The Species-Specific Inversion Polymorphism of the X Chromosome in Anopheles messeae and Anopheles daciae Is Based on the Common Ancestral Variant X1
Abstract
1. Introduction
2. Materials and Methods
2.1. Biological Material
2.2. Air-Dried Preparations of Polytene Chromosomes
2.3. Species Identification
2.4. Genomic and Physical Mapping of Inversion Breakpoints
2.5. Reconstruction of Genomic Rearrangements
3. Results
3.1. Breakpoint Regions of the Polymorphic Inversions on the X Chromosome in An. daciae and An. messeae
3.2. The Ancestral X Chromosome Arrangement in An. messeae and An. daciae
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AatrE3 | Anopheles atroparvus EBRO genome assembly |
| BR | Breakpoint region |
| FISH | Fluorescence in situ hybridization |
| ITS2 | Internal transcribed spacer of ribosomal DNA |
| PCRF | Restriction fragment length polymorphism |
| SB | Syntenic block |
References
- Kirkpatrick, M. How and Why Chromosome Inversions Evolve. PLoS Biol. 2010, 8, e1000501. [Google Scholar] [CrossRef]
- Ayala, D.; Ullastres, A.; González, J. Adaptation Through Chromosomal Inversions in Anopheles. Front. Genet. 2014, 5, 129. [Google Scholar] [CrossRef]
- Love, R.R.; Pombi, M.; Guelbeogo, M.W.; Campbell, N.R.; Stephens, M.T.; Dabire, R.K.; Costantini, C.; Della Torre, A.; Besansky, N.J. Inversion Genotyping in the Anopheles gambiae Complex Using High-Throughput Array and Sequencing Platforms. G3 Genes Genomes Genet. 2020, 10, 3299–3307. [Google Scholar] [CrossRef]
- Berdan, E.L.; Barton, N.H.; Butlin, R.; Charlesworth, B.; Faria, R.; Fragata, I.; Gilbert, K.J.; Jay, P.; Kapun, M.; Lotterhos, K.E.; et al. How Chromosomal Inversions Reorient the Evolutionary Process. J. Evol. Biol. 2023, 36, 1761–1782. [Google Scholar] [CrossRef]
- Venkatesan, P. WHO World Malaria Report 2024. Lancet Microbe 2025, 6, 101073. [Google Scholar] [CrossRef]
- Hernandez-Valencia, J.C.; Muñoz-Laiton, P.; Gómez, G.F.; Correa, M.M. A Systematic Review on the Viruses of Anopheles Mosquitoes: The Potential Importance for Public Health. Trop. Med. Infect. Dis. 2023, 8, 459. [Google Scholar] [CrossRef]
- Hattendorf, C.; Lühken, R. Vectors, Host Range, and Spatial Distribution of Dirofilaria Immitis and D. Repens in Europe: A Systematic Review. Infect. Dis. Poverty 2025, 14, 58. [Google Scholar] [CrossRef] [PubMed]
- Stegniy, V.N. Population Genetics and Evolution of Malaria Mosquitoes; Tomsk State University Publisher: Tomsk, Russia, 1991. [Google Scholar]
- Simard, F.; Ayala, D.; Kamdem, G.; Pombi, M.; Etouna, J.; Ose, K.; Fotsing, J.-M.; Fontenille, D.; Besansky, N.J.; Costantini, C. Ecological Niche Partitioning Between Anopheles gambiae Molecular Forms in Cameroon: The Ecological Side of Speciation. BMC Ecol. 2009, 9, 17. [Google Scholar] [CrossRef]
