Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (87)

Search Parameters:
Keywords = ancestral sequence reconstruction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3922 KB  
Article
Ancestral Sequence Reconstruction for Novel Bifunctional Glutathione Synthetase with Enhanced Thermostability and Catalytic Efficiency
by Jieru Zhao, Binhao Wang, Junhua Di, Jieyu Zhou, Jinjun Dong, Ye Ni and Ruizhi Han
Foods 2026, 15(2), 309; https://doi.org/10.3390/foods15020309 (registering DOI) - 15 Jan 2026
Abstract
The bifunctional glutathione synthase (GshF) is able to catalyze glutathione synthesis and is favored for industrial application due to its lack of product inhibition. However, its practical use is limited by moderate catalytic efficiency and poor thermostability. Here, we applied ancestral sequence reconstruction [...] Read more.
The bifunctional glutathione synthase (GshF) is able to catalyze glutathione synthesis and is favored for industrial application due to its lack of product inhibition. However, its practical use is limited by moderate catalytic efficiency and poor thermostability. Here, we applied ancestral sequence reconstruction (ASR) to engineer a more robust ancestral GshF (Anc427) with thermal denaturation temperature of 56.2 ± 0.2 °C, representing an increase of 10.8 ± 0.2 °C over the probe enzyme (St-GshF). Additionally, Anc427 exhibited a thermal half-life (t1/2) of 3465.7 min at 40 °C, representing a 20-fold increase over that of St-GshF. Under optimal conditions (pH 7.0, 37 °C), Anc427 displayed a specific activity of 3.3 ± 0.02 U·mg−1, representing a 20% enhancement compared to St-GshF. Structural modeling and molecular dynamics simulations indicated that the improved stability can be attributed to increased structural rigidity in Anc427. These findings demonstrate that ASR effectively enhances both thermostability and catalytic activity of GshF, significantly advancing its potential for industrial biocatalysis. Full article
(This article belongs to the Special Issue Chemical Characterization and Functional Studies of Enzymes from Food)
Show Figures

