Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,175)

Search Parameters:
Keywords = amplitude/frequency control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2003 KB  
Article
Stage-Dependent Brain Plasticity Induced by Long-Term Endurance Training: A Longitudinal Neuroimaging Study
by Keying Zhang, Qing Yan, Ling Jiang, Dongxue Liang, Chunmei Cao and Dong Zhang
Life 2025, 15(9), 1342; https://doi.org/10.3390/life15091342 (registering DOI) - 25 Aug 2025
Abstract
Long-term physical training is known to induce brain plasticity, yet how these neural adaptations evolve across different stages of training remains underexplored. This two-year longitudinal study investigated the stage-dependent effects of endurance running on brain structure and resting-state function in healthy college students. [...] Read more.
Long-term physical training is known to induce brain plasticity, yet how these neural adaptations evolve across different stages of training remains underexplored. This two-year longitudinal study investigated the stage-dependent effects of endurance running on brain structure and resting-state function in healthy college students. Thirty participants were recruited into three groups based on their endurance training level: high-level runners, moderate-level runners, and sedentary controls. All participants underwent baseline and two-year follow-up MRI scans, including T1-weighted structural imaging and resting-state fMRI. The results revealed that the high-level runners exhibited a significant increase in degree centrality (DC) in the left dorsolateral prefrontal cortex (DLPFC). In the moderate-level group, more widespread changes were observed, including increased gray matter volume (GMV) in bilateral prefrontal cortices, medial frontal regions, the right insula, the right putamen, and the right temporo-parieto-occipital junction, along with decreased GMV in the posterior cerebellum. Additionally, DC decreased in the left thalamus and increased in the right temporal lobe and bilateral DLPFC; the fractional amplitude of low-frequency fluctuations (fALFF) in the right precentral gyrus was also elevated. These brain regions are involved in executive control, sensorimotor integration, and motor coordination, which may suggest potential functional implications for cognitive and motor performance; however, such interpretations should be viewed cautiously given the modest sample size and study duration. No significant changes were found in the control group. These findings demonstrate that long-term endurance training induces distinct patterns of brain plasticity at different training stages, with more prominent and widespread changes occurring during earlier phases of training. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

20 pages, 3529 KB  
Systematic Review
The Effects of Whole-Body Vibration on Spasticity in Stroke: A Systematic Review and Meta-Analysis
by Jeong-Woo Seo, Jung-Dae Kim and Ji-Woo Seok
J. Clin. Med. 2025, 14(17), 5966; https://doi.org/10.3390/jcm14175966 - 23 Aug 2025
Viewed by 58
Abstract
Background/Objectives: Spasticity is a common and disabling sequela of stroke that limits voluntary movement and functional recovery. Vibration therapy (VT) has been proposed as a non-invasive neuromodulatory intervention, but the existing studies report inconsistent outcomes due to methodological heterogeneity. This study aimed [...] Read more.
Background/Objectives: Spasticity is a common and disabling sequela of stroke that limits voluntary movement and functional recovery. Vibration therapy (VT) has been proposed as a non-invasive neuromodulatory intervention, but the existing studies report inconsistent outcomes due to methodological heterogeneity. This study aimed to evaluate the overall effectiveness of VT in reducing post-stroke spasticity and to identify optimal stimulation parameters via meta-analytic and meta-regression approaches. Methods: A systematic review and meta-analysis were conducted following the PRISMA 2020 guidelines. Standardized effect sizes (Hedges’ g) were calculated based on the within-group pre–post changes and compared across the groups. Meta-regression and subgroup analyses explored seven potential moderators, including the vibration frequency, amplitude, and time since stroke onset. Results: Thirteen randomized controlled trials (RCTs) involving whole-body or focal vibration interventions in stroke populations were included. Vibration therapy significantly reduced spasticity, yielding a moderate overall effect size (Hedges’ g = −0.50; 95% CI: −0.65 to −0.34; p < 0.001). The greatest treatment effects were observed when VT was applied during the late subacute to early chronic phase (6–12 months post-stroke), with low-frequency (<20 Hz) and low-amplitude (≤0.5 mm) stimulation. The frequency, amplitude, and stroke onset emerged as significant moderators (p < 0.05). Conclusions: Vibration therapy is an effective and clinically meaningful intervention for post-stroke spasticity, particularly when delivered with low-intensity parameters during the optimal recovery window. These findings support the development of individualized VT protocols and provide evidence to guide future rehabilitation strategies. Full article
(This article belongs to the Special Issue Rehabilitation and Management of Stroke)
Show Figures

Figure 1

22 pages, 2709 KB  
Article
SPL-Based Modeling of Serrated Airfoil Noise via Functional Regression and Ensemble Learning
by Andrei-George Totu, Daniel-Eugeniu Crunțeanu, Luminița Drăgășanu, Grigore Cican and Constantin Levențiu
Computation 2025, 13(9), 203; https://doi.org/10.3390/computation13090203 - 22 Aug 2025
Viewed by 121
Abstract
This study presents a semi-empirical approach to generalizing the acoustic radiation generated by serrated airfoil configurations, based on small-scale aerodynamic/acoustic experiments and functional regression techniques. In the context of passive noise reduction strategies, such as leading-edge and trailing-edge serrations, acoustic measurements are performed [...] Read more.
This study presents a semi-empirical approach to generalizing the acoustic radiation generated by serrated airfoil configurations, based on small-scale aerodynamic/acoustic experiments and functional regression techniques. In the context of passive noise reduction strategies, such as leading-edge and trailing-edge serrations, acoustic measurements are performed in a controlled subsonic wind tunnel environment. Sound pressure level (SPL) spectra and acoustic power metrics are acquired for various geometric configurations and flow conditions. These spectral data are then analyzed using regression-based modeling techniques—linear, quadratic, logarithmic, and exponential forms—to capture the dependence of acoustic emission on key geometric and flow-related variables (e.g., serration amplitude, wavelength, angle of attack), without relying explicitly on predefined nondimensional numbers. The resulting predictive models aim to describe SPL behavior across relevant frequency bands (e.g., broadband or 1/3 octave) and to extrapolate acoustic trends for configurations beyond those tested. The proposed methodology allows for the identification of compact functional relationships between configuration parameters and acoustic output, offering a practical tool for the preliminary design and optimization of low-noise serrated profiles. The findings are intended to support both physical understanding and engineering application, bridging experimental data and parametric acoustic modeling in aerodynamic noise control. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Graphical abstract