- Ayala, D.; Acevedo, P.; Pombi, M.; Dia, I.; Boccolini, D.; Costantini, C.; Simard, F.; Fontenille, D. Chromosome Inversions and Ecological Plasticity in the Main African Malaria Mosquitoes. Evolution 2017, 71, 686–701. [Google Scholar] [CrossRef] [PubMed]
- Ayala, D.; Zhang, S.; Chateau, M.; Fouet, C.; Morlais, I.; Costantini, C.; Hahn, M.W.; Besansky, N.J. Association Mapping Desiccation Resistance within Chromosomal Inversions in the African Malaria Vector Anopheles gambiae. Mol. Ecol. 2019, 28, 1333–1342. [Google Scholar] [CrossRef] [PubMed]
- Riehle, M.M.; Bukhari, T.; Gneme, A.; Guelbeogo, W.M.; Coulibaly, B.; Fofana, A.; Pain, A.; Bischoff, E.; Renaud, F.; Beavogui, A.H.; et al. The Anopheles gambiae 2La Chromosome Inversion Is Associated with Susceptibility to Plasmodium falciparum in Africa. eLife 2017, 6, e25813. [Google Scholar] [CrossRef]
- Cheng, C.; Tan, J.C.; Hahn, M.W.; Besansky, N.J. Systems Genetic Analysis of Inversion Polymorphisms in the Malaria Mosquito Anopheles gambiae. Proc. Natl. Acad. Sci. USA 2018, 115, E7005–E7014. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, S.S.; Muhammad, A.; Hearn, J.; Weedall, G.D.; Nagi, S.C.; Mukhtar, M.M.; Fadel, A.N.; Mugenzi, L.J.; Patterson, E.I.; Irving, H.; et al. Molecular Drivers of Insecticide Resistance in the Sahelo-Sudanian Populations of a Major Malaria Vector Anopheles coluzzii. BMC Biol. 2023, 21, 125. [Google Scholar] [CrossRef] [PubMed]
- Mnzava, A.E.P.; Rwegoshora, R.T.; Wilkes, T.J.; Tanner, M.; Curtis, C.F. Anopheles Arabiensis and An. Gambiae Chromosomal Inversion Polymorphism, Feeding and Resting Behaviour in Relation to Insecticide House-spraying in Tanzania. Med. Vet. Entomol. 1995, 9, 316–324. [Google Scholar] [CrossRef]
- Ayala, D.; Fontaine, M.C.; Cohuet, A.; Fontenille, D.; Vitalis, R.; Simard, F. Chromosomal Inversions, Natural Selection and Adaptation in the Malaria Vector Anopheles funestus. Mol. Biol. Evol. 2011, 28, 745–758. [Google Scholar] [CrossRef] [PubMed]
- Gray, E.M.; Rocca, K.A.C.; Costantini, C.; Besansky, N.J. Inversion 2La Is Associated with Enhanced Desiccation Resistance in Anopheles gambiae. Malar. J. 2009, 8, 215. [Google Scholar] [CrossRef]
- Neafsey, D.E.; Waterhouse, R.M.; Abai, M.R.; Aganezov, S.S.; Alekseyev, M.A.; Allen, J.E.; Amon, J.; Arcà, B.; Arensburger, P.; Artemov, G.; et al. Highly Evolvable Malaria Vectors: The Genomes of 16 Anopheles Mosquitoes. Science 2015, 347, 1258522. [Google Scholar] [CrossRef]
- Nicolescu, G.; Linton, Y.-M.; Vladimirescu, A.; Howard, T.M.; Harbach, R.E. Mosquitoes of the Anopheles maculipennis Group (Diptera: Culicidae) in Romania, with the Discovery and Formal Recognition of a New Species Based on Molecular and Morphological Evidence. Bull. Entomol. Res. 2004, 94, 525–535. [Google Scholar] [CrossRef]
- Brusentsov, I.I.; Gordeev, M.I.; Yurchenko, A.A.; Karagodin, D.A.; Moskaev, A.V.; Hodge, J.M.; Burlak, V.A.; Artemov, G.N.; Sibataev, A.K.; Becker, N.; et al. Patterns of Genetic Differentiation Imply Distinct Phylogeographic History of the Mosquito Species Anopheles messeae and Anopheles daciae in Eurasia. Mol. Ecol. 2023, 32, 5609–5625. [Google Scholar] [CrossRef]