Graphical abstract

36 pages, 575 KB  
Article
In Silico Proof of Concept: Conditional Deep Learning-Based Prediction of Short Mitochondrial DNA Fragments in Archosaurs
by Dimitris Angelakis, Dionisis Cavouras, Dimitris Th. Glotsos, Spiros A. Kostopoulos, Emmanouil I. Athanasiadis, Ioannis K. Kalatzis and Pantelis A. Asvestas
AI 2026, 7(1), 27; https://doi.org/10.3390/ai7010027 - 14 Jan 2026
Abstract
This study presents an in silico proof of concept exploring whether deep learning models can perform conditional mitochondrial DNA (mtDNA) sequence prediction across species boundaries. A CNN–BiLSTM model was trained under a leave-one-species-out (LOSO) scheme on complete mitochondrial genomes from 21 vertebrate species, [...] Read more.
This study presents an in silico proof of concept exploring whether deep learning models can perform conditional mitochondrial DNA (mtDNA) sequence prediction across species boundaries. A CNN–BiLSTM model was trained under a leave-one-species-out (LOSO) scheme on complete mitochondrial genomes from 21 vertebrate species, primarily archosaurs. Model behavior was evaluated through multiple complementary tests. Under context-conditioned settings, the model performed next-nucleotide prediction using overlapping 200 bp windows to assemble contiguous 2000 bp fragments for held-out species; the resulting high token-level accuracy (>99%) under teacher forcing is reported as a diagnostic of conditional modeling capacity. To assess leakage-free performance, a two-flank masked-span imputation task was conducted as the primary evaluation, requiring free-running reconstruction of 500 bp interior spans using only distal flanking context; in this setting, the model consistently outperformed nearest-neighbor and demonstrated competitive performance relative to flank-copy baselines. Additional robustness analyses examined sensitivity to window placement, genomic region (coding versus D-loop), and random initialization. Biological plausibility was further assessed by comparing predicted fragments to reconstructed ancestral sequences and against composition-matched null models, where observed identities significantly exceeded null expectations. Using the National Center for Biotechnology Information (NCBI) BLAST web interface, BLASTn species identification was performed solely as a biological plausibility check, recovering the correct species as the top hit in all cases. Although limited by dataset size and the absence of ancient DNA damage modeling, these results demonstrate the feasibility of conditional mtDNA sequence prediction as an initial step toward more advanced generative and evolutionary modeling frameworks. Full article
(This article belongs to the Special Issue Transforming Biomedical Innovation with Artificial Intelligence)
12 pages, 1412 KB  
Article
The Species-Specific Inversion Polymorphism of the X Chromosome in Anopheles messeae and Anopheles daciae Is Based on the Common Ancestral Variant X1
by Evgeniya S. Soboleva, Maria V. Sharakhova, Igor V. Sharakhov and Gleb N. Artemov
Genes 2026, 17(1), 5; https://doi.org/10.3390/genes17010005 - 19 Dec 2025
Viewed by 305
Abstract
Background/Objectives: Chromosomal inversions play an important role in the evolution of insects by forming genetic barriers between closely related species and facilitating local adaptation. Polymorphic inversions in malaria mosquitoes of the Maculipennis subgroup have been studied for over 50 years, yet the [...] Read more.
Background/Objectives: Chromosomal inversions play an important role in the evolution of insects by forming genetic barriers between closely related species and facilitating local adaptation. Polymorphic inversions in malaria mosquitoes of the Maculipennis subgroup have been studied for over 50 years, yet the evolutionary ancestry of the gene orders remains unknown. In this study, we mapped the genes flanking the breakpoints of two polymorphic X-chromosome inversions in the cryptic species Anopheles messeae and Anopheles daciae of the Maculipennis subgroup. Methods: We used an iterative mapping approach to define the breakpoint regions, selecting flanking markers based on the genome assembly of the reference species, Anopheles atroparvus. To identify the ancestral X chromosomal arrangement in An. messeae and An. daciae, we developed and implemented the genomic inversion calculator (GIC), which uses greedy heuristics to determine the shortest evolutionary scenario of rearrangements. Results: Our knowledge of the relative genomic positions of the inversion breakpoints in An. daciae and An. messeae enabled us to use the An. atroparvus genome as an outgroup and the GIC tool to show that the X0 and X2 arrangements emerged independently along the evolutionary lineages of An. daciae and An. messeae, respectively, based on the X1 arrangement. Conclusions: These results refine the structure and boundaries of the X chromosome rearrangements and reconstruct the sequence of evolutionary events in the cryptic complex An. messeaeAn. daciae, demonstrating that the X1 arrangement is ancestral. This study lays the groundwork for analyzing the molecular organization of breakpoints, the mechanisms of inversion formation, and their role in speciation. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

16 pages, 847 KB  
Article
Common Ancestry from Southern Italy: Two Families with Dilated Cardiomyopathy Share the Same Homozygous Loss-of-Function Variant in NRAP
by Maria Elena Onore, Martina Caiazza, Catia Mio, Gioacchino Scarano, Pasquale Di Letto, Sarah Iffat Rahman, Emanuele Monda, Cristiano Amarelli, Rossella Nicoletta Borrelli, Flavio Faletra, Vincenzo Nigro, Giuseppe Limongelli and Giulio Piluso
Genes 2025, 16(12), 1470; https://doi.org/10.3390/genes16121470 - 8 Dec 2025
Viewed by 446
Abstract
Background: Cardiomyopathies are a heterogeneous group of heart muscle disorders with diverse genetic origins. Biallelic loss-of-function (LoF) variants in the nebulin-related anchoring protein (NRAP) gene have been linked to dilated cardiomyopathy (DCM) and left ventricular noncompaction cardiomyopathy, though only a few [...] Read more.
Background: Cardiomyopathies are a heterogeneous group of heart muscle disorders with diverse genetic origins. Biallelic loss-of-function (LoF) variants in the nebulin-related anchoring protein (NRAP) gene have been linked to dilated cardiomyopathy (DCM) and left ventricular noncompaction cardiomyopathy, though only a few families have been described. NRAP, a member of the Nebulin family, plays a key role in cardiomyocyte development, structural integrity, and muscle function. Methods: We investigated two Italian siblings with DCM born to consanguineous parents from a small village in Campania. Exome sequencing, homozygosity mapping, and comparative analyses with other reported cases were performed. Genealogical research was conducted using civil registry data to reconstruct extended family pedigrees. Results: Both siblings were homozygous for a LoF variant in NRAP (NM_198060.4:c.619del; p.Val207TrpfsTer20). A third brother with tachycardia-induced cardiomyopathy, as well as their living mother, who did not have cardiac abnormalities, were found to be heterozygous. The same homozygous variant was recently identified in another Italian family with DCM coming from North-eastern Italy, whose proband also originated from a nearby village in Campania. These two families exhibited heterogeneity in clinical presentation. Homozygosity analysis revealed a >25 Mb shared region on chromosome 10 encompassing NRAP, supporting a common ancestral origin. While genealogical reconstruction did not allow identification of a shared ancestor, it confirmed consanguinity and enabled the recognition of potential carriers across both families. Conclusions: Our findings strengthen the evidence for NRAP as a disease-causing gene in cardiomyopathies and highlight a likely founder effect in Campania. Incorporating NRAP into genetic testing panels is warranted, especially in populations with high rates of consanguinity or suspected founder variants. Full article
(This article belongs to the Special Issue Insights into the Genomic and Genetic Basis of Cardiovascular Disease)
Show Figures

