Synthesis and Investigation of Na-Zeolite-Decorated Black TiO2 Hybrid Material with Enhanced Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Regents
2.2. Synthesis of TiO2 Nanocrystals
2.3. Synthesis of Hybrid Materials
2.4. Characterization Methods
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lijun, L.; Mingtao, W.; Zhenzi, L.; Xuepeng, W.; Wei, Z. Recent Advances in Black TiO2 Nanomaterials for Solar Energy Conversion. Nanomaterials 2023, 13, 468. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.; Chen, C.; Wang, J.; Fu, X.; Ren, Z.; Qian, G.; Wang, Z. Black hydroxylated titanium dioxide prepared via ultrasonication with enhanced photocatalytic activity. Sci. Rep. 2015, 5, 11712. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Li, Y.; Xia, T. Black titanium dioxide nanomaterials in photocatalysis. Int. J. Photoenergy 2017, 2017, 8529851. [Google Scholar] [CrossRef]
- Ullattil, S.G.; Narendranath, S.B.; Pillai, S.C.; Periyat, P. Black TiO2 nanomaterials: A review of recent advances. J. Chem. Eng. 2018, 343, 708–736. [Google Scholar] [CrossRef]
- Balog, Á.; Samu, G.F.; Pető, S.; Janáky, C. The mystery of black TiO2: Insights from combined surface science and in situ electrochemical methods. ACS Mater. Au 2021, 1, 157–168. [Google Scholar] [CrossRef]
- Chen, X.; Liu, L.; Yu, P.Y.; Mao, S.S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011, 331, 746–750. [Google Scholar] [CrossRef]
- Li, J.; Wu, E.H.; Hou, J.; Huang, P.; Xu, Z.; Jiang, Y.; Liu, Q.S.; Zhong, Y.Q. A facile method for the preparation of black TiO2 by Al reduction of TiO2 and their visible light photocatalytic activity. RSC Adv. 2020, 10, 34775. [Google Scholar] [CrossRef]
- Ye, M.; Jia, J.; Wu, Z.; Qian, C.; Chen, R.; O’Brien, P.G.; Sun, W.; Dong, Y.; Ozin, G.A. Synthesis of black TiOx nanoparticles by Mg reduction of TiO2 nanocrystals and their application for solar water evaporation. Adv. Energy Mater. 2017, 7, 1601811. [Google Scholar] [CrossRef]
- Zhao, Z.; Tan, H.; Zhao, H.; Lv, Y.; Zhou, L.J.; Song, Y.; Sun, Z. Reduced TiO2 rutile nanorods with well-defined facets and their visible-light photocatalytic activity. Chem. Commun. 2014, 50, 2755–2757. [Google Scholar] [CrossRef]
- Wang, C.C.; Chou, P.H. Effects of various hydrogenated treatments on formation and photocatalytic activity of black TiO2 nanowire arrays. Nanotechnology 2016, 27, 325401. [Google Scholar] [CrossRef]
- Ariyanti, D.; Mills, L.; Dong, J.; Yao, Y.; Gao, W. NaBH4 modified TiO2: Defect site enhancement related to its photocatalytic activity. Mater. Chem. Phys. 2017, 199, 571–576. [Google Scholar] [CrossRef]
- Mohamed, M.M.; Azab, N.A.; Bayoumy, W.A.A.; El-Sharkawy, A.A.M.; Omran, Z.A. Novel syntheses of modified black TiO2/C3N4 and their efficient behavior toward water splitting under neutral conditions. J. Environ. Chem. Eng. 2022, 10, 107418. [Google Scholar] [CrossRef]
- Andronic, L.; Enesca, A. Black TiO2 Synthesis by Chemical Reduction Methods for Photocatalysis Applications. Front. Chem. Sec. Catal. Photocatal. 2020, 8, 565489. [Google Scholar] [CrossRef] [PubMed]
- Rajaraman, T.S.; Parikh, S.P.; Gandhi, V.G. Black TiO2: A review of its properties and conflicting trends. Chem. Eng. J. 2020, 389, 123918. [Google Scholar] [CrossRef]
- Nawaz, R.; Haider, S.; Anjum, M.; Haneef, T.; Oad, K.V.; Aqif, M.; Haider, A.; Khan, R. Photodegrading hazardous pollutants using black TiO2 materials with different morphology and estimation of energy requirement. Mater. Chem. Phys. 2023, 309, 128401. [Google Scholar] [CrossRef]
