Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (313)

Search Parameters:
Keywords = amyloid 3

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1058 KiB  
Article
Sex- and Age-Specific Utilization Patterns of Nuclear Medicine Procedures at a Public Tertiary Hospital in Jamaica
by Tracia-Gay Kennedy-Dixon, Mellanie Didier, Fedrica Paul, Andre Gordon, Marvin Reid and Maxine Gossell-Williams
Hospitals 2025, 2(3), 21; https://doi.org/10.3390/hospitals2030021 - 5 Aug 2025
Abstract
Understanding the utilization patterns of nuclear medicine (NM) services is essential for optimizing resource allocation and service provision. This study aimed to address the regional evidence gap by reporting the demand for NM services by sex and age at a public hospital in [...] Read more.
Understanding the utilization patterns of nuclear medicine (NM) services is essential for optimizing resource allocation and service provision. This study aimed to address the regional evidence gap by reporting the demand for NM services by sex and age at a public hospital in Jamaica. This was a non-experimental, retrospective study of NM scans that were completed at the University Hospital of the West Indies from 1 June 2022 to 31 May 2024. While all scans were reported in the descriptive totals, for patients with multiple scans during the study period, only the data from the first visit was used in the inferential statistical analysis. This was performed with the IBM SPSS (version 29.0) software and involved the use of chi-square goodness of fit and multinomial logistic regression. A total of 1135 NM scans for 1098 patients were completed (37 patients had more than one scan); 596 (54.3%) were female and 502 (45.7%) were male, with the ages ranging from 3 days to 94 years old. Among the female patients, there was a greater demand in the ≥60 years age group for cardiac amyloid scans (χ2 = 6.40, p < 0.05), while females 18–59 years had a greater demand for thyroid scans (χ2 = 7.714, p < 0.05) and bone scans (χ2 = 3.904, p < 0.05). On the other hand, significantly more males in the ≥60 age group presented for cardiac amyloid (χ2 = 4.167; p < 0.05) and bone scans (χ2 = 145.79, p < 0.01). Males were significantly less likely to undergo a thyroid scan than females (p < 0.01, OR = 0.072, 95% CI: 0.021, 0.243) while individuals aged 18–59 years were more likely to undergo this scan than patients aged 60 or older (p = 0.02, OR = 3.565, 95% CI: 1.258, 10.104). Males were more likely to do a cardiac amyloid scan (p < 0.05, OR = 2.237, 95% CI: 1.023, 4.891) but less likely to undergo a cardiac rest/stress test than females (p = 0.02, OR = 0.307, 95% CI: 0.114, 0.828). Prolonged life expectancy and an aging population have the potential to impact NM utilization, thus requiring planning for infrastructure, equipment, work force, and supplies. Cancer-related and cardiovascular indications are a top priority at this facility; hence, age- and sex-specific analysis are useful in establishing models for policy makers with regard to the allocation of economic and human resources for the sustainability of this specialized service. Full article
Show Figures

Figure 1

13 pages, 1413 KiB  
Systematic Review
The Efficacy of Solanezumab in Patients with Alzheimer’s Disease: A Systematic Review and Meta-Analysis of Clinical Trials
by Mathias S. Renteros, Renzo Barreto-Abanto, Diego C. Huapaya, Mateo Tovar-Cobos, Richard D. Alvarado-Ramos, Oriana Rivera-Lozada and Joshuan J. Barboza
Pharmaceutics 2025, 17(8), 999; https://doi.org/10.3390/pharmaceutics17080999 (registering DOI) - 31 Jul 2025
Viewed by 193
Abstract
Background/Objectives: Solanezumab is a humanized monoclonal antibody designed to bind soluble amyloid-beta (Aβ) and facilitate its clearance from the brain, aiming to slow the progression of Alzheimer’s disease (AD). Methods: A systematic search was applied in four medical databases through October 2024 [...] Read more.
Background/Objectives: Solanezumab is a humanized monoclonal antibody designed to bind soluble amyloid-beta (Aβ) and facilitate its clearance from the brain, aiming to slow the progression of Alzheimer’s disease (AD). Methods: A systematic search was applied in four medical databases through October 2024 to identify phase 2 or 3 randomized controlled trials evaluating solanezumab in patients aged ≥50 years with mild AD or in preclinical stages. The primary outcomes were changes in cognitive and functional scales, including ADAS-cog14, MMSE, ADCS-ADL, and CDR-SB. Data were pooled using a random-effects model, and certainty of evidence was assessed using GRADE. Results: Seven trials involving 4181 participants were included. Solanezumab did not significantly reduce cognitive decline based on ADAS-cog14 (MD = −0.75; 95% CI: −2.65 to 1.15; very low certainty) or improve functional scores on ADCS-ADL (MD = 0.85; 95% CI: −1.86 to 3.56; very low certainty) and CDR-SB (MD = −0.15; 95% CI: −0.89 to 0.60; very low certainty). A modest but statistically significant improvement was observed in MMSE scores (MD = 0.59; 95% CI: 0.33 to 0.86; moderate certainty). Conclusions: While solanezumab may offer slight benefits in general cognitive performance, its overall impact on clinically meaningful outcomes remains limited. The results do not support its use as a disease-modifying therapy for Alzheimer’s disease in either preclinical or symptomatic stages. Full article
Show Figures