Figure 1

16 pages, 3700 KB  
Article
Mitochondrial Phylogeography and Population History of the Balkan Short-Tailed Mouse (Mus macedonicus Petrov and Ružić, 1983) in Turkey and Surrounding Areas
by İslam Gündüz, Pınar Özçam, Sadık Demirtaş, Jeremy S. Herman and Jeremy B. Searle
Diversity 2025, 17(11), 740; https://doi.org/10.3390/d17110740 - 22 Oct 2025
Viewed by 598
Abstract
As a contribution to our understanding of postglacial colonisation history of Anatolia, the Caucasus and the Middle East, we increased the existing phylogeographic coverage of the widespread Balkan short-tailed mouse Mus macedonicus. This added 92 new mitochondrial D-loop sequences (73 new haplotypes) [...] Read more.
As a contribution to our understanding of postglacial colonisation history of Anatolia, the Caucasus and the Middle East, we increased the existing phylogeographic coverage of the widespread Balkan short-tailed mouse Mus macedonicus. This added 92 new mitochondrial D-loop sequences (73 new haplotypes) from Anatolia and Thrace to generate a total dataset for the species of 221 sequences (174 haplotypes). We confirmed the previously described existence of a northern lineage (Anatolia, the southern Balkans, the Caucasus, Iran and Syria) and southern lineage (Israel and Lebanon) and generated Bayesian Skyline Plots to show demographic expansion after the Last Glacial Maximum (LGM) in the northern lineage but not the southern. We used haplotype networks to reveal haplotypes close to the ancestral condition of the northern lineage and to infer spread through its range, including colonisation of the southern Balkans. Our various phylogenetic reconstructions also show finer-scale geographic structuring. M. macedonicus likely occupied two separate glacial refugia in the vicinities of Israel and Lebanon (southern lineage) and Anatolia, Georgia and Iran (northern lineage) although further work is needed for precise localisation. M. macedonicus has become a well-worked model system for the phylogeography of a region deserving more attention. Full article
Show Figures

Figure 1

24 pages, 432 KB  
Article
Exploratory Temporal and Evolutionary Insights into the Filoviridae Family Through Multiprotein Phylogeny
by Thiago S. Messias, Kaique C. P. Silva, Narciso A. Vieira, Gislaine A. Querino, Elaine C. Marcos, Mateus J. de C. Stefani, Ana P. R. Battochio, Thaís M. Oliveira, Ivan S. Vieira, Aline S. Ibanes, Taylor E. T. Olivo, Edson C. de Melo, Silvia C. Arantes, Pedro C. R. da Luz, Maria G. R. Mengoa and Simone Soares
Microorganisms 2025, 13(10), 2388; https://doi.org/10.3390/microorganisms13102388 - 17 Oct 2025
Viewed by 907
Abstract
Filoviruses are among the most lethal viral human pathogens known, with significant relevance to public health, yet their evolutionary history remains poorly resolved. This study applied a multiprotein molecular phylogenetic approach to investigate the evolutionary and temporal dynamics of the family Filoviridae. [...] Read more.
Filoviruses are among the most lethal viral human pathogens known, with significant relevance to public health, yet their evolutionary history remains poorly resolved. This study applied a multiprotein molecular phylogenetic approach to investigate the evolutionary and temporal dynamics of the family Filoviridae. Amino acid sequences from the proteome and seven individual proteins (NP, VP35, VP40, GP, VP30, VP24, L) were analyzed using MEGA 12, with RelTime inference anchored on uniform calibrations, and integration of epidemiological data (cases, fatalities, case fatality). The phylogenetic reconstructions revealed robust topologies for most proteins, though selective pressures on GP, VP30 and VP40 generated more variable patterns. Temporal inferences supported the classification of filoviruses into three groups: an ancestral lineage (>1 MYA, fish- and reptile-associated), an intermediate lineage (BCE–1 MYA, bat-associated), and a contemporary lineage (CE, ebolaviruses and marburgviruses). VP30 and VP40 showed consistent associations with epidemiological outcomes in Orthoebolavirus zairense, suggesting their interplay may underlie enhanced dispersal and virulence. Contrariwise, Orthoebolavirus restonense emerged as a natural counterpoint for comparison with other potential human pathogenic filoviruses. Taken together, these findings highlight that filoviral evolution is intrinsically linked not only to viral biology but also to the ecology and history of their hosts. Full article
(This article belongs to the Special Issue Advances in Viral Metagenomics)
Show Figures

