Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = anatase TiO2 nanocrystals

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3242 KiB  
Article
Synthesis and Investigation of Na-Zeolite-Decorated Black TiO2 Hybrid Material with Enhanced Properties
by Corina Orha, Mina-Ionela Morariu (Popescu), Mircea Nicolaescu, Cornelia Bandas and Carmen Lazau
Crystals 2025, 15(4), 319; https://doi.org/10.3390/cryst15040319 - 27 Mar 2025
Viewed by 358
Abstract
Enhancing the photocatalytic efficiency of oxide materials under Vis light remains a significant challenge within the scientific community. Natural zeolite–metal oxide composites exhibit enhanced properties, especially due to the zeolite’s large active surface area, which facilitates the incorporation of metal oxide nanoparticles into [...] Read more.
Enhancing the photocatalytic efficiency of oxide materials under Vis light remains a significant challenge within the scientific community. Natural zeolite–metal oxide composites exhibit enhanced properties, especially due to the zeolite’s large active surface area, which facilitates the incorporation of metal oxide nanoparticles into its structure, thereby significantly increasing photocatalytic efficiency. The present study presents the synthesis of Na-zeolite-decorated black-TiO2 by the impregnation method, in order to improve the structural characteristics to absorb into visible light. The experimental protocol involves two main steps: first, the synthesis of black-TiO2 and white-TiO2 nanocrystals using the sol-gel method, and second, the preparation of hybrid materials, consisting of Na-zeolite decorated with black-TiO2 and white-TiO2, through impregnation followed by thermal treatment. The morpho-structural and optical properties of the as-synthesized materials were investigated using XRD, SEM/EDX, FTIR, and DRUV-VIS analysis. The characterization results indicated that natural zeolite has a good thermal stabilization, the lamellar texture of natural zeolite and spherical form of anatase-TiO2 materials being highlighted by SEM. In the case of Na-zeolite-decorated black-TiO2, the adsorption edge is slightly shifted to the visible range, while Na-zeolite-decorated white-TiO2 absorbs only in the ultraviolet region. The above results showed that these hybrid materials are adequate for application in photocatalytic processes. Full article
(This article belongs to the Section Hybrid and Composite Crystalline Materials)
Show Figures

Figure 1

30 pages, 6089 KiB  
Article
Glass-Ceramics of the Lithium Aluminosilicate System Nucleated by TiO2: The Role of Redox Conditions of Glass Melting in Phase Transformations and Properties
by Stanislav Maltsev, Olga Dymshits, Irina Alekseeva, Anna Volokitina, Maksim Tenevich, Anastasia Bachina, Kirill Bogdanov, Svetlana Zapalova, Georgiy Shakhgildyan and Aleksandr Zhilin
Materials 2025, 18(4), 785; https://doi.org/10.3390/ma18040785 - 11 Feb 2025
Viewed by 851
Abstract
Lithium aluminosilicate glasses nucleated by TiO2 are usually melted in oxidizing conditions. The reducing conditions of glass melting, which allow to obtain ions of variable valence in lower oxidation states, can influence the ability of titania to provide proper phase assemblage, structure [...] Read more.
Lithium aluminosilicate glasses nucleated by TiO2 are usually melted in oxidizing conditions. The reducing conditions of glass melting, which allow to obtain ions of variable valence in lower oxidation states, can influence the ability of titania to provide proper phase assemblage, structure and properties of lithium aluminosilicate glass-ceramics. The aim of this study is to reveal this influence. The model glass containing TiO2 was melted with and without the addition of As2O3. Using heat treatments between 680 °C and 1300 °C, XRD, SEM and DSC data, Raman and absorption spectroscopy, transparent glass-ceramics based on nanocrystals of β-quartz solid solutions (ss) and/or γ-Al2O3 with spinel structure and opaque glass-ceramics based on nanocrystals of β-spodumene ss were obtained and characterized. Three-phase immiscibility develops during secondary heat treatments. Al2TiO5 crystallizes from aluminotitanate amorphous regions simultaneously with the appearance of β-quartz ss, while traces of anatase and then rutile appear at elevated temperatures. Phase assemblage and the sequence of phase transformations do not depend on the redox conditions of glass melting, while the rate of these transformations is significantly higher in glass melted without the addition of As2O3. Absorption in glass melted without the addition of As2O3 and the corresponding glass-ceramics originate from octahedrally coordinated Ti3+ ions and Ti3+-Ti4+ pairs in glass and nanocrystals of γ-Al2O3, Al2TiO5 and β-quartz ss. Transparent glass-ceramics with a thermal expansion coefficient of ~0.3 × 10−6 K−1 were obtained from both glasses. Full article
Show Figures