26 pages, 3225 KB  
Review
A Review on Comfort of Pedestrian Bridges Under Human-Induced Vibrations and Tuned Mass Damper Control Technologies
by Shoukun Zhang, Baijin Wu, Yong Tang, Han Zhang, Zheng Xu, Guoqiang Li and Shuang Lu
Materials 2025, 18(16), 3903; https://doi.org/10.3390/ma18163903 - 21 Aug 2025
Viewed by 293
Abstract
With the development of urban infrastructure construction, while pedestrian bridges meet traffic functions the issue of their comfort has become a core consideration in structural design. This is because the long-span lightweight structures, with their large flexibility and low fundamental frequencies, are also [...] Read more.
With the development of urban infrastructure construction, while pedestrian bridges meet traffic functions the issue of their comfort has become a core consideration in structural design. This is because the long-span lightweight structures, with their large flexibility and low fundamental frequencies, are also vulnerable to human-induced vibrations. Pedestrian load modellings include the deterministic time-domain model, which is widely adopted in codes due to its simplicity, the random model that takes into account individual variability, and the frequency-domain model. The deterministic time-domain model has abundant parameter determination results and has become relatively mature, while the latter two, although more rigorous, have relatively lagging development. Numerous studies have shown that acceleration limits are the main indicators for comfort assessment. Vertical vibrations are controlled by amplitude constraints, while for the lateral vibrations the “lateral lock-in” that can cause dynamic instability needs to be evaluated with particular emphasis. When comfort exceeds an acceptable degree, a prevalent countermeasure is to attach a Tuned Mass Damper (TMD) or Multiple Tuned Mass Damper (MTMD) system to the structure—the latter demonstrates stronger robustness when dealing with random pedestrian loads. Full article
Show Figures

Figure 1

15 pages, 1813 KB  
Article
Impacts of Sonication on Fermentation Process and Physicochemical, Microbiological and Sensorial Characteristics of Fermented Black Carrot Juice
by Muhammet Ercan, Mehmet Akbulut, Hacer Çoklar and Talha Demirci
Fermentation 2025, 11(8), 475; https://doi.org/10.3390/fermentation11080475 - 19 Aug 2025
Viewed by 226
Abstract
In recent years, ultrasound has been integrated into fermentation technology due to its activating effect on microorganisms, and the possible effects of ultrasound-assisted fermentation on the fermentation process, yield and quality of the final product have also attracted attention. This study aimed to [...] Read more.
In recent years, ultrasound has been integrated into fermentation technology due to its activating effect on microorganisms, and the possible effects of ultrasound-assisted fermentation on the fermentation process, yield and quality of the final product have also attracted attention. This study aimed to reveal the effects of sonication applied before the fermentation on the fermentation process and the quality of fermented black carrot juice. The samples were sonicated at a frequency of 35 kHz and an amplitude of 60% for 0, 5, 15 or 30 min before the fermentation. During the fermentation, the pH, acidity, organic acid profile, ethanol and soluble solid content (SSC), color, turbidity, total lactic acid bacteria (LAB), total mesophilic aerobic bacteria (TMAB) and yeast counts were determined. The amount of SSC in the samples increased at the beginning of fermentation as the sonication time increased. Lactic, acetic and propionic acids were detected in the samples. The amount of lactic acid in all the samples treated with ultrasound was higher than in the control sample and the amounts of acetic acid, propionic acid and ethanol were lower. Ultrasound application caused an increase in the TMAB and yeast counts. A five-minute ultrasound application caused a decrease in the number of LAB, while 15- and 30-min applications caused an increase. Thirty minutes of ultrasound treatment resulted in the reddest fermented black carrot juices with the highest level of color saturation. The most appreciated sample in terms of taste, aroma and general acceptability was the sample subjected to a five-minute ultrasound application. As a result, ultrasound application before fermentation positively supports different quality parameters of fermented black carrot juice and the use of sonication in production can be recommended. Full article
Show Figures

Figure 1

18 pages, 3836 KB  
Article
Investigation of Blade Root Clearance Flow Effects on Pressure Fluctuations in an Axial Flow Pump
by Fan Meng, Yanjun Li, Mingzhe Li and Chao Ning
Machines 2025, 13(8), 733; https://doi.org/10.3390/machines13080733 - 18 Aug 2025
Viewed by 258
Abstract
This study investigates the leakage vortex influence on pressure pulsation characteristics within a vertical axial flow pump. Three impeller configurations with blade root clearance (δ) of 2.7–8.0 mm were designed to analyze geometric effects on internal flow dynamics. Unsteady RANS simulations [...] Read more.
This study investigates the leakage vortex influence on pressure pulsation characteristics within a vertical axial flow pump. Three impeller configurations with blade root clearance (δ) of 2.7