Graphical abstract

17 pages, 5697 KB  
Article
Mitogenomic Insights into Phylogeny, Biogeography and Adaptive Evolution of the Genus Typhlomys (Rodentia: Platacanthomyidae)
by Chao Na, Xiaohan Wang, Yaxin Cheng, Yixin Huang, Shuiwang He, Laxman Khanal, Shunde Chen, Xuelong Jiang and Zhongzheng Chen
Animals 2025, 15(19), 2823; https://doi.org/10.3390/ani15192823 - 27 Sep 2025
Viewed by 594
Abstract
Soft-furred tree mice (genus Typhlomys), which are native to southern China and northern Vietnam, are unique rodents capable of echolocation. Little is known about their taxonomy, ecology, and natural history. In this study, we generated the complete mitochondrial genomes of seven species/putative [...] Read more.
Soft-furred tree mice (genus Typhlomys), which are native to southern China and northern Vietnam, are unique rodents capable of echolocation. Little is known about their taxonomy, ecology, and natural history. In this study, we generated the complete mitochondrial genomes of seven species/putative species of Typhlomys. We conducted a comprehensive comparative analysis of these mitochondrial genomes focusing on sequence length, A+T content, A/T bias, A+T-rich regions, overlapping and intergenic spacer regions, nucleotide composition, relative synonymous codon usage, ancestral distributions, and the non-synonymous/synonymous substitution ratio (Ka/Ks). Additionally, we analyzed the phylogeny and adaptive evolution of these species/putative species. The mitogenomes of Typhlomys ranged from 16,487 to 17,380 bp in length, encoding the complete set of 37 genes typically found in mammalian mitogenomes. The base composition exhibited an A+T bias. The most frequently used codons were CUA (Leu), AGC (Ser), GGA (Gly) and UUA (Leu), UUG, CUG, CGU and GCG were the less frequently used codons. Ancestral distribution reconstruction suggests that Typhlomys originated in Central or Southwestern China. Notably, we found that the Ka/Ks ratio of the ND5 gene in T. huangshanensis was greater than 1, indicating that this gene has undergone positive selection for efficient respiration in higher elevations and colder climates. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

19 pages, 5168 KB  
Article
Green Tea Modulates Temporal Dynamics and Environmental Adaptation of Microbial Communities in Daqu Fermentation
by Liang Zhao, Fangfang Li, Hao Xiao, Tengfei Zhao, Yanxia Zhong, Zhihui Hu, Lu Jiang, Xiangyong Wang and Xinye Wang
Fermentation 2025, 11(9), 511; https://doi.org/10.3390/fermentation11090511 - 31 Aug 2025
Viewed by 873
Abstract
This study investigated the impact of green tea addition on microbial community dynamics during Daqu fermentation, a critical process in traditional baijiu production. Four Daqu variants (0%, 10%, 20%, 30% tea) were analyzed across six fermentation periods using 16S rRNA/ITS sequencing, coupled with [...] Read more.
This study investigated the impact of green tea addition on microbial community dynamics during Daqu fermentation, a critical process in traditional baijiu production. Four Daqu variants (0%, 10%, 20%, 30% tea) were analyzed across six fermentation periods using 16S rRNA/ITS sequencing, coupled with STR, TDR, Sloan neutral model, and phylogenetic analyses. Results showed time-dependent increases in bacterial/fungal richness, with 30% tea maximizing species richness. Tea delayed bacterial shifts until day 15 but accelerated fungal reconstruction from day 6, expanding the temporal response window. While stochastic processes dominated initial assembly (77–94% bacteria, 88–99% fungi), deterministic processes intensified with tea concentration, particularly in fungi (1% → 12%). Tea increased bacterial dispersal limitation and reduced phylogenetic conservatism of endogenous factors. This work proposed a framework for rationally engineering fermentation ecosystems by decoding evolutionary-ecological rules of microbial assembly. It revealed how plant-derived additives can strategically adjust niche partitioning and ancestral constraints to reprogram microbiome functionality. These findings provided a theoretical foundation in practical strategies for optimizing industrial baijiu production through targeted ecological interventions. Full article
(This article belongs to the Special Issue Development and Application of Starter Cultures, 2nd Edition)
Show Figures