Figure 1

16 pages, 9711 KiB  
Article
Cr3+-Doped Anatase-Phase TiO2 Nanocrystals with (101) and (004) Dominant Facets: Synthesis and Characterization
by Rayhan Hossain and Allen Apblett
Catalysts 2025, 15(1), 33; https://doi.org/10.3390/catal15010033 - 2 Jan 2025
Cited by 2 | Viewed by 1038
Abstract
Anatase-phase rod-shaped TiO2 nanocrystals are prepared by the solvothermal method, the surface is metalated, and doped nanocrystals are achieved by thermal diffusion of surface metal ions. Incorporation of dopant ions into TiO2 lattice enhances the visible light absorption of the material [...] Read more.
Anatase-phase rod-shaped TiO2 nanocrystals are prepared by the solvothermal method, the surface is metalated, and doped nanocrystals are achieved by thermal diffusion of surface metal ions. Incorporation of dopant ions into TiO2 lattice enhances the visible light absorption of the material and in some cases can increase the rate of photocatalysis. Even though there are overflowing studies on the preparation of doped TiO2 materials, there are no methods that enable the precise control of dopant concentration in TiO2 nanocrystals. We have developed a method to load the surface of oleic acid stabilized anatase-phase rod-shaped TiO2 nanocrystals (approx. 3 ± 1 nm diameter and 40 ± 10 nm long) with transition metal ions followed by ion diffusion to prepare metal-doped nanocrystals with exact control of the dopant concentration. Specifically, in this work, Cr3+ adsorbs TiO2 nanorods to yield a green colloid, followed by ion diffusion at elevated temperature. After removal of any remaining surface Cr3+, tan-colored chromium-doped TiO2 nanorods can be obtained. Electron microscopy and powder X-ray diffraction indicate no change in nanocrystal size and morphology throughout the process. The TiO2 nanorods play an important role in photocatalysis owing to their excellent chemical and physical properties. Titanium dioxide is a low-cost, non-toxic, highly stable, chemically robust material. Doped TiO2 materials have found application in photocatalysis (oxidative degradation of organic molecules, hydrogen evolution), photovoltaics, solar cells, lithium-ion batteries, supercapacitors, and sensors. TiO2 photocatalysis is also the basis for clean energy technologies, such as dye-sensitized solar cells and photoelectrochemical cells. In photocatalysis applications, nanocrystalline TiO2 presents advantages of a high surface area, ability to control the surface facet, and minimized bulk recombination. Full article
(This article belongs to the Special Issue TiO2 Photocatalysts—Towards Sustainable Chemistry)
Show Figures

Figure 1

13 pages, 3394 KiB  
Article
Enhanced Diclofenac Removal from Constructed Wetland Effluent Using a Photoelectrocatalytic System with N-TiO2 Nanocrystal-Modified TiO2 Nanotube Anode and Graphene Oxide/Activated Carbon Photocathode
by Xiongwei Liang, Shaopeng Yu, Bo Meng, Xiaodi Wang, Chunxue Yang, Chuanqi Shi and Junnan Ding
Catalysts 2024, 14(12), 954; https://doi.org/10.3390/catal14120954 - 23 Dec 2024
Viewed by 825
Abstract
This investigation reports on the efficacy of a photoelectrocatalysis (PEC) system enhanced by a nitrogen-doped TiO2 nanocrystal-modified TiO2 nanotube array (N-TiO2 NCs/TNTAs) anode paired with a graphene oxide/activated carbon (GO/AC) photocathode for diclofenac removal from effluent. The FE-SEM and EDX [...] Read more.
This investigation reports on the efficacy of a photoelectrocatalysis (PEC) system enhanced by a nitrogen-doped TiO2 nanocrystal-modified TiO2 nanotube array (N-TiO2 NCs/TNTAs) anode paired with a graphene oxide/activated carbon (GO/AC) photocathode for diclofenac removal from effluent. The FE-SEM and EDX analyses validated the elemental composition of the anode—27.56% C, 30.81% N, 6.03% O, and 26.49% Ti. The XRD results confirmed the anatase phase and nitrogen integration, essential for photocatalytic activity enhancement. Quantum chemical simulations provided a comprehensive understanding of the red-shifted absorption bands in N-TiO2, and UV-vis DRS demonstrated a red-shift in absorption to the visible spectrum, indicating improved light utilization. The PEC configuration achieved a photocurrent density of 9.8 mA/dm2, significantly higher than the unmodified and solely nitrogen-doped counterparts at 4.8 mA/dm2 and 6.1 mA/dm2, respectively. Notably, this system reduced diclofenac concentrations by 58% within 75 min, outperforming standard photocatalytic setups. These findings underscore the potential of N-TiO2 NCs/TNTAs-AC-GO/PTFE composite material for advanced environmental photoelectrocatalytic applications. Full article
(This article belongs to the Special Issue Nanomaterials in Environmental Catalysis)
Show Figures