- Liang, Y.; Huang, G.; Xin, X.; Yao, Y.; Li, Y.; Yin, J.; Li, X.; Wu, Y.; Gao, S. Black titanium dioxide nanomaterials for photocatalytic removal of pollutants: A review. J. Mater. Sci. Technol. 2022, 112, 239–262. [Google Scholar] [CrossRef]
- Naldoni, A.; Altomare, M.; Zoppellaro, G.; Liu, N.; Kment, Š.; Zbořil, R.; Schmuk, P. Photocatalysis with reduced TiO2: From black TiO2 to cocatalyst-free hydrogen production. ACS Catal. 2019, 9, 345–364. [Google Scholar] [CrossRef]
- Zhu, G.; Yin, H.; Yang, C.; Cui, H.; Wang, Z.; Xu, J.; Lin, T.; Huang, F. Black titania for superior photocatalytic hydrogen production and photoelectrochemical water splitting. ChemCatChem 2015, 7, 2614–2619. [Google Scholar] [CrossRef]
- Yuan, Z.; Zhu, X.; Gao, X.; An, C.; Wang, Z.; Zuo, C.; Dionysiou, D.D.; He, H.; Jiang, Z. Enhancing photocatalytic CO2 reduction with TiO2-based materials: Strategies, mechanisms, challenges, and perspectives. Environ. Sci. Ecotechnol. 2024, 20, 100368. [Google Scholar] [CrossRef]
- Rehman, Z.U.; Bilal, M.; Hou, J.; Butt, F.K.; Ahmad, J.; Ali, S.; Hussain, A. Photocatalytic CO2 reduction using TiO2-based photocatalysts and TiO2 Z-scheme heterojunction composites: A Review. Molecules 2022, 27, 2069. [Google Scholar] [CrossRef]
- Yang, C.; Wang, X.; Dong, W.; Chen, I.W.; Wang, Z.; Xu, J.; Lin, T.; Gu, H.; Huang, F. Nitrogen-doped black titania for high performance supercapacitors. Sci. China Mater. 2020, 63, 1227–1234. [Google Scholar] [CrossRef]
- Volfkovich, Y.M.; Rychagov, A.Y.; Sosenkin, V.E.; Baskakov, S.A.; Kabachkov, E.N.; Shulga, Y.M. Supercapacitor properties of rGO-TiO2 nanocomposite in two-component acidic electrolyte. Materials 2022, 15, 7856. [Google Scholar] [CrossRef] [PubMed]
- Ullattil, S.G.; Thelappurath, A.V.; Tadka, S.N.; Kavil, J.; Vijayan, B.K.; Periyat, P. A Sol-solvothermal Processed ‘Black TiO2’ as Photoanode Material in Dye Sensitized Solar Cells. Sol. Energy 2017, 155, 490–495. [Google Scholar] [CrossRef]
- Patil, S.B.; Phattepur, H.; Kishore, B.; Viswanatha, R.; Nagaraju, G. Robust electrochemistry of black TiO2 as stable and high-rate negative electrode for lithium-ion batteries. Mater. Renew. Sustain. Energy 2019, 8, 10. [Google Scholar] [CrossRef]
- Ge, J.; Du, G.; Kalam, A.; Bi, X.; Ding, S.; Su, Q.; Xu, B.; Al-Sehemi, A.G. Oxygen vacancy-rich black TiO2 nanoparticles as a highly efficient catalyst for Li–O2 batteries. Ceram. Int. 2021, 47, 6965–6971. [Google Scholar] [CrossRef]
- Dai, T.; Ren, W.; Wu, A. Chapter 6. Cancer Theranostics of Black TiO2 Nanoparticles. In TiO2 Nanoparticles: Applications in Nanobiotechnology and Nanomedicine Book; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2020; pp. 185–215. [Google Scholar]
- Tuntithavornwat, S.; Saisawang, C.; Ratvijitvech, T.; Watthanaphanit, A.; Hunsom, M.; Kannan, A.M. Recent development of black TiO2 nanoparticles for photocatalytic H2 production: An extensive review. Int. J. Hydrogen Energy 2024, 55, 1559–1593. [Google Scholar] [CrossRef]
- Gloria, D.C.S.; Brito, C.H.V.; Mendonça, T.A.P.; Brazil, T.R.; Domingues, R.A.; Vieira, N.C.S.; Santos, E.B.; Gonçalves, M. Preparation of TiO2/activated carbon nanomaterials with enhanced photocatalytic activity in paracetamol degradation. Mater. Chem. Phys. 2023, 305, 127947. [Google Scholar] [CrossRef]