Figure 1

19 pages, 4585 KB  
Article
Origin of Polyploidy, Phylogenetic Relationships, and Biogeography of Botiid Fishes (Teleostei: Cypriniformes)
by Lei Yang, Richard L. Mayden and Gavin J. P. Naylor
Biology 2025, 14(5), 531; https://doi.org/10.3390/biology14050531 - 11 May 2025
Cited by 3 | Viewed by 1590
Abstract
Botiidae is a small family of freshwater fishes distributed across Southeast Asia, South Asia, and East Asia. It comprises two subfamilies: the diploid Leptobotiinae and the tetraploid Botiinae. Whether species in the Botiinae are autotetraploids or allotetraploids and how many polyploidization events occurred [...] Read more.
Botiidae is a small family of freshwater fishes distributed across Southeast Asia, South Asia, and East Asia. It comprises two subfamilies: the diploid Leptobotiinae and the tetraploid Botiinae. Whether species in the Botiinae are autotetraploids or allotetraploids and how many polyploidization events occurred during the evolution of this subfamily remain open questions. The phylogenetic relationships and biogeography of the Botiidae also require further investigation. In the current study, we compared phylogenetic trees constructed using DNA sequences from the mitochondrial genome and five phased nuclear genes. We also performed whole genome sequencing for two tetraploid species: Chromobotia macracanthus and Yasuhikotakia modesta. Genome profiling of five botiine species suggests that they are likely of allotetraploid origin. Nuclear gene tree topologies indicate that the tetraploidization of the Botiinae occurred only once in the common ancestor of this subfamily. Although the possible maternal progenitor and paternal progenitor of the Botiinae cannot be determined, the subfamily Leptobotiinae can be excluded as a progenitor. The gene trees built in this study generally agree on the following sister group relationships: Leptobotiinae/Botiinae, Leptobotia/Parabotia, Chromobotia/Botia, Yasuhikotakia/Syncrossus, and Sinibotia/Ambastaia. Clades formed by the last two generic pairs are also sisters to each other. Timetree analyses and ancestral range reconstruction suggest that the family Botiidae might have originated in East Asia and Mainland Southeast Asia approximately 51 million years ago and later dispersed to South Asia and the islands of Southeast Asia. Full article
(This article belongs to the Special Issue Young Researchers in Conservation Biology and Biodiversity)
Show Figures