Figure 1

33 pages, 8117 KiB  
Article
Induced Microglial-like Cells Derived from Familial and Sporadic Alzheimer’s Disease Peripheral Blood Monocytes Show Abnormal Phagocytosis and Inflammatory Response to PSEN1 E280A Cholinergic-like Neurons
by Viviana Soto-Mercado, Miguel Mendivil-Perez, Carlos Velez-Pardo and Marlene Jimenez-Del-Rio
Int. J. Mol. Sci. 2025, 26(15), 7162; https://doi.org/10.3390/ijms26157162 - 24 Jul 2025
Viewed by 386
Abstract
In familial Alzheimer’s disease (FAD), presenilin 1 (PSEN1) E280A cholinergic-like neurons (ChLNs) induce aberrant secretion of extracellular amyloid beta (eAβ). How PSEN1 E280A ChLNs-eAβ affects microglial activity is still unknown. We obtained induced microglia-like cells (iMG) from human peripheral blood cells (hPBCs) in [...] Read more.
In familial Alzheimer’s disease (FAD), presenilin 1 (PSEN1) E280A cholinergic-like neurons (ChLNs) induce aberrant secretion of extracellular amyloid beta (eAβ). How PSEN1 E280A ChLNs-eAβ affects microglial activity is still unknown. We obtained induced microglia-like cells (iMG) from human peripheral blood cells (hPBCs) in a 15-day differentiation process to investigate the effect of bolus addition of Aβ42, PSEN1 E280A cholinergic-like neuron (ChLN)-derived culture supernatants, and PSEN1 E280A ChLNs on wild type (WT) iMG, PSEN1 E280A iMG, and sporadic Alzheimer’s disease (SAD) iMG. We found that WT iMG cells, when challenged with non-cellular (e.g., lipopolysaccharide, LPS) or cellular (e.g., Aβ42, PSEN1 E280A ChLN-derived culture supernatants) microenvironments, closely resemble primary human microglia in terms of morphology (resembling an “amoeboid-like phenotype”), expression of surface markers (Ionized calcium-binding adapter molecule 1, IBA-1; transmembrane protein 119, TMEM119), phagocytic ability (high pHrodo™ Red E. coli BioParticles™ phagocytic activity), immune metabolism (i.e., high generation of reactive oxygen species, ROS), increase in mitochondrial membrane potential (ΔΨm), response to ATP-induced transient intracellular Ca2+ influx, cell polarization (cluster of differentiation 68 (CD68)/CD206 ratio: M1 phenotype), cell migration activity according to the scratch wound assay, and especially in their inflammatory response (secretion of cytokine interleukin-6, IL-6; Tumor necrosis factor alpha, TNF-α). We also found that PSEN1 E280A and SAD iMG are physiologically unresponsive to ATP-induced Ca2+ influx, have reduced phagocytic activity, and diminished expression of Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) protein, but when co-cultured with PSEN1 E280A ChLNs, iMG shows an increase in pro-inflammatory phenotype (M1) and secretes high levels of cytokines IL-6 and TNF-α. As a result, PSEN1 E280A and SAD iMG induce apoptosis in PSEN1 E280A ChLNs as evidenced by abnormal phosphorylation of protein TAU at residue T205 and cleaved caspase 3 (CC3). Taken together, these results suggest that PSEN1 E280A ChLNs initiate a vicious cycle between damaged neurons and M1 phenotype microglia, resulting in excessive ChLN death. Our findings provide a suitable platform for the exploration of novel therapeutic approaches for the fight against FAD. Full article
(This article belongs to the Special Issue Role of Glia in Human Health and Disease)
Show Figures