- Parvathiraja, C.; Katheria, S.; Raza, S.M.; Wabaidur, S.M.; Islam, M.A.; Lai, W.C. Activated Carbon-Loaded Titanium Dioxide Nanoparticles and Their Photocatalytic and Antibacterial Investigations. Catalysts 2022, 12, 834. [Google Scholar] [CrossRef]
- Dlamini, M.C.; Maubane-Nkadimeng, M.S.; Moma, J.A. The use of TiO2/clay heterostructures in the photocatalytic remediation of water containing organic pollutants: A review. J. Environ. Chem. Eng. 2021, 9, 106546. [Google Scholar] [CrossRef]
- Napruszewska, B.D.; Duraczynska, D.; Czerwenka, J.K.; Nowak, P.; Serwicka, E.M. Clay Minerals/TiO2 Composites—Characterization and Application in Photocatalytic Degradation of Water Pollutants. Molecules 2024, 29, 4852. [Google Scholar] [CrossRef]
- Huayna, G.; Antonio, L.; Churata, R.; Lazo, L.; Guzmán, R.; Ramos, P.G.; Rodriguez, J.M. Synthesis and Characterization of a Photocatalytic Material from TiO2 Nanoparticles Supported on Zeolite Obtained from Ignimbrite Residue Used in Decolorization of Methyl Orange. Appl. Sci. 2024, 14, 3146. [Google Scholar] [CrossRef]
- Rahman, A.; Nurjayadi, M.; Wartilah, R.; Kusrini, E.; Prasetyanto, E.A.; Degermenci, V. Enhanced activity of TiO2/natural zeolite composite for degradation of methyl orange under visible light irradiation. Int. J. Technol. 2018, 6, 1159–1167. [Google Scholar] [CrossRef]
- Negi, G.S.; Anirbid, S.; Sivakumar, P. Applications of silica and titanium dioxide nanoparticles in enhanced oil recovery: Promises and challenges. Pet. Res. 2021, 6, 224–246. [Google Scholar] [CrossRef]
- Fujiwara, K.; Kuwahara, Y.; Sumida, Y.; Yamashita, H. Fabrication of Photocatalytic Paper Using TiO2 Nanoparticles Confined in Hollow Silica Capsules. Langmuir 2017, 33, 288–295. [Google Scholar] [CrossRef]
- Parra-Ortiz, E.; Caselli, L.; Agnoletti, M.; Skoda MW, A.; Li, X.; Zhao, D.; Malmsten, M. Mesoporous silica as a matrix for photocatalytic titanium dioxide nanoparticles: Lipid membrane interactions. Nanoscale 2022, 14, 12297–1231241. [Google Scholar] [CrossRef]
- Lazau, C.; Ratiu, C.; Orha, C.; Pode, R.; Manea, F. Photocatalytic activity of undoped and Ag-doped TiO2-supported zeolite for humic acid degradation and mineralization. Mater. Res. Bull. 2011, 46, 1916–1921. [Google Scholar] [CrossRef]
- Bandas, C.; Orha, C.; Misca, C.; Lazau, C.; Sfirloaga, P.; Olariu, S. Photocatalytical inactivation of Enterococcus faecalis from water using functional materials based on natural zeolite and titanium dioxide. Chin. J. Chem. Eng. 2014, 22, 38–43. [Google Scholar] [CrossRef]
- Orha, C.; Pop, A.; Lazau, C.; Grozescu, I.; Tiponut, V.; Manea, F. Silver doped natural and synthetic zeolites for removal of humic acid from water. Environ. Eng. Manag. J. 2012, 11, 641–649. [Google Scholar] [CrossRef]
- Juneau, M.; Liu, R.; Peng, Y.; Malge, A.; Ma, Z.; Porosoff, M.D. Characterization of Metal-zeolite Composite Catalysts: Determining the Environment of the Active Phase. ChemCatChem 2020, 12, 1826–1852. [Google Scholar] [CrossRef]
- Mergenbayeva, S.; Abitayev, Z.; Batyrbayeva, M.; Vakros, J.; Mantzavinos, D.; Atabaev, T.S.; Poulopoulos, S.G. TiO2/Zeolite composites for SMX degradation under UV Irradiation. Catalysts 2024, 14, 147. [Google Scholar] [CrossRef]
- Batistela, V.R.; Fogaça, L.Z.; Favaro, S.L.; Caetano, W.; Fernandes-Machado, N.R.C.; Hioka, N. ZnO supported on zeolites: Photocatalyst design, microporosity and properties. Colloids Surf. A Physicochem. Eng. Asp. 2017, 513, 20–27. [Google Scholar] [CrossRef]