Figure 1

28 pages, 6516 KiB  
Article
Colloidal TiO2 Nanorod Films Deposited Using the MAPLE Technique: Role of the Organic Capping and Absence of Characteristic Surface Patterns
by Maura Cesaria, Antonietta Taurino, Pantaleo Davide Cozzoli, Valentina Arima and Anna Paola Caricato
Processes 2023, 11(9), 2591; https://doi.org/10.3390/pr11092591 - 29 Aug 2023
Cited by 1 | Viewed by 1415
Abstract
Thin films of titanium dioxide (TiO2) nanocrystals, widely acknowledged for their unique physical-chemical properties and functionalities, are used in disparate technological fields, including photovoltaics, sensing, environmental remediation and energy storage. In this paper, the preparation of thin films consisting of anatase-phase [...] Read more.
Thin films of titanium dioxide (TiO2) nanocrystals, widely acknowledged for their unique physical-chemical properties and functionalities, are used in disparate technological fields, including photovoltaics, sensing, environmental remediation and energy storage. In this paper, the preparation of thin films consisting of anatase-phase TiO2 nanorods deposited using the matrix-assisted pulsed laser evaporation (MAPLE) technique and their characterization in terms of morphology, elemental composition and wettability are presented and discussed. Particular attention is paid to the effects of the laser fluence, varied over a broad range (F = 25, 50, 100 mJ/cm2), and to the role of the capping surfactants bound to the surface of the nanorod precursors. Whereas increasing fluence favored a partial removal of the surface-bound surfactants, a post-growth UV-light-driven photocatalytic treatment of the films was found to be necessary to reduce the incorporated fraction of organics to a further substantial extent. It was noteworthy that, under our experimental conditions, the distinctive surface patterns and roughness that commonly degrade the morphology of films deposited using the MAPLE technique were not observable. This previously unreported experimental evidence was rationalized on the basis of the interaction dynamics between solvent/solute droplets ejected from the laser-irradiated target and the rough surfaces of the growing film. Full article
(This article belongs to the Special Issue Developments in Laser-Assisted Manufacturing and Processing)
Show Figures

Figure 1

13 pages, 4252 KiB  
Article
Hydrogen Gas Sensing Properties of Mixed Copper–Titanium Oxide Thin Films
by Ewa Mańkowska, Michał Mazur, Jarosław Domaradzki, Piotr Mazur, Małgorzata Kot and Jan Ingo Flege
Sensors 2023, 23(8), 3822; https://doi.org/10.3390/s23083822 - 8 Apr 2023
Cited by 3 | Viewed by 2368
Abstract
Hydrogen is an efficient source of clean and environmentally friendly energy. However, because it is explosive at concentrations higher than 4%, safety issues are a great concern. As its applications are extended, the need for the production of reliable monitoring systems is urgent. [...] Read more.
Hydrogen is an efficient source of clean and environmentally friendly energy. However, because it is explosive at concentrations higher than 4%, safety issues are a great concern. As its applications are extended, the need for the production of reliable monitoring systems is urgent. In this work, mixed copper–titanium oxide ((CuTi)Ox) thin films with various copper concentrations (0–100 at.%), deposited by magnetron sputtering and annealed at 473 K, were investigated as a prospective hydrogen gas sensing material. Scanning electron microscopy was applied to determine the morphology of the thin films. Their structure and chemical composition were investigated by X-ray diffraction and X-ray photoelectron spectroscopy, respectively. The prepared films were nanocrystalline mixtures of metallic copper, cuprous oxide, and titanium anatase in the bulk, whereas at the surface only cupric oxide was found. In comparison to the literature, the (CuTi)Ox thin films already showed a sensor response to hydrogen at a relatively low operating temperature of 473 K without using any extra catalyst. The best sensor response and sensitivity to hydrogen gas were found in the mixed copper–titanium oxides containing similar atomic concentrations of both metals, i.e., 41/59 and 56/44 of Cu/Ti. Most probably, this effect is related to their similar morphology and to the simultaneous presence of Cu and Cu2O crystals in these mixed oxide films. In particular, the studies of surface oxidation state revealed that it was the same for all annealed films and consisted only of CuO. However, in view of their crystalline structure, they consisted of Cu and Cu2O nanocrystals in the thin film volume. Full article
Show Figures