Figure 1

14 pages, 1664 KiB  
Article
Depletion of IGFALS Serum Level up to 3 Months After Cardiac Surgery, with Exploration of Potential Relationships to Surrogates of Organ Failures and Clinical Outcomes
by Krzysztof Laudanski, Mohamed A. Mahmoud, Hossam Gad and Daniel A. Diedrich
Curr. Issues Mol. Biol. 2025, 47(8), 581; https://doi.org/10.3390/cimb47080581 - 23 Jul 2025
Viewed by 230
Abstract
The insulin-like growth factor binding protein, acid-labile subunit (IGFALS), plays a crucial role in glucose metabolism and immune regulation, key processes in recovery from surgery. Here, we studied the perioperative serum IGFALS dynamics and explored potential clinical implications. A total of 79 patients [...] Read more.
The insulin-like growth factor binding protein, acid-labile subunit (IGFALS), plays a crucial role in glucose metabolism and immune regulation, key processes in recovery from surgery. Here, we studied the perioperative serum IGFALS dynamics and explored potential clinical implications. A total of 79 patients undergoing elective cardiac surgery with implementation of cardiopulmonary bypass had their serum isolated at baseline, 24 h, seven days, and three months postoperatively to assess serum concentrations of IGFALS and insulin growth factor 1 (IGF-1). Markers of perioperative injury included troponin I (TnI), high-mobility group box 1 (HMGB-1), and heat shock protein 60 (Hsp-60). Inflammatory status was assessed via interleukin-6 (IL-6) and interleukin-8 (IL-8). Additionally, we measured in vitro cytokine production to viral stimulation of whole blood and monocytes. Surrogates of neuronal distress included neurofilament light chain (NF-L), total tau (τ), phosphorylated tau at threonine 181 (τp181), and amyloid β40 and β42. Renal impairment was defined by RIFLE criteria. Cardiac dysfunction was denoted by serum N-terminal pro-brain natriuretic peptide (NT-proBNP) levels. Serum IGFALS levels declined significantly after surgery and remained depressed even at 3 months. Administration of acetaminophen and acetylsalicylic acid differentiated IGFALS levels at the 24 h postoperatively. Serum IGFALS 24 h post-operatively correlated with production of cytokines by leukocytes after in vitro viral stimulation. Serum amyloid-β1-42 was significantly associated with IGFALS at baseline and 24 h post-surgery Patients discharged home had higher IGFALS levels at 28 days and 3 months than those discharged to healthcare facilities or who died. These findings suggest that IGFALS may serve as a prognostic biomarker for recovery trajectory and postoperative outcomes in cardiac surgery patients. Full article
(This article belongs to the Special Issue The Role of Neuroinflammation in Neurodegenerative Diseases)
Show Figures

Figure 1

16 pages, 2070 KiB  
Article
Hydrogen Gas Attenuates Toxic Metabolites and Oxidative Stress-Mediated Signaling to Inhibit Neurodegeneration and Enhance Memory in Alzheimer’s Disease Models
by Sofian Abdul-Nasir, Cat Tuong Chau, Tien Thuy Nguyen, Johny Bajgai, Md. Habibur Rahman, Kwon Hwang-Un, In-Soo You, Cheol-Su Kim, Bo Am Seo and Kyu-Jae Lee
Int. J. Mol. Sci. 2025, 26(14), 6922; https://doi.org/10.3390/ijms26146922 - 18 Jul 2025
Viewed by 385
Abstract
Alzheimer’s disease (AD) is a neurodegenerative condition in which amyloid-beta (Aβ) plaques trigger oxidative stress (OS) and neuroinflammation, causing memory loss. OS and neurodegeneration can also be caused by reactive astrocytes, thereby promoting AD via toxic metabolite accumulation in the astrocytic urea cycle. [...] Read more.
Alzheimer’s disease (AD) is a neurodegenerative condition in which amyloid-beta (Aβ) plaques trigger oxidative stress (OS) and neuroinflammation, causing memory loss. OS and neurodegeneration can also be caused by reactive astrocytes, thereby promoting AD via toxic metabolite accumulation in the astrocytic urea cycle. However, the effect of molecular hydrogen (H2) on this cycle remains unknown. Therefore, we investigated whether H2 treatment could reduce OS-induced neurodegeneration and memory loss. 5xFAD (n = 14) and wild-type (n = 15) mice were randomized into four groups and treated with either 3% hydrogen gas (H2) or vehicle for 60 days. Cognitive behaviors were evaluated using the Morris water maze and Y-maze tests. In addition, we used biochemical assays to measure ammonia and hydrogen peroxide (H2O2) levels in the hippocampi of the mice and AβO-treated primary mouse astrocytes. Aβ, γ-aminobutyric acid (GABA), and the expression of inflammatory markers were evaluated using immunohistochemistry (IHC) and quantitative real-time polymerase chain reaction (qRT-PCR). We observed that H2 treatment significantly prevented cognitive deficits, oxidative stress, the accumulation of toxic metabolites, and the increase in inflammatory markers in 5xFAD mice. These results suggest that H2 therapy can mitigate toxic metabolites in the astrocytic urea cycle, thereby reducing neurodegeneration and memory loss in AD. Full article
(This article belongs to the Special Issue New Advances in Research on Alzheimer’s Disease: 2nd Edition)
Show Figures