Graphical abstract

19 pages, 6155 KB  
Article
Complete Mitochondrial Genome of Two Amathusiini Species (Lepidoideae: Nymphalidae: Satyrinae): Characterization, Comparative Analyses, and Phylogenetic Implications
by Qinghui Shi, Xinyue Wang, Jianhong Xing, Xiaoyun Xu, Gang Sun and Juncheng Zhang
Genes 2025, 16(4), 447; https://doi.org/10.3390/genes16040447 - 12 Apr 2025
Cited by 1 | Viewed by 1095
Abstract
Background: The Satyrinae subfamily represents a taxonomically critical group within Nymphalidae, characterized by its remarkable species diversity. Despite its evolutionary significance, the phylogenetic relationships among tribal and subtribal lineages remain poorly resolved. Although mitochondrial genomes have become crucial molecular markers in [...] Read more.
Background: The Satyrinae subfamily represents a taxonomically critical group within Nymphalidae, characterized by its remarkable species diversity. Despite its evolutionary significance, the phylogenetic relationships among tribal and subtribal lineages remain poorly resolved. Although mitochondrial genomes have become crucial molecular markers in Lepidoptera phylogenetics, their potential remains underutilized in the systematics of Satyrinae. Notably, Amathusiini exhibits a particular paucity, with only two congeneric representatives having been comprehensively sequenced to date. Methods: We employed high-throughput sequencing to assemble the complete mitochondrial genomes of two Amathusiini species, Discophora sondaica and Aemona amathusia. Our study revealed novel evolutionary insights through comparative genomics, which encompassed all available Satyrinae mitochondrial genomes. Additionally, we conducted phylogenetic reconstruction using maximum likelihood and Bayesian inference approaches, utilizing the most extensive dataset to date. Results: The closed, circular mitochondrial genomes measure 15,333 bp for D. sondaica and 15,423 bp for A. amathusia, maintaining the ancestral lepidopteran architecture: 13 protein-coding genes (PCGs), 22 tRNAs, 2 rRNAs, and an AT-rich control region. Comparative analyses of 71 mitochondrial genomes revealed strong evolutionary conservation across multiple parameters: nucleotide composition (AT content range: 77.9–81.8%), codon usage bias (ENC = 30.83–37.55), tRNA secondary structures, and control region organization. All PCGs showed purifying selection signals (Ka/Ks < 1.0), with atp8 exhibiting the highest evolutionary rate (Ka/Ks = 0.277). Phylogenetic reconstructions yielded congruent tribal-level topologies with strong nodal support: ((Satyrini + Melanitini) + (Amathusiini + Elymniini) + Zetherini), confirming a sister relationship between Amathusiini and Elymniini. Within Satyrini, five subtribes formed monophyletic groups: Ypthimina, Erebiina, Maniolina, Satyrina, and Melanargiina, arranged as ((Ypthimina + (Erebiina + Maniolina)) + (Satyrina + Melanargiina)). Mycalesina, Lethina, and Parargina comprised a well-supported clade (BS = 100%; PP = 1.0), though internal relationships required further resolution due to Lethina’s polyphyly. Conclusions: This study provides novel insights into mitochondrial genomic evolution within the Satyrinae subfamily while elucidating the efficacy of mitogenomic data for resolving deep phylogenetic relationships within this ecologically significant subfamily. Our findings establish critical genome baselines for further systematic research and underscore essential pathways for refining subtribal-level taxonomy through integrative molecular approaches. Full article
(This article belongs to the Special Issue Mitochondrial DNA Replication and Transcription)
Show Figures

Figure 1

18 pages, 6360 KB  
Article
Phylodynamic of Tomato Brown Rugose Fruit Virus and Tomato Chlorosis Virus, Two Emergent Viruses in Mixed Infections in Argentina
by Julia M. Ibañez, Romina Zambrana, Pamela Carreras, Verónica Obregón, José M. Irazoqui, Pablo A. Vera, Tatiana E. Lattar, María D. Blanco Fernández, Andrea F. Puebla, Ariel F. Amadio, Carolina Torres and Paola M. López Lambertini
Viruses 2025, 17(4), 533; https://doi.org/10.3390/v17040533 - 5 Apr 2025
Cited by 1 | Viewed by 1723
Abstract
Tobamovirus fructirugosum (ToBRFV) and Crinivirus tomatichlorosis (ToCV) are emerging viral threats to tomato production worldwide, with expanding global distribution. Both viruses exhibit distinct biological characteristics and transmission mechanisms that influence their spread. This study aimed to reconstruct the complete genomes of ToBRFV and [...] Read more.
Tobamovirus fructirugosum (ToBRFV) and Crinivirus tomatichlorosis (ToCV) are emerging viral threats to tomato production worldwide, with expanding global distribution. Both viruses exhibit distinct biological characteristics and transmission mechanisms that influence their spread. This study aimed to reconstruct the complete genomes of ToBRFV and ToCV from infected tomato plants and wastewater samples in Argentina to explore their global evolutionary dynamics. Additionally, it compared the genetic diversity of ToBRFV in plant tissue and sewage samples. Using metagenomic analysis, the complete genome sequences of two ToBRFV isolates and two ToCV isolates from co-infected tomatoes, along with four ToBRFV isolates from sewage, were obtained. The analysis showed that ToBRFV exhibited higher genetic diversity in environmental samples than in plant samples. Phylodynamic analysis indicated that both viruses had a recent, single introduction in Argentina but predicted different times for ancestral diversification. The evolutionary analysis estimated that ToBRFV began its global diversification in June 2013 in Israel, with rapid diversification and exponential growth until 2020, after which the effective population size declined. Moreover, ToCV’s global expansion was characterized by exponential growth from 1979 to 2010, with Turkey identified as the most probable location with the current data available. This study highlights how sequencing and monitoring plant viruses can enhance our understanding of their global spread and impact on agriculture. Full article
(This article belongs to the Section Viruses of Plants, Fungi and Protozoa)
Show Figures