- Abashov, A.T. Epidemiology of Imported Malaria in Eastern Siberia. Ph.D. Thesis, Irkutsk State Medical University, Irkutsk, Russia, 2012. (In Russian). [Google Scholar]
- Vaulin, O.V.; Karagodin, D.A.; Zakharov, I.K.; Baricheva, E.M. Dynamics of Malaria Mosquito Species Composition in Siberian Populations Detected by Restriction Analysis. Russ. J. Genet. 2018, 54, 838–847. [Google Scholar] [CrossRef]
- Capelli, G.; Genchi, C.; Baneth, G.; Bourdeau, P.; Brianti, E.; Cardoso, L.; Danesi, P.; Fuehrer, H.-P.; Giannelli, A.; Ionică, A.M.; et al. Recent Advances on Dirofilaria repens in Dogs and Humans in Europe. Parasites Vectors 2018, 11, 663. [Google Scholar] [CrossRef]
- Kronefeld, M.; Werner, D.; Kampen, H. PCR Identification and Distribution of Anopheles daciae (Diptera, Culicidae) in Germany. Parasitol. Res. 2014, 113, 2079–2086. [Google Scholar] [CrossRef]
- Soboleva, E.S.; Kirilenko, K.M.; Fedorova, V.S.; Kokhanenko, A.A.; Artemov, G.N.; Sharakhov, I.V. Two Nested Inversions in the X Chromosome Differentiate the Dominant Malaria Vectors in Europe, Anopheles atroparvus and Anopheles messeae. Insects 2024, 15, 312. [Google Scholar] [CrossRef]
- Artemov, G.N.; Fedorova, V.S.; Karagodin, D.A.; Brusentsov, I.I.; Baricheva, E.M.; Sharakhov, I.V.; Gordeev, M.I.; Sharakhova, M.V. New Cytogenetic Photomap and Molecular Diagnostics for the Cryptic Species of the Malaria Mosquitoes Anopheles messeae and Anopheles daciae from Eurasia. Insects 2021, 12, 835. [Google Scholar] [CrossRef]
- Naumenko, A.N.; Karagodin, D.A.; Yurchenko, A.A.; Moskaev, A.V.; Martin, O.I.; Baricheva, E.M.; Sharakhov, I.V.; Gordeev, M.I.; Sharakhova, M.V. Chromosome and Genome Divergence Between the Cryptic Eurasian Malaria Vector-Species Anopheles messeae and Anopheles daciae. Genes 2020, 11, 165. [Google Scholar] [CrossRef] [PubMed]
- Coluzzi, M.; Sabatini, A.; della Torre, A.; Di Deco, M.A.; Petrarca, V. A Polytene Chromosome Analysis of the Anopheles gambiae Species Complex. Science 2002, 298, 1415–1418. [Google Scholar] [CrossRef] [PubMed]
- Pombi, M.; Caputo, B.; Simard, F.; Di Deco, M.A.; Coluzzi, M.; Torre, A.; Costantini, C.; Besansky, N.J.; Petrarca, V. Chromosomal Plasticity and Evolutionary Potential in the Malaria Vector Anopheles gambiae Sensu Stricto: Insights from Three Decades of Rare Paracentric Inversions. BMC Evol. Biol. 2008, 8, 309. [Google Scholar] [CrossRef]
- Nosil, P.; Soria-Carrasco, V.; Villoutreix, R.; De-la-Mora, M.; De Carvalho, C.F.; Parchman, T.; Feder, J.L.; Gompert, Z. Complex Evolutionary Processes Maintain an Ancient Chromosomal Inversion. Proc. Natl. Acad. Sci. USA 2023, 120, e2300673120. [Google Scholar] [CrossRef]
- Wellenreuther, M.; Bernatchez, L. Eco-Evolutionary Genomics of Chromosomal Inversions. Trends Ecol. Evol. 2018, 33, 427–440. [Google Scholar] [CrossRef]