Figure 1

16 pages, 7688 KiB  
Article
Targeted Isolation of ω-3 Polyunsaturated Fatty Acids from the Marine Dinoflagellate Prorocentrum lima Using DeepSAT and LC-MS/MS and Their High Activity in Promoting Microglial Functions
by Chang-Rong Lai, Meng-Xing Jiang, Dan-Mei Tian, Wei Lu, Bin Wu, Jin-Shan Tang, Yi Zou, Song-Hui Lv and Xin-Sheng Yao
Mar. Drugs 2025, 23(7), 286; https://doi.org/10.3390/md23070286 - 10 Jul 2025
Viewed by 545
Abstract
In this study, we integrated HSQC-based DeepSAT with UPLC-MS/MS to guide the isolation of omega-3 polyunsaturated fatty acid derivatives (PUFAs) from marine resources. Through this approach, four new (14) and nine known (513) PUFA analogues [...] Read more.
In this study, we integrated HSQC-based DeepSAT with UPLC-MS/MS to guide the isolation of omega-3 polyunsaturated fatty acid derivatives (PUFAs) from marine resources. Through this approach, four new (14) and nine known (513) PUFA analogues were obtained from large-scale cultures of the marine dinoflagellate Prorocentrum lima, with lipidomic profiling identifying FA18:5 (5), FA18:4 (7), FA22:6 (8), and FA22:6 methyl ester (11) as major constituents of the algal oil extract. Structural elucidation was achieved through integrated spectroscopic analyses of IR, 1D and 2D NMR, and HR-ESI-MS data. Given the pivotal role of microglia in Alzheimer’s disease (AD) pathogenesis, we further evaluated the neuroprotective potential of these PUFAs by assessing their regulatory effects on critical microglial functions in human microglia clone 3 (HMC3) cells, including chemotactic migration and amyloid-β42 (Aβ42) phagocytic clearance. Pharmacological evaluation demonstrated that FA20:5 butanediol ester (1), FA18:5 (5), FA18:4 (7), FA22:6 (8), and (Z)-10-nonadecenoic acid (13) significantly enhanced HMC3 migration in a wound-healing assay. Notably, FA18:4 (7) also significantly promoted Aβ42 phagocytosis by HMC3 microglia while maintaining cellular viability and avoiding pro-inflammatory activation at 20 μM. Collectively, our study suggests that FA18:4 (7) modulates microglial function in vitro, indicating its potential to exert neuroprotective effects. Full article
Show Figures

Graphical abstract

7 pages, 429 KiB  
Case Report
Novel Pathogenic Variant c.258A>C, p.(Glu86Asp) in the TTR Gene in a Bulgarian Patient with Hereditary Transthyretin Amyloidosis
by Zornitsa Pavlova, Sashka Zhelyazkova, Mariana Gospodinova, Anastasia Ormandjieva, Tihomir Todorov, Ognian Asenov, Teodora Chamova, Plamen Antimov, Dilyana Mikova, Yordan Palashev, Ivailo Tournev and Albena Todorova
Genes 2025, 16(7), 726; https://doi.org/10.3390/genes16070726 - 22 Jun 2025
Viewed by 333
Abstract
Hereditary transthyretin amyloidosis (ATTRv) is an autosomal dominant disorder caused by pathogenic variants in the TTR gene. The destabilized mutant form of the transport protein transthyretin (TTR) leads to the extracellular deposition of amyloid fibrils. Materials and Methods: A 65-year-old female patient with [...] Read more.
Hereditary transthyretin amyloidosis (ATTRv) is an autosomal dominant disorder caused by pathogenic variants in the TTR gene. The destabilized mutant form of the transport protein transthyretin (TTR) leads to the extracellular deposition of amyloid fibrils. Materials and Methods: A 65-year-old female patient with suspected clinical diagnosis of ATTR was referred for genetic testing for pathogenic variants in the TTR gene after physical, neurological and cardiac testing. Results: The patient had had cardiac dysfunction, atrial fibrillation and supraventricular tachycardia for around 10 years before the suspected and confirmed cardiac amyloidosis. The molecular genetic testing showed a heterozygous pathogenic variant in exon 3 of the TTR gene NM_000371.4(TTR): c.258A>C, p.(Glu86Asp). This variant in the TTR gene is classified as pathogenic in accordance with ACMG/AMP for the interpretation of variants. Conclusions: The presented case of a very rare pathogenic variant in the TTR gene displays the valuable role of genetic testing on the way to clarifying a diagnosis. Full article
(This article belongs to the Special Issue Advances in Neurogenetics and Neurogenomics)
Show Figures