Figure 1

14 pages, 4640 KB  
Review
Strategies and Recent Trends in Engineering Thermostable GH11 Xylanases
by Beom Soo Kim and In Jung Kim
Catalysts 2025, 15(4), 317; https://doi.org/10.3390/catal15040317 - 26 Mar 2025
Cited by 1 | Viewed by 1823
Abstract
Glycoside hydrolase family 11 (GH11) xylanases are used in various industries, such as biorefining, animal feed production, and baking, making them key industrial enzymes. Operating bioprocesses at elevated temperatures enhances the reaction rate and product yield and thus requires thermostable enzymes to sustain [...] Read more.
Glycoside hydrolase family 11 (GH11) xylanases are used in various industries, such as biorefining, animal feed production, and baking, making them key industrial enzymes. Operating bioprocesses at elevated temperatures enhances the reaction rate and product yield and thus requires thermostable enzymes to sustain catalytic performance. The limited availability of naturally occurring thermostable GH11 xylanases necessitates targeted modifications via protein engineering to enhance their thermal stability. In this review, we present the key drivers of thermostability, an overview of engineering strategies, and the underlying mechanisms of action. Finally, we investigated state-of-the-art technologies involving artificial intelligence (AI)- and ancestral sequence reconstruction-guided approaches. Full article
(This article belongs to the Special Issue New Trends in Industrial Biocatalysis, 2nd Edition)
Show Figures

Graphical abstract

16 pages, 3212 KB  
Article
Unraveling the Evolutionary Patterns of Genus Frontonia: An Integrative Approach with Morphological and Molecular Data
by Ratih Kusuma Wardani, Ragib Ahsan and Mann Kyoon Shin
Biology 2025, 14(3), 289; https://doi.org/10.3390/biology14030289 - 13 Mar 2025
Viewed by 2083
Abstract
Ciliates of the genus Frontonia have been extensively studied to resolve their phylogenetic and evolutionary history, but challenges remain. This study used molecular analyses of SSU rRNA genes, phylogenetic tree reconstruction, molecular dating, and diversification analysis, together with ancestral state reconstruction of morphological [...] Read more.
Ciliates of the genus Frontonia have been extensively studied to resolve their phylogenetic and evolutionary history, but challenges remain. This study used molecular analyses of SSU rRNA genes, phylogenetic tree reconstruction, molecular dating, and diversification analysis, together with ancestral state reconstruction of morphological traits and habitat preferences. Data included newly sequenced Korean species, GenBank records and published morphological information. Phylogenetic trees revealed paraphyly within Frontonia, identifying four groups that emerged in the Mesozoic era: Group I (~172 mya), Group II (~83 mya), Group III (~115 mya), and Group IV (~190 mya), with a common ancestor dating to ~420 mya in the Palaeozoic era. Diversification analysis revealed higher extinction rates (0.826 and 0.613 species/year) than speciation rates (0.011 and 0.016 species/year). Morphological evolution showed habitat adaptation and plasticity, with habitat transitions unrelated to contractile vacuolar traits. The SSU rRNA gene polymorphism likely contributed to the paraphyletic state of Frontonia. These results highlight the complex evolutionary patterns of the genus, shaped by genetic diversity, morphology, and environmental constraints. Full article
(This article belongs to the Section Evolutionary Biology)
Show Figures