Figure 1

26 pages, 7446 KiB  
Article
Microwave Synthesis of Visible-Light-Activated g-C3N4/TiO2 Photocatalysts
by Maria Leonor Matias, Ana S. Reis-Machado, Joana Rodrigues, Tomás Calmeiro, Jonas Deuermeier, Ana Pimentel, Elvira Fortunato, Rodrigo Martins and Daniela Nunes
Nanomaterials 2023, 13(6), 1090; https://doi.org/10.3390/nano13061090 - 17 Mar 2023
Cited by 25 | Viewed by 5398
Abstract
The preparation of visible-light-driven photocatalysts has become highly appealing for environmental remediation through simple, fast and green chemical methods. The current study reports the synthesis and characterization of graphitic carbon nitride/titanium dioxide (g-C3N4/TiO2) heterostructures through a fast [...] Read more.
The preparation of visible-light-driven photocatalysts has become highly appealing for environmental remediation through simple, fast and green chemical methods. The current study reports the synthesis and characterization of graphitic carbon nitride/titanium dioxide (g-C3N4/TiO2) heterostructures through a fast (1 h) and simple microwave-assisted approach. Different g-C3N4 amounts mixed with TiO2 (15, 30 and 45 wt. %) were investigated for the photocatalytic degradation of a recalcitrant azo dye (methyl orange (MO)) under solar simulating light. X-ray diffraction (XRD) revealed the anatase TiO2 phase for the pure material and all heterostructures produced. Scanning electron microscopy (SEM) showed that by increasing the amount of g-C3N4 in the synthesis, large TiO2 aggregates composed of irregularly shaped particles were disintegrated and resulted in smaller ones, composing a film that covered the g-C3N4 nanosheets. Scanning transmission electron microscopy (STEM) analyses confirmed the existence of an effective interface between a g-C3N4 nanosheet and a TiO2 nanocrystal. X-ray photoelectron spectroscopy (XPS) evidenced no chemical alterations to both g-C3N4 and TiO2 at the heterostructure. The visible-light absorption shift was indicated by the red shift in the absorption onset through the ultraviolet-visible (UV-VIS) absorption spectra. The 30 wt. % of g-C3N4/TiO2 heterostructure showed the best photocatalytic performance, with a MO dye degradation of 85% in 4 h, corresponding to an enhanced efficiency of almost 2 and 10 times greater than that of pure TiO2 and g-C3N4 nanosheets, respectively. Superoxide radical species were found to be the most active radical species in the MO photodegradation process. The creation of a type-II heterostructure is highly suggested due to the negligible participation of hydroxyl radical species in the photodegradation process. The superior photocatalytic activity was attributed to the synergy of g-C3N4 and TiO2 materials. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Graphical abstract