Figure 1

14 pages, 1469 KiB  
Article
Exercise Improves Alzheimer’s Disease Phenotype in the TgF344-AD Rat, a Behavioral Time Course Study of Males and Females
by Stephanie E. Hall, Zachary J. White, Troy T. Rohn, Keshari H. Sudasinghe and Michael E. Young
Brain Sci. 2025, 15(6), 631; https://doi.org/10.3390/brainsci15060631 - 12 Jun 2025
Viewed by 603
Abstract
Alzheimer’s disease (AD) is the third leading cause of death among older adults with nearly 6 million diagnosed annually. In the race for a cure, one thing is certain—exercise can reduce your risk. However, the mechanisms responsible for this reduced risk are unknown. [...] Read more.
Alzheimer’s disease (AD) is the third leading cause of death among older adults with nearly 6 million diagnosed annually. In the race for a cure, one thing is certain—exercise can reduce your risk. However, the mechanisms responsible for this reduced risk are unknown. Several studies have linked exercise to improved memory, reduced amyloid beta plaques, and tau hyperphosphorylation in AD. Background/Objectives: By utilizing a novel rat model of AD, TgF344-AD, we evaluated the time course of behavioral shifts as well as the protective effect of exercise. Methods: TgF344-AD animals (61 total, 31 females and 30 males) were assessed every 3 months from 3 to 12 months of age and then assessments were increased to monthly until they reached 18 months of age. A progressive treadmill protocol was administered at 12 months of age and continued until 18 months. Pre-intervention and post-intervention data were analyzed. Results: Females had greater grip strength relative to body mass compared to males and exercise attenuated the age-related and AD-induced decline. Also, female AD-impaired memory was rescued with exercise, while males had no exercise-induced improvements. Conclusions: There is a sex difference present in the TgF344-AD rat model of Alzheimer’s disease and this should be studied further; in addition, sex differences across all models of AD and the human pathology need to be evaluated. Exercise neuroprotection, while more prominent in females, is an important factor in AD research, and further work to understand the mechanisms of neuroprotection is warranted. Full article
(This article belongs to the Section Neurodegenerative Diseases)
Show Figures

Figure 1

10 pages, 379 KiB  
Article
Screening for Systemic Light-Chain Amyloidosis in Patients Over 60 with λ Monoclonal Gammopathies
by Ping Zhou, Mahesh M. Mansukhani, Raymond Yeh, Jiesheng Lu, Hongai Xia, Lahari Koganti, Jiuhong Pang, Denis Toskic, Stephanie Scalia, Xun Ma, Lisa X. Lee, Sandy W. Wong, Alfred Chung, Sascha A. Tuchman, Terry Fogaren, Nancy Coady Lyons, Cindy Varga, Suzanne Lentzsch and Raymond L. Comenzo
J. Clin. Med. 2025, 14(12), 4146; https://doi.org/10.3390/jcm14124146 - 11 Jun 2025
Viewed by 565
Abstract
Background/Objectives: To reduce the early mortality of light-chain amyloidosis (AL), earlier diagnosis is needed. To pursue this goal, we conducted a multicenter study screening for AL λ-type (NCT04615572) in subjects > 60 years of age with λ smoldering myeloma (SMM) or monoclonal gammopathy [...] Read more.
Background/Objectives: To reduce the early mortality of light-chain amyloidosis (AL), earlier diagnosis is needed. To pursue this goal, we conducted a multicenter study screening for AL λ-type (NCT04615572) in subjects > 60 years of age with λ smoldering myeloma (SMM) or monoclonal gammopathy of undetermined significance (MGUS), a light-chain differential (dFLC, λ minus κ) > 23 mg/L, and no prior amyloid diagnosis. Methods: Variables included AL-related IGVL gene usage and clonal plasma cell cytogenetic abnormalities, such as t(11;14) or gain 1q, which are present in 75% of AL cases. Here, 9 out of 33 λ IGVL genes, accounting for 90% of AL λ cases, were considered to be AL-related. Bone marrow was obtained, plasma cell cytogenetics and next generation sequencing for IGVL genes were performed, and subjects with AL-related IGVL genes were screened for AL using tissue studies. Results: From 2021 to 2023, we enrolled 30 subjects (19 M/11 F) with a median age of 68.5 years old (IQR 64.3–73), 17 SMM and 13 MGUS, with a median of 6% marrow plasma cells (range, 3.5–40). Here, 11 SMM and 4 MGUS cases had t(11;14) or gain 1q; 10/17 SMM and 12/13 MGUS had AL-related genes, and AL was ultimately confirmed by tissue biopsy in 3 with SMM. SMM, AL-related IGVL genes, and t(11;14) or gain 1q were found in 6 SMM subjects, including the 3 with AL (3/6 vs. 0/16; p < 0.05, Fisher’s exact, two-tailed). Conclusions: These results justify a larger study screening for AL in SMM to develop a likelihood algorithm for AL using dFLC, IGVL gene usage, and the presence of t(11;14) or gain 1q. Full article
(This article belongs to the Special Issue Advances in Diagnosis and Treatment of Amyloidosis)
Show Figures