- Sharakhova, M.V.; Artemov, G.N.; Timoshevskiy, V.A.; Sharakhov, I.V. Physical Genome Mapping Using Fluorescence in Situ Hybridization with Mosquito Chromosomes. In Insect Genomics; Brown, S.J., Pfrender, M.E., Eds.; Methods in Molecular Biology; Springer: New York, NY, USA, 2019; Volume 1858, pp. 177–194. ISBN 978-1-4939-8774-0. [Google Scholar]
- Artemov, G.N.; Bondarenko, S.M.; Naumenko, A.N.; Stegniy, V.N.; Sharakhova, M.V.; Sharakhov, I.V. Partial-Arm Translocations in Evolution of Malaria Mosquitoes Revealed by High-Coverage Physical Mapping of the Anopheles atroparvus Genome. BMC Genom. 2018, 19, 278. [Google Scholar] [CrossRef] [PubMed]
- Tesler, G. GRIMM: Genome Rearrangements Web Server. Bioinformatics 2002, 18, 492–493. [Google Scholar] [CrossRef]
- Pevzner, P.; Tesler, G. Genome Rearrangements in Mammalian Evolution: Lessons from Human and Mouse Genomes. Genome Res. 2003, 13, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Lukyanchikova, V.; Nuriddinov, M.; Belokopytova, P.; Taskina, A.; Liang, J.; Reijnders, M.J.M.F.; Ruzzante, L.; Feron, R.; Waterhouse, R.M.; Wu, Y.; et al. Anopheles Mosquitoes Reveal New Principles of 3D Genome Organization in Insects. Nat. Commun. 2022, 13, 1960. [Google Scholar] [CrossRef]
- Corbett-Detig, R.B.; Said, I.; Calzetta, M.; Genetti, M.; McBroome, J.; Maurer, N.W.; Petrarca, V.; Della Torre, A.; Besansky, N.J. Fine-Mapping Complex Inversion Breakpoints and Investigating Somatic Pairing in the Anopheles gambiae Species Complex Using Proximity-Ligation Sequencing. Genetics 2019, 213, 1495–1511. [Google Scholar] [CrossRef]
- Lobo, N.F.; Sangaré, D.M.; Regier, A.A.; Reidenbach, K.R.; Bretz, D.A.; Sharakhova, M.V.; Emrich, S.J.; Traore, S.F.; Costantini, C.; Besansky, N.J.; et al. Breakpoint Structure of the Anopheles gambiae 2Rb Chromosomal Inversion. Malar. J. 2010, 9, 293. [Google Scholar] [CrossRef]
- Sharakhov, I.V.; Artemov, G.N.; Sharakhova, M.V. Chromosome Evolution in Malaria Mosquitoes Inferred from Physically Mapped Genome Assemblies. J. Bioinform. Comput. Biol. 2016, 14, 1630003. [Google Scholar] [CrossRef] [PubMed]
- González, J.; Casals, F.; Ruiz, A. Testing Chromosomal Phylogenies and Inversion Breakpoint Reuse in Drosophila. Genetics 2007, 175, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Ghavi-Helm, Y.; Jankowski, A.; Meiers, S.; Viales, R.R.; Korbel, J.O.; Furlong, E.E.M. Highly Rearranged Chromosomes Reveal Uncoupling Between Genome Topology and Gene Expression. Nat. Genet. 2019, 51, 1272–1282. [Google Scholar] [CrossRef]
- Wright, D.; Schaeffer, S.W. The Relevance of Chromatin Architecture to Genome Rearrangements in Drosophila. Philos. Trans. R. Soc. B 2022, 377, 20210206. [Google Scholar] [CrossRef]
- Von Grotthuss, M.; Ashburner, M.; Ranz, J.M. Fragile Regions and Not Functional Constraints Predominate in Shaping Gene Organization in the Genus Drosophila. Genome Res. 2010, 20, 1084–1096. [Google Scholar] [CrossRef]