17 pages, 6377 KiB  
Article
Successful Growth of TiO2 Nanocrystals with {001} Facets for Solar Cells
by Saif M. H. Qaid, Hamid M. Ghaithan, Huda S. Bawazir, Abrar F. Bin Ajaj, Khulod K. AlHarbi and Abdullah S. Aldwayyan
Nanomaterials 2023, 13(5), 928; https://doi.org/10.3390/nano13050928 - 3 Mar 2023
Cited by 18 | Viewed by 3957
Abstract
The growth of nanocrystals (NCs) from metal oxide-based substrates with exposed high-energy facets is of particular importance for many important applications, such as solar cells as photoanodes due to the high reactivity of these facets. The hydrothermal method remains a current trend for [...] Read more.
The growth of nanocrystals (NCs) from metal oxide-based substrates with exposed high-energy facets is of particular importance for many important applications, such as solar cells as photoanodes due to the high reactivity of these facets. The hydrothermal method remains a current trend for the synthesis of metal oxide nanostructures in general and titanium dioxide (TiO2) in particular since the calcination of the resulting powder after the completion of the hydrothermal method no longer requires a high temperature. This work aims to use a rapid hydrothermal method to synthesize numerous TiO2-NCs, namely, TiO2 nanosheets (TiO2-NSs), TiO2 nanorods (TiO2-NRs), and nanoparticles (TiO2-NPs). In these ideas, a simple non-aqueous one-pot solvothermal method was employed to prepare TiO2-NSs using tetrabutyl titanate Ti(OBu)4 as a precursor and hydrofluoric acid (HF) as a morphology control agent. Ti(OBu)4 alone was subjected to alcoholysis in ethanol, yielding only pure nanoparticles (TiO2-NPs). Subsequently, in this work, the hazardous chemical HF was replaced by sodium fluoride (NaF) as a means of controlling morphology to produce TiO2-NRs. The latter method was required for the growth of high purity brookite TiO2 NRs structure, the most difficult TiO2 polymorph to synthesize. The fabricated components are then morphologically evaluated using equipment, such as transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), electron diffraction (SAED), and X-ray diffraction (XRD). In the results, the TEM image of the developed NCs shows the presence of TiO2-NSs with an average side length of about 20–30 nm and a thickness of 5–7 nm. In addition, the image TEM shows TiO2-NRs with diameters between 10 and 20 nm and lengths between 80 and 100 nm, together with crystals of smaller size. The phase of the crystals is good, confirmed by XRD. The anatase structure, typical of TiO2-NS and TiO2-NPs, and the high-purity brookite-TiO2-NRs structure, were evident in the produced nanocrystals, according to XRD. SAED patterns confirm that the synthesis of high quality single crystalline TiO2-NSs and TiO2-NRs with the exposed {001} facets are the exposed facets, which have the upper and lower dominant facets, high reactivity, high surface energy, and high surface area. TiO2-NSs and TiO2-NRs could be grown, corresponding to about 80% and 85% of the {001} outer surface area in the nanocrystal, respectively. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

15 pages, 5716 KiB  
Article
Study of Phenol Red Photocatalytic Decomposition on KBrO3-Supported TiO2 Nanoparticles for Wastewater Treatment
by Najla Khaled Almulhem, Chawki Awada and Nagih M. Shaalan
Separations 2023, 10(3), 162; https://doi.org/10.3390/separations10030162 - 27 Feb 2023
Cited by 8 | Viewed by 2140
Abstract
In this study, the enhanced photodegradation of a high-concentration phenol red (PR) using very fine TiO2 nanocrystals by adding a KBrO3 electron acceptor was reported for the first time. The structural study on TiO2 nanocrystals using HRTEM, XRD, Raman, and [...] Read more.
In this study, the enhanced photodegradation of a high-concentration phenol red (PR) using very fine TiO2 nanocrystals by adding a KBrO3 electron acceptor was reported for the first time. The structural study on TiO2 nanocrystals using HRTEM, XRD, Raman, and EDX was performed and it confirmed the anatase phase of TiO2 nanocrystals. UV–Vis absorbance of 20 mg.L−1 PR was measured and the photodegradation was extracted. The KBrO3 concentration effects exhibited an important enhancement in the degradation of PR dye. The efficiency of PR was increased during 110 min from 75% of pure TiO2 to 92% and 98% of TiO2 with 1 mg and 5 mg KBrO3, respectively. For different samples, a first-order kinetic of dye degradation is confirmed. The instantaneous amount of degraded dye increased from 150 to 180 and 197 mg/g TiO2 with 1 mg and 5 mg KBrO3, respectively. The mechanism of the photodegradation reaction confirms the effect of OH- radicals on increasing the photocatalytic activities. The addition of electron acceptors KBrO3 improved the photocatalysis rate, where it prevented e-h recombination through conduction band electron capture, which increases the concentration of hydroxyl radicals. The proposed mechanism and results were supported by photocurrent measurements and a Raman spectra analysis of the final photodegraded products. The photocurrent of TiO2 was observed at 1.2 µA, which was significantly improved up to 13.2, and 21.3 µA with the addition of 1 mg and 5 mg of KBrO3. The Raman spectra of the final products confirmed that SO42 and carbons are byproducts of PR degradation. Full article
(This article belongs to the Special Issue Application of Photocatalytic Degradation in Pollutants Removal)
Show Figures