- Rubab, M.; Bhatti, I.A.; Nadeem, N.; Shah, S.A.R.; Yaseen, M.; Naz, M.Y.; Zahid, M. Synthesis and photocatalytic degradation of rhodamine B using ternary zeolite/WO3/Fe3O4 composite. Nanotechnology 2021, 32, 345705. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhu, L.; Wang, X.; Meng, X. Photocatalytic degradation of wastewater by molecularly imprinted Ag2S-TiO2 with high-selectively. Sci. Rep. 2020, 10, 1192–1210. [Google Scholar] [CrossRef]
- Ilinoiu, E.C.; Pode, R.; Manea, F.; Colar, L.A.; Jakab, A.; Orha, C.; Ratiu, C.; Lazau, C.; Sfarloaga, P. Photocatalytic activity of a nitrogen-doped TiO2 modified zeolite in the degradation of Reactive Yellow 125 azo dye. J. Taiwan Inst. Chem. Eng. 2013, 44, 270–278. [Google Scholar] [CrossRef]
- Ratiu, C.; Manea, F.; Lazau, C.; Orha, C.; Burtica, G.; Grozescu, I.; Schoonman, J. Photocatalytically-assisted electrochemical degradation of p-aminophenol in aqueous solutions using zeolite-supported TiO2 catalyst. Chem. Pap. 2011, 65, 289–298. [Google Scholar] [CrossRef]
- Ratiu, C.; Manea, F.; Lazau, C.; Grozescu, I.; Radovan, C.; Schoonman, J. Electrochemical oxidation of p-aminophenol from water with boron-doped diamond anodes and assisted photocatalytically by TiO2-supported zeolite. Desalination 2010, 260, 51–56. [Google Scholar] [CrossRef]
- Pour, M.R.; Fereidooni, M.; Praserthdam, S.; Praserthdam, P.; Marquez, V.; Uesaka, K.; Yamakata, A.; Paz, C.V.; Kamjam, N.; Kanjanaboos, P. Zeolite-decorated black TiOx quantum dots for photocatalytic degradation of organic cationic dyes under LED light irradiation. J. Alloys Compd. 2024, 1008, 176797. [Google Scholar] [CrossRef]
- Ratiu, C.; Lazau, C.; Orha, C.; Sfirloaga, P.; Manea, F.; Burtica, G.; Iovi, A.; Grozescu, I. Synthesis of hybrid zeolitic materials with TiO2 nanocrystals using solid-solid method. J. Optoelectron. Adv. Mater. 2009, 11, 838–844. [Google Scholar]
- Chen, S.; Xiao, Y.; Wang, Y.; Hu, Z.; Zhao, H.; Xie, W. A Facile Approach to Prepare Black TiO2 with Oxygen Vacancy for Enhancing Photocatalytic Activity. Nanomaterials 2018, 8, 245. [Google Scholar] [CrossRef]
- Gang, L.; Wei, H.; Yuming, H. Investigation of Microstructure and Photocatalytic Performance of a Modified Zeolite Supported Nanocrystal TiO2 Composite. Catalysts 2019, 9, 502. [Google Scholar] [CrossRef]
- Cullity, B.D. Elements of X-Ray Diffraction; Addison-Wesley Pub. Co.: Reading, MA, USA, 1978. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orha, C.; Morariu, M.-I.; Nicolaescu, M.; Bandas, C.; Lazau, C. Synthesis and Investigation of Na-Zeolite-Decorated Black TiO2 Hybrid Material with Enhanced Properties. Crystals 2025, 15, 319. https://doi.org/10.3390/cryst15040319
Orha C, Morariu M-I, Nicolaescu M, Bandas C, Lazau C. Synthesis and Investigation of Na-Zeolite-Decorated Black TiO2 Hybrid Material with Enhanced Properties. Crystals. 2025; 15(4):319. https://doi.org/10.3390/cryst15040319
Chicago/Turabian StyleOrha, Corina, Mina-Ionela Morariu (Popescu), Mircea Nicolaescu, Cornelia Bandas, and Carmen Lazau. 2025. "Synthesis and Investigation of Na-Zeolite-Decorated Black TiO2 Hybrid Material with Enhanced Properties" Crystals 15, no. 4: 319. https://doi.org/10.3390/cryst15040319
APA StyleOrha, C., Morariu, M.-I., Nicolaescu, M., Bandas, C., & Lazau, C. (2025). Synthesis and Investigation of Na-Zeolite-Decorated Black TiO2 Hybrid Material with Enhanced Properties. Crystals, 15(4), 319. https://doi.org/10.3390/cryst15040319