Figure 1

17 pages, 1638 KiB  
Article
Diagnostic Accuracy of Bisphosphonate Scintigraphy in Glu54GlnATTR Cardiomyopathy
by Claudiu Stan, Gabriela Neculae, Robert-Daniel Adam, Andreea Jercan, Sorina-Nicoleta Badelita, Mirela-Ramona Draghici, Camelia Dobrea, Sebastian Onciul, Razvan Capşa, Cristina Chirion, Dan Stanescu, Cipriana Stefanescu, Irena-Cristina Grierosu, Teodor-Marian Ionescu, Ana-Maria Statescu, Mihai Gutu, Alessia Argiro, Francesco Cappelli, Daniel Coriu and Ruxandra Jurcuţ
J. Clin. Med. 2025, 14(11), 3734; https://doi.org/10.3390/jcm14113734 - 26 May 2025
Viewed by 566
Abstract
Background: Bisphosphonate scintigraphy (BS) is a recognized tool for diagnosing amyloid transthyretin cardiomyopathy (ATTR-CA). However, its sensitivity for rare transthyretin (TTR) variants, like Glu54Gln, remains underexplored. Methods: This was a retrospective descriptive study including all known patients with the Glu54Gln variant diagnosed [...] Read more.
Background: Bisphosphonate scintigraphy (BS) is a recognized tool for diagnosing amyloid transthyretin cardiomyopathy (ATTR-CA). However, its sensitivity for rare transthyretin (TTR) variants, like Glu54Gln, remains underexplored. Methods: This was a retrospective descriptive study including all known patients with the Glu54Gln variant diagnosed between 2017 and 2023 in Romania, aiming to evaluate the diagnostic performance of BS in Glu54Gln ATTR–CA. Results: All symptomatic patients (n = 22) with histologically confirmed ATTR-CA had positive BS results (100% sensitivity). No false negatives were observed in asymptomatic carriers (n = 4). The Perugini visual score correlated with disease severity, with grade 3 scores associated with advanced cardiac involvement. We proposed a new parameter, heart-to-liver-uptake (H/L) ratio, which proved a strong positive correlation with both the heart-to-contralateral-uptake (H/CL) ratio (R2 = 0.768, p < 0.001) and interventricular septum thickness (R2 = 0.584, p < 0.001) and a weak correlation with the global longitudinal strain (R2 = 0.212, p = 0.023). Conclusions: BS demonstrates high diagnostic accuracy for Glu54GlnATTR-CA, underscoring its utility in early diagnosis and clinical management. The H/L ratio presents a novel approach to semiquantitative analysis of bisphosphonate uptake in cardiac amyloidosis, potentially addressing key limitations of the traditional H/CL ratio. Full article
(This article belongs to the Section Cardiology)
Show Figures

Graphical abstract

16 pages, 6766 KiB  
Case Report
Fibrillary Glomerulonephritis Diagnosis Is Enhanced by DNAJB9: Three Cases with Different Clinical, Anatomopathologic Features and Outcomes
by José C. De La Flor, Marco Dominguez Davalos, Tania Linares Grávalos, Marina Alonso-Riaño, Francisco Díaz, Celia Rodríguez Tudero, Rocío Zamora González-Mariño, Michael Cieza Terrones and Jesús Hernández Vaquero
Pathophysiology 2025, 32(2), 22; https://doi.org/10.3390/pathophysiology32020022 - 25 May 2025
Viewed by 575
Abstract
Background: Fibrillary glomerulonephritis (FGN) is a rare and poorly understood kidney disease characterized by the deposition of non-amyloid fibrils in the glomeruli. Its clinical heterogeneity and high rate of progression to end-stage renal disease (ESRD) pose significant diagnostic and therapeutic challenges. This case [...] Read more.
Background: Fibrillary glomerulonephritis (FGN) is a rare and poorly understood kidney disease characterized by the deposition of non-amyloid fibrils in the glomeruli. Its clinical heterogeneity and high rate of progression to end-stage renal disease (ESRD) pose significant diagnostic and therapeutic challenges. This case series aims to enhance awareness of FGN and emphasizes the need for further research to improve patient outcomes. Case Reports: We reviewed the clinical, histopathological, and therapeutic data of three patients with FGN diagnosed by kidney biopsy. The cases included variations in clinical presentation from nephrotic syndrome to rapidly progressive glomerulonephritis (RPGN). Diagnostic methods incorporated light microscopy, immunofluorescence, and electron microscopy, with the integration of DnaJ homolog subfamily B member 9 (DNAJB9) staining for confirmation. Patient 1 showed a more favorable response to rituximab, achieving complete remission (CR) at 6 months and maintaining CR after 3 years. Patient 2 showed only partial remission after 2 years following treatment with rituximab. Patient 3 presented with RPGN and rapidly progressed to ESRD despite aggressive immunosuppressive therapy. Discussion: DNAJB9 has emerged as both a specific and sensitive biomarker in patients with FGN and has facilitated accurate differentiation from other glomerulopathies. This series underscores the variability in clinical outcomes and responses to therapy as well as the importance of early and accurate diagnosis. Conclusions: FGN remains a diagnostic and therapeutic challenge due to its rarity and heterogeneity. Advances in biomarkers like DNAJB9 have improved diagnostic accuracy, distinguishing FGN from similar conditions such as immunotactoid glomerulopathy. Further research into pathophysiological mechanisms and targeted therapies is essential to optimize management and outcomes for affected patients. Full article
(This article belongs to the Section Systemic Pathophysiology)
Show Figures