Graphical abstract

14 pages, 5104 KiB  
Article
Luminescence Tracking and In Vivo Toxicity Evaluation of TiO2 and Europium Doped TiO2 Nanocrystals during Drosophila Development
by Jerusa Maria de Oliveira, Kellen Talita Romão da Silva, Francisco Rubens Alves dos Santos, Felipe Berti Valer, Ricardo Kenji Ohno Takaki, João Paulo Santos de Carvalho, Olagide Wagner de Castro, Thiago Lopes Rocha, Noelio Oliveira Dantas, Anielle Christine Almeida Silva and Lucas Anhezini
Chemosensors 2023, 11(1), 55; https://doi.org/10.3390/chemosensors11010055 - 9 Jan 2023
Cited by 5 | Viewed by 3150
Abstract
Titanium dioxide (TiO2) nanoparticles (NPs) are widely used in industry and commercial products. Thus, their potential risks to the environment and human health must be evaluated. Doping NPs with certain ions makes it possible to mix properties or generate new ones. [...] Read more.
Titanium dioxide (TiO2) nanoparticles (NPs) are widely used in industry and commercial products. Thus, their potential risks to the environment and human health must be evaluated. Doping NPs with certain ions makes it possible to mix properties or generate new ones. Thus, in order to track TiO2 NPs in biological assays, doping with europium (Eu3+) ions was performed, which luminesce in red. Here, we synthesized TiO2 and Eu3+-doped TiO2 nanocrystals (NCs) in anatase phase to verify the toxicity at different concentrations in Drosophila melanogaster and track the distribution of these NCs in vivo. We verified that the incorporation of europium improved the biocompatibility in relation to the pure samples. The presence of Eu3+-doped TiO2 NCs in the gut, brain, and fat body of larvae and intestinal cells of adult animals was detected. Eu3+-doped TiO2 NCs caused significant larval and pupal mortality rates, in addition to leading to the formation of reactive species, especially at high concentrations. Therefore, our data demonstrated it was possible to trace the Eu3+-doped TiO2 NCs, but TiO2 and Eu3+-doped TiO2 NCs in anatase phase were toxic to fruit flies at the tested concentrations, and should be used with caution to minimize health risks. Full article
Show Figures

Figure 1

16 pages, 4473 KiB  
Article
Synthesis of High-Energy Faceted TiO2 Nanocrystals with Enhanced Photocatalytic Performance for the Removal of Methyl Orange
by Yien Du, Xianjun Niu, Wanxi Li, Jian Liu and Jinxiao Li
Catalysts 2022, 12(12), 1534; https://doi.org/10.3390/catal12121534 - 28 Nov 2022
Cited by 6 | Viewed by 2102
Abstract
In this work, brookite TiO2 nanocrystals with co-exposed {001} and {120} facets (pH0.5-T500-TiO2 and pH11.5-T500-TiO2), rutile TiO2 nanorod with exposed {110} facets and anatase TiO2 nanocrystals with exposed {101} facets (pH3.5-T500-TiO2) and {101}/{010} facets (pH5.5-T500-TiO [...] Read more.
In this work, brookite TiO2 nanocrystals with co-exposed {001} and {120} facets (pH0.5-T500-TiO2 and pH11.5-T500-TiO2), rutile TiO2 nanorod with exposed {110} facets and anatase TiO2 nanocrystals with exposed {101} facets (pH3.5-T500-TiO2) and {101}/{010} facets (pH5.5-T500-TiO2, pH7.5-T500-TiO2 and pH9.5-T500-TiO2) were successfully synthesized through a one-pot solvothermal method by using titanium (V) iso-propoxide (TTIP) colloidal solution as the precursor. The crystal structure, morphology, specific surface area, surface chemical states and photoelectric properties of the pHx-T500-TiO2 (x = 0.5, 1.5, 3.5, 5.5, 7.5, 9.5, 11.5) were characterized by powder X-ray diffraction (XRD), field scanning transmission electron microscopy (FESEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), nitrogen adsorption instrument, X-ray photoelectron spectroscopy (XPS), UV-Visible diffuse reflectance spectra and electrochemical impedance spectroscopy (EIS). The photocatalytic activity performance of the pHx-T500-TiO2 samples was also investigated. The results showed that as-prepared pH3.5-T500-TiO2 nanocrystal with exposed {101} facets exhibited the highest photocatalytic activity (95.75%) in the process of photocatalytic degradation of methyl orange (MO), which was 1.1, 1.2, 1.2, 1.3, 1.4, 1.6, 10.7, 15.1 and 27.8 fold higher than that of pH5.5-T500-TiO2 (89.47%), P25-TiO2 (81.16%), pH9.5-T500-TiO2 (79.41%), pH7.5-T500-TiO2 (73.53%), pH0.5-T500-TiO2 (69.10%), CM-TiO2 (61.09%), pH11.5-T500-TiO2 (8.99%), pH1.5-T500-TiO2 (6.33%) and the Blank (3.44%) sample, respectively. The highest photocatalytic activity of pH3.5-T500-TiO2 could be attributed to the synergistic effects of its anatase phase structure, the smallest particle size, the largest specific surface area and exposed {101} facets. Full article
(This article belongs to the Special Issue Advanced Catalytic Material for Water Treatment)
Show Figures