Figure 1

43 pages, 12081 KB  
Article
Coevolution of Lentiviral Vif with Host A3F and A3G: Insights from Computational Modelling and Ancestral Sequence Reconstruction
by David Nicolas Giuseppe Huebert, Atefeh Ghorbani, Shaw Yick Brian Lam and Mani Larijani
Viruses 2025, 17(3), 393; https://doi.org/10.3390/v17030393 - 10 Mar 2025
Viewed by 1263
Abstract
The evolutionary arms race between host restriction factors and viral antagonists provides crucial insights into immune system evolution and viral adaptation. This study investigates the structural and evolutionary dynamics of the double-domain restriction factors A3F and A3G and their viral inhibitor, Vif, across [...] Read more.
The evolutionary arms race between host restriction factors and viral antagonists provides crucial insights into immune system evolution and viral adaptation. This study investigates the structural and evolutionary dynamics of the double-domain restriction factors A3F and A3G and their viral inhibitor, Vif, across diverse primate species. By constructing 3D structural homology models and integrating ancestral sequence reconstruction (ASR), we identified patterns of sequence diversity, structural conservation, and functional adaptation. Inactive CD1 (Catalytic Domain 1) domains displayed greater sequence diversity and more positive surface charges than active CD2 domains, aiding nucleotide chain binding and intersegmental transfer. Despite variability, the CD2 DNA-binding grooves remained structurally consistent with conserved residues maintaining critical functions. A3F and A3G diverged in loop 7’ interaction strategies, utilising distinct molecular interactions to facilitate their roles. Vif exhibited charge variation linked to host species, reflecting its coevolution with A3 proteins. These findings illuminate how structural adaptations and charge dynamics enable both restriction factors and their viral antagonists to adapt to selective pressures. Our results emphasize the importance of studying structural evolution in host–virus interactions, with implications for understanding immune defense mechanisms, zoonotic risks, and viral evolution. This work establishes a foundation for further exploration of restriction factor diversity and coevolution across species. Full article
(This article belongs to the Special Issue Host-Mediated Viral Mutations: APOBECs, ADARs, and Beyond)
Show Figures

Figure 1

14 pages, 2283 KB  
Article
Molecular Phylogeny and Evolutionary History of the Genus Cyprinus (Teleostei: Cypriniformes)
by Yanyan Chen, Heng Xiao, Zhaoping Yue, Xiaoyun Wu, Ruiguang Zan and Shanyuan Chen
Fishes 2025, 10(3), 121; https://doi.org/10.3390/fishes10030121 - 10 Mar 2025
Cited by 1 | Viewed by 2022
Abstract
The genus Cyprinus encompasses economically vital freshwater fish species; yet the phylogenetic relationships and evolutionary history of many taxa within this genus remain unresolved. To address this knowledge gap, we reconstructed the molecular phylogenetic and estimated divergence times using complete mitochondrial cytochrome b [...] Read more.
The genus Cyprinus encompasses economically vital freshwater fish species; yet the phylogenetic relationships and evolutionary history of many taxa within this genus remain unresolved. To address this knowledge gap, we reconstructed the molecular phylogenetic and estimated divergence times using complete mitochondrial cytochrome b (CYTB) sequences of 76 Cyprinidae specimens, within Cyprinidae, including 4 outgroup species. Phylogenetic trees were reconstructed using maximum likelihood (ML) and Bayesian inference (BI) methods, while divergence times were estimated using a Bayesian relaxed molecular clock approach. The results confirmed the monophyly of the genus Cyprinus. The relationships among C. (Cyprinus) multitaeniata, C. (C.) pellegrini, C. (C.) acutidorsalis, and three Erhai Lake species (C. (C.) longipectoralis, C. (C.) barbatus, and C. (C.) chilia) were resolved with strong support. Cyprinus (C.) multitaeniata is basal. The species in Erhai Lake form a monophyletic group, and C. (C.) acutidorsalis is at the top of the phylogenetic tree. The taxonomic delineation within the genus Cyprinus remains controversial, particularly regarding the proposed division into two subgenera (Cyprinus and Mesocyprinus), which has been historically constrained by limited specimen availability for Mesocyprinus. Our comprehensive phylogenetic analysis reveals significant evolutionary divergence patterns: The genus Cyprinus diverged from Carassius during the 56.9 Mya. Notably, the Erhai Lake radiation species (C. (C.) longipectoralis, C. (C.) barbatus, and C. (C.) chilia) originated during 2.03 Mya, while the Lake Biwa endemic C. (C.) haematopterus demonstrates 8.7 Mya. We identified a late Pleistocene speciation event (0.75 Mya) in C. (C.) acutidorsalis, coinciding with its adaptation to brackish water ecosystems. The native C. (C.) pellegrini of Xingyun Lake and Chilu Lake may have originated 4.8 Mya, when the ancient lake that its ancestral population inhabited became isolated. These findings provide robust molecular evidence supporting the recognition of two evolutionary distinct subgenera within Cyprinus. Full article
(This article belongs to the Section Taxonomy, Evolution, and Biogeography)
Show Figures

Figure 1

Back to TopTop