Figure 1

15 pages, 1485 KiB  
Article
Novel Delivery of Cyclic-Diguanylate Monophosphate Utilizing Amyloid Depots
by Maytham Ismail, Benjamin Beluzo, Sergei Chuikov, Venkateshwar G. Keshamouni and Mathumai Kanapathipillai
Pharmaceutics 2025, 17(5), 668; https://doi.org/10.3390/pharmaceutics17050668 - 19 May 2025
Viewed by 584
Abstract
Background: Recently, cyclic diguanylate monophosphate (c-di-GMP) drug delivery has garnered interest due to its potential in cancer immune modulation. In this pilot study, we developed a novel c-di-GMP formulation based on peptide amyloids. The amyloid depots were formed by combining an amyloidogenic prone [...] Read more.
Background: Recently, cyclic diguanylate monophosphate (c-di-GMP) drug delivery has garnered interest due to its potential in cancer immune modulation. In this pilot study, we developed a novel c-di-GMP formulation based on peptide amyloids. The amyloid depots were formed by combining an amyloidogenic prone 12 amino acid peptide sequence of receptor-interacting protein kinase 3 (RIP3) with cationic lipid ALC-0315, or using lysozyme proteins. Both RIP3 and lysozyme proteins have intrinsic physiological functions. This is the first time intrinsic peptides/protein-based amyloids have been explored for c-di-GMP delivery. The main goal was to evaluate how these amyloid depots could enhance c-di-GMP drug delivery and modulate responses in RAW 264.7 macrophage-like cells. Methods: Physicochemical characterization and cellular assays were utilized to characterize the amyloid structures and assess the efficacy. Results: Our results show that amyloid aggregates significantly improve the therapeutic efficacy of c-di-GMP. When RAW 264.7 cells were treated with c-di-GMP amyloids, we observed at least a 1.5-fold change in IL-6 expression, nitric oxide (NO) production, and reactive oxygen species (ROS) production compared to treatment with 5x free c-di-GMP treatment, which suggests that this system holds promise for enhanced therapeutic effects. Conclusions: Overall, these findings emphasize the potential of amyloid-based delivery systems as a promising approach for c-di-GMP delivery, warranting further investigations into their potential in therapeutic applications. Full article
(This article belongs to the Special Issue Advances in Delivery of Peptides and Proteins)
Show Figures

Graphical abstract

16 pages, 779 KiB  
Article
Exploring the Neuroprotective Properties of Celery (Apium graveolens Linn) Extract Against Amyloid-Beta Toxicity and Enzymes Associated with Alzheimer’s Disease
by Layla Mohamud Dirie, Tahire Yurdakul, Sevim Isik and Shirin Tarbiat
Molecules 2025, 30(10), 2187; https://doi.org/10.3390/molecules30102187 - 16 May 2025
Viewed by 1390
Abstract
Celery (Apium graveolens L.), one of the numerous members of the Apiaceae family, has been traditionally used as food and medicine due to its nutraceutical properties. Nevertheless, understanding the neuroprotective effects of this species requires evaluation through different mechanisms relevant to Alzheimer’s [...] Read more.
Celery (Apium graveolens L.), one of the numerous members of the Apiaceae family, has been traditionally used as food and medicine due to its nutraceutical properties. Nevertheless, understanding the neuroprotective effects of this species requires evaluation through different mechanisms relevant to Alzheimer’s disease (AD) treatment. This study explored the neuroprotective potential of ethanolic extracts of celery leaves. Liquid chromatography and mass spectrometry-based metabolomics analysis of the extract revealed the existence of a diverse array of secondary metabolites, including phenolic acids, hydroxycinnamic acid, flavonoids, flavonoid O-glycosides, flavonol, glycosides, and isoflavones. Celery extract protects human neuroblastoma SH-SY5Y cells against 15 µM amyloid-beta (Aβ1–42) toxicity, enhancing their vitality from 67% to 81.74% at 100 µg/mL. The extract inhibited the enzymes associated with AD, including acetylcholinesterase (AChE), butyrylcholinesterase (BChE), glycogen synthase kinase 3 beta (GSK3β), cyclooxygenase 1 (COX-1), and cyclooxygenase 2 (COX-2) with IC50 values of 21.84, 61.27, 45.94, 34.1, and 52.2 µg/mL, respectively. In conclusion, celery leaf extract components may be potential therapeutic candidates for AD prevention and treatment. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