Figure 1

17 pages, 5583 KiB  
Article
Facile Synthesis of TiO2/MoS2 Composites with Co-Exposed High-Energy Facets for Enhanced Photocatalytic Performance
by Xianjun Niu, Yien Du, Jian Liu, Jinxiao Li, Jiayi Sun and Yuwei Guo
Micromachines 2022, 13(11), 1812; https://doi.org/10.3390/mi13111812 - 24 Oct 2022
Cited by 10 | Viewed by 2160
Abstract
In this work, with the the H2TiO3 colloidal suspension and MoS2 as the precursors, TiO2/MoS2 composites composed of anatase TiO2 nanocrystals with co-exposed {101} and [111]-facets (nanorod and nanocuboid), {101} and {010} facets (nanospindle), and [...] Read more.
In this work, with the the H2TiO3 colloidal suspension and MoS2 as the precursors, TiO2/MoS2 composites composed of anatase TiO2 nanocrystals with co-exposed {101} and [111]-facets (nanorod and nanocuboid), {101} and {010} facets (nanospindle), and MoS2 microspheres constructed by layer-by-layer self-assembly of nanosheets were hydrothermally synthesized under different pH conditions. The characterization has been performed by combining X-ray powder diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high resolution TEM (HRTEM), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) spectra, and UV-visible absorption spectrum analyses. The photocatalytic degradation of rhodamine B (RhB) in an aqueous suspension was employed to evaluate the photocatalytic activity of the as-prepared pHx-TiO2/MoS2 composites. The photocatalytic degradation efficiency of pH3.5-TiO2/MoS2 composite was the highest (99.70%), which was 11.24, 2.98, 1.48, 1.21, 1.09, 1.03, 1.10, and 1.14 times that of Blank, MoS2, CM-TiO2, pH1.5-TiO2/MoS2, pH5.5-TiO2/MoS2, pH7.5-TiO2/MoS2, pH9.5-TiO2/MoS2, pH11.5-TiO2/MoS2, respectively. The pH3.5-TiO2/MoS2 composite exhibited the highest photocatalytic degradation rate, which may be attributed to the synergistic effects of its large specific surface area, suitable heterojunction structure, and favorable photogenerated charge-separation efficiency. This work is expect to provide primary insights into the photocatalytic effect of TiO2/MoS2 composite with co-exposed high-energy facets, and make a contribution to designing more efficient and stable photocatalysts. Full article
Show Figures

Figure 1

24 pages, 7474 KiB  
Article
Photo-Oxidation of Glycerol Catalyzed by Cu/TiO2
by Osmín Avilés-García, Arisbeht Mendoza-Zepeda, Alejandro Regalado-Méndez, Jaime Espino-Valencia, Sandra L. Martínez-Vargas, Rubi Romero and Reyna Natividad
Catalysts 2022, 12(8), 835; https://doi.org/10.3390/catal12080835 - 29 Jul 2022
Cited by 14 | Viewed by 4104
Abstract
In the present study, glycerol was oxidized by photocatalysis to glyceraldehyde, formaldehyde, and formic acid. Copper-doped TiO2 was synthesized by the evaporation-induced self-assembly approach and it was used as catalyst during the glycerol photo-oxidation reactions. The prepared mesoporous material exhibited high specific [...] Read more.
In the present study, glycerol was oxidized by photocatalysis to glyceraldehyde, formaldehyde, and formic acid. Copper-doped TiO2 was synthesized by the evaporation-induced self-assembly approach and it was used as catalyst during the glycerol photo-oxidation reactions. The prepared mesoporous material exhibited high specific surface area (242 m2/g) and band gap energy reduction of 2.55 eV compared to pure titania (3.2 eV) by the synthesis method due to the presence of copper cations (Cu2+ identified by XPS). The catalyst showed only anatase crystalline phase with nanocrystals around 8 nm and irregular agglomerates below 100 μm. The selectivity and formation rate of the products were favored towards formaldehyde and glyceraldehyde. The variables studied were catalyst amount, reaction temperature, and initial glycerol concentration. The response surface analysis was used to evaluate the effect of the variables on the product’s concentration. The optimized conditions were 0.4 g/L catalyst, 0.1 mol/L glycerol, and temperature 313.15 K. The response values under optimal conditions were 3.23, 8.17, and 1.15 mM for glyceraldehyde, formaldehyde, and formic acid, respectively. A higher selectivity towards formaldehyde was observed when visible light was used as the radiation source. This study is useful to evaluate the best reaction conditions towards value-added products during the oxidation of glycerol by photocatalysis using Cu/TiO2. Full article
(This article belongs to the Special Issue 10th Anniversary of Catalysts—Feature Papers in Photocatalysis)
Show Figures

