medium-thick coal seams being the main target layer. To address the problem of channel wave applicability detection in extremely thick coal seams, the propagation and identification characteristics of channel waves remain the focus of research. Therefore, this paper takes the in-seam wave exploration of a 27 m extremely thick coal seam as an example and uses the staggered mesh finite difference method to construct a three-dimensional medium model for numerical simulation. An analysis of the physical parameters of coal and rock, along with the dispersion characteristics of channel waves in extra-thick coal seams, is utilized, through the Zoeppritz equation and the total reflection propagation method, to calculate the imaging. We found the following: (1) The dispersion areas and weak dispersion areas along the detection direction are extremely thick coal seams. (2) There are apparent channel waves in extra-thick coal seams, with a waveform similar to body waves; the length of the wave train is shorter than that of the conventional channel wave, and the arrival time can be estimated accurately. The amplitude of the apparent channel wave is affected by the degree of dispersion, with lower attenuation and higher resolution. The characteristic of total reflection in extremely thick coal seams is that the incident angle is equal to the critical angle, and the dispersion characteristics are weak. (3) The channel waves with weak dispersion characteristics in extra-thick coal seams are mainly Love-type waves. Full article
Show Figures

Figure 1

25 pages, 6814 KiB  
Article
Study on the Seismic Response of a Water-Conveyance Tunnel Considering Non-Uniform Longitudinal Subsurface Geometry and Obliquely Incident SV-Waves
by Erlei Yao, Yu Rao, Meishan Liu, Zhifang Liu and Ang Cao
Appl. Sci. 2024, 14(11), 4398; https://doi.org/10.3390/app14114398 - 22 May 2024
Cited by 1 | Viewed by 1030
Abstract
The longitudinal seismic response characteristics of a shallow-buried water-conveyance tunnel under non-uniform longitudinal subsurface geometry and obliquely incident SV-waves was studied using the numerical method, where the effect of the non-uniform longitudinal subsurface geometry due to the existence of a local one-sided rock [...] Read more.
The longitudinal seismic response characteristics of a shallow-buried water-conveyance tunnel under non-uniform longitudinal subsurface geometry and obliquely incident SV-waves was studied using the numerical method, where the effect of the non-uniform longitudinal subsurface geometry due to the existence of a local one-sided rock mountain on the seismic response of the tunnel was focused on. Correspondingly, a large-scale three-dimensional (3D) finite-element model was established, where different incidence angles and incidence directions of the SV-wave were taken into consideration. Also, the non-linearity of soil and rock and the damage plastic of the concrete lining were incorporated. In addition, the wave field of the site and the acceleration response as well as damage of the tunnel were observed. The results revealed the following: (i) a local inclined subsurface geometry may focus an obliquely incident wave due to refraction or total reflection; (ii) a tunnel in a site adjacent to a rock mountain may exhibit a higher acceleration response than a tunnel in a homogeneous plain site; and (iii) damage in the tunnel in the site adjacent to a rock mountain may appear in multiple positions, and the effect of the incidence angle on the mode of compressive deformation and damage of the lining is of significance. Full article
(This article belongs to the Special Issue Earthquake Engineering and Seismic Risk)
Show Figures

Figure 1

27 pages, 1622 KiB  
Review
Historical Evolution of the Impact of Seismic Incident Angles on the Safety Assessment of Various Building Construction Typologies
by Cristina Cantagallo, Marco Terrenzi, Guido Camata and Enrico Spacone
Buildings 2024, 14(6), 1490; https://doi.org/10.3390/buildings14061490 - 21 May 2024
Cited by 1 | Viewed by 1367
Abstract
In the existing building stock, typically characterised by a high degree of irregularity, the effects of earthquakes are strongly dependent on the epicentre–structure direction and the angle of incidence of the seismic motion. However, the scientific community has not yet reached a unanimous [...] Read more.
In the existing building stock, typically characterised by a high degree of irregularity, the effects of earthquakes are strongly dependent on the epicentre–structure direction and the angle of incidence of the seismic motion. However, the scientific community has not yet reached a unanimous consensus on the evaluation of the effects of seismic incidence angles. Therefore, this paper conducts an extensive investigation of the international literature on current methods to consider seismic directionality, systematically reviewing more than 80 publications on this topic. Following a brief overview of the problem and an analysis of the initial developments of the multidirectionality concept of seismic input, a state-of-the-art review is presented based on the considered analysis methods, specifically response spectrum analysis, nonlinear static analysis, and nonlinear response history analysis. Moreover, the adoption of multidirectional seismic input in popular codes and standards is presented and discussed. This study provides the first comprehensive synthesis of research on the seismic incidence angles across diverse building typologies, offering crucial insights for future code revisions and highlighting significant gaps in current analytical methods and standards, thereby setting a new direction for subsequent empirical investigations. Specifically, the extensive state-of-the-art review revealed that, until now, the evaluation of the angle of incidence was primarily conducted on existing reinforced concrete buildings with a limited number of storeys, analysed with nonlinear response history analysis. This underscores the need for future research to extensively investigate the impact of the angle of incidence on other types of construction typologies. Full article
Show Figures

Figure 1

23 pages, 11864 KiB  
Article
Multi-Directional Viscous Damping Absorbing Boundary in Numerical Simulation of Elastic Wave Dynamic Response
by Jianguo Zhao, Yang Yu, Hao Xu, Rongtang Zhang, Yuxi Ma and Jialiang Li
Appl. Sci. 2024, 14(5), 2183; https://doi.org/10.3390/app14052183 - 5 Mar 2024
Cited by 1 | Viewed by 1953
Abstract
Numerical seismic wave field simulation is essential for studying the dynamic responses in semi-infinite space, and the absorbing boundary setting is critical for simulation accuracy. This study addresses spherical waves incident from the free boundary by applying dynamic equations and Rayleigh damping. A [...] Read more.
Numerical seismic wave field simulation is essential for studying the dynamic responses in semi-infinite space, and the absorbing boundary setting is critical for simulation accuracy. This study addresses spherical waves incident from the free boundary by applying dynamic equations and Rayleigh damping. A new multi-directional viscous damping absorbing boundary (MVDB) method is proposed based on regional attenuation. An approximate formula for the damping value is established, which can achieve absorbing the boundary setting by only solving the mass damping coefficients without increasing the absorbing region grid cells or depending on the spatial and temporal walking distance. The validity and stability of the proposed method are proven through numerical calculations with seismic sources incident from different angles. Meanwhile, the key parameters affecting the absorption of the MVDB are analyzed, and the best implementation scheme is provided. In order to meet the requirements of mediums with different elastic parameters for boundary absorption and ensure the high efficiency of numerical calculations, the damping amplitude control coefficients k can be set between 1.02 and 1.12, the thickness of the absorbing region L is set to 2–3 times of the wavelength of the incident transverse wave, and the thickness of the single absorbing layer is set to the size of the discrete mesh of the model Δl. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

Back to TopTop