15 pages, 1998 KiB  
Article
Rationally Designed Pentapeptide Analogs of Aβ19–23 Fragment as Potent Inhibitors of Aβ42 Aggregation
by Sachin B. Baravkar, Yan Lu, Qi Zhao, Hongying Peng, Weilie Zhou and Song Hong
Molecules 2025, 30(9), 2071; https://doi.org/10.3390/molecules30092071 - 7 May 2025
Viewed by 653
Abstract
Amyloid beta (Aβ42 and Aβ40) aggregation, along with neurofibrillary tangles, is one of the major neurotoxic events responsible for the onset of Alzheimer’s disease. Many potent peptide-based inhibitors mainly focusing on central hydrophobic core Aβ16–20 (KLVFF) have been reported in recent years. Herein, [...] Read more.
Amyloid beta (Aβ42 and Aβ40) aggregation, along with neurofibrillary tangles, is one of the major neurotoxic events responsible for the onset of Alzheimer’s disease. Many potent peptide-based inhibitors mainly focusing on central hydrophobic core Aβ16–20 (KLVFF) have been reported in recent years. Herein, we report pentapeptides 14, based on the β-turn-inducing fragment Aβ19–23 (FFAED). The synthesis of peptides 14 was carried out using Fmoc/tBu-based solid-phase peptide synthesis technique, and it was found that pentapeptide 3 potently inhibit the aggregation propensity of Aβ42, when incubated with it at 37 °C for 48 h. The aggregation inhibition study was conducted using thioflavin T-based fluorescence assay and circular dichroism spectroscopy, and supported by transmission electron microscope imaging. The conformational change on the aggregation of Aβ42 and aggregation inhibition by peptides 14 was further evaluated using 1H–15N HSQC NMR spectroscopy. The results demonstrated that the most potent analog, peptide 3, effectively disrupts the aggregation process. This study is the first to demonstrate that an Aβ19–23 fragment mimic can disrupt the aggregation propensity of Aβ42. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Macromolecular Chemistry)
Show Figures

Figure 1

18 pages, 1361 KiB  
Review
Inflammasome-Mediated Neuroinflammation: A Key Driver in Alzheimer’s Disease Pathogenesis
by Julie McGroarty, Shelbi Salinas, Hayden Evans, Bryan Jimenez, Vincent Tran, Samuel Kadavakollu, Arti Vashist and Venkata Atluri
Biomolecules 2025, 15(5), 676; https://doi.org/10.3390/biom15050676 - 7 May 2025
Viewed by 2383
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder predominantly affecting the elderly, characterized by memory loss, cognitive decline, and functional impairment. While hallmark pathological features include extracellular amyloid beta (Aβ) plaques and intracellular neurofibrillary tangles composed of hyperphosphorylated tau protein, increasing evidence points [...] Read more.
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder predominantly affecting the elderly, characterized by memory loss, cognitive decline, and functional impairment. While hallmark pathological features include extracellular amyloid beta (Aβ) plaques and intracellular neurofibrillary tangles composed of hyperphosphorylated tau protein, increasing evidence points to chronic neuroinflammation as a key driver of disease progression. Among inflammatory mechanisms, the activation of the NLRP3 (nucleotide-binding domain, leucine-rich repeat, and pyrin domain-containing protein 3) inflammasome in microglia plays a pivotal role by amplifying neuroinflammatory cascades, exacerbating synaptic dysfunction, and accelerating neuronal loss. This review examines the molecular underpinnings of AD with a focus on NLRP3 inflammasome-mediated neuroinflammation, detailing the crosstalk between Aβ, tau pathology, and innate immune responses. Finally, we highlight emerging therapeutic strategies targeting NLRP3 inflammasome activation as promising avenues for mitigating neuroinflammation and slowing AD progression. Full article
(This article belongs to the Special Issue Pathogenesis and Neuropathology of Alzheimer's Disease)
Show Figures

Figure 1

Back to TopTop