Figure 1

9 pages, 1625 KiB  
Communication
Development of Monodisperse Mesoporous Microballs Composed of Decahedral Anatase Nanocrystals
by Ying Chang, Jiayi Jiang, Zhishun Wei and Ewa Kowalska
Catalysts 2022, 12(4), 408; https://doi.org/10.3390/catal12040408 - 7 Apr 2022
Viewed by 2006
Abstract
Mesoporous monodisperse microballs of amorphous titania were prepared from solution of absolute ethanol, tetrabutyl titanate (TBOT) and potassium chloride via a sub-zero sol–gel route. The as-obtained microballs were used as the precursor in an alcohothermal (ethanol with a small amount of water) process [...] Read more.
Mesoporous monodisperse microballs of amorphous titania were prepared from solution of absolute ethanol, tetrabutyl titanate (TBOT) and potassium chloride via a sub-zero sol–gel route. The as-obtained microballs were used as the precursor in an alcohothermal (ethanol with a small amount of water) process to synthesize monodisperse mesoporous microballs built of decahedral anatase nanocrystals. FE-SEM observation and XRD analysis have confirmed that the formed decahedral anatase-rich powder retained the original spherical morphology of the precursor. Importantly, a hierarchical structure composed of faceted anatase has been achieved under “green” conditions, i.e., fluorine-free. Additionally, the hysteresis loops (BET results) have confirmed the existence of mesopores. Interestingly, faceted microballs show noticeable photocatalytic activity under UV/vis irradiation for hydrogen generation without any co-catalyst use, reaching almost forty times higher activity than that by famous commercial titania photocatalyst—P25. It has been proposed that enhanced photocatalytic performance is caused by mesoporous structure and co-existence of two kinds of facets, i.e., {001} and {101}, and thus hindered charge carriers’ recombination. Full article
(This article belongs to the Special Issue Structured Materials for Catalytic Applications)
Show Figures

Graphical abstract

13 pages, 2231 KiB  
Article
Photocatalytic Activity in the In-Flow Degradation of NO on Porous TiO2–Coated Glasses from Hybrid Inorganic–Organic Thin Films Prepared by a Combined ALD/MLD Deposition Strategy
by Ramón Azpiroz, Marina Borraz, Aida González, Catalina Mansilla, Manuel Iglesias and Jesús J. Pérez-Torrente
Coatings 2022, 12(4), 488; https://doi.org/10.3390/coatings12040488 - 5 Apr 2022
Cited by 3 | Viewed by 2719
Abstract
A combined ALD/MLD (where ALD and MLD stand for atomic and molecular layer deposition, respectively) deposition strategy using TiCl4, H2O and HQ (hydroquinone) as precursors has been applied for the preparation of inorganic–organic thin films on soda-lime glasses. The [...] Read more.
A combined ALD/MLD (where ALD and MLD stand for atomic and molecular layer deposition, respectively) deposition strategy using TiCl4, H2O and HQ (hydroquinone) as precursors has been applied for the preparation of inorganic–organic thin films on soda-lime glasses. The alternate deposition of TiO2 layers, by pulsing TiCl4/H2O (ALD), and hybrid layers, using TiCl4/HQ (MLD), results in the formation of thin films that are precursors for porous TiO2-coatings after removal of the HQ template by annealing. The coated-glassed show good photocatalytic activity in the degradation of NO with up to 15% reduction of NO concentration in three successive photocatalytic cycles of 5 h each. Surface Scanning Electron Microscopy (SEM) images show that the TiO2-coating is composed of large grains that are made up of finer subgrains resulting in a porous structure with an average pore size of 3–4 nm. Transmission Electron Microscopy (TEM) images show two regions, a porous columnar structure on top and a denser region over the glass substrate. Energy Dispersive X-Ray (EDX) analysis, nanocrystal electron diffraction and Raman spectroscopy confirm the presence of the anatase phase, which, together with the porosity of the material, accounts for the observed photocatalytic activity. Full article
Show Figures

Graphical abstract

Back to TopTop