- Coluzzi, M.; Sabatini, A.; Petrarca, V.; Di Deco, M.A. Chromosomal Differentiation and Adaptation to Human Environments in the Anopheles gambiae Complex. Trans. R. Soc. Trop. Med. Hyg. 1979, 73, 483–497. [Google Scholar] [CrossRef] [PubMed]
- Xia, A.; Sharakhova, M.V.; Sharakhov, I.V. Reconstructing Ancestral Autosomal Arrangements in the Anopheles gambiae Complex. J. Comput. Biol. 2008, 15, 965–980. [Google Scholar] [CrossRef] [PubMed]
- Sharakhov, I.V.; White, B.J.; Sharakhova, M.V.; Kayondo, J.; Lobo, N.F.; Santolamazza, F.; Della Torre, A.; Simard, F.; Collins, F.H.; Besansky, N.J. Breakpoint Structure Reveals the Unique Origin of an Interspecific Chromosomal Inversion (2La) in the Anopheles gambiae Complex. Proc. Natl. Acad. Sci. USA. 2006, 103, 6258–6262. [Google Scholar] [CrossRef] [PubMed]
- Perevozkin, V.P.; Khalzova, V.V. Species and Population-Genetic Structure of Malaria Mosquitoes of Central Siberia; Vestnik of Tomsk State Pedagogical University: Tomsk, Russia, 2013; pp. 75–80. (In Russian) [Google Scholar]




| Breakpoint Region | Distal DNA Marker | Proximal DNA Marker | ||||
|---|---|---|---|---|---|---|
| Gene Position, bp | Gene ID | Exons * | Gene Position, bp | Gene ID | Exons * | |
| X2 distal | 13,261,242… 13,265,420(+) | AATE009941 | 2–3 | 13,236,449… 13,246,292(−) | AATE005475 | 3 |
| X2 proximal | 1,465,925… 1,468,608(−) | AATE016042 | 2–3 | 14,520,988… 14,521,746(+) | AATE009858 | 1 |
| X0 distal | 4,398,009… 4,404,032(−) | AATE021012 | 4 | 4,571,860… 4,577,721(−) | AATE013154 | 3 |
| X0 proximal | 17,252,047… 17,256,383(+) | AATE003340 | 2 | 17,260,494… 17,265,377(−) | AATE018776 | 2–4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Soboleva, E.S.; Sharakhova, M.V.; Sharakhov, I.V.; Artemov, G.N. The Species-Specific Inversion Polymorphism of the X Chromosome in Anopheles messeae and Anopheles daciae Is Based on the Common Ancestral Variant X1. Genes 2026, 17, 5. https://doi.org/10.3390/genes17010005
Soboleva ES, Sharakhova MV, Sharakhov IV, Artemov GN. The Species-Specific Inversion Polymorphism of the X Chromosome in Anopheles messeae and Anopheles daciae Is Based on the Common Ancestral Variant X1. Genes. 2026; 17(1):5. https://doi.org/10.3390/genes17010005
Chicago/Turabian StyleSoboleva, Evgeniya S., Maria V. Sharakhova, Igor V. Sharakhov, and Gleb N. Artemov. 2026. "The Species-Specific Inversion Polymorphism of the X Chromosome in Anopheles messeae and Anopheles daciae Is Based on the Common Ancestral Variant X1" Genes 17, no. 1: 5. https://doi.org/10.3390/genes17010005
APA StyleSoboleva, E. S., Sharakhova, M. V., Sharakhov, I. V., & Artemov, G. N. (2026). The Species-Specific Inversion Polymorphism of the X Chromosome in Anopheles messeae and Anopheles daciae Is Based on the Common Ancestral Variant X1. Genes, 17(1), 5. https://doi.org/10.3390/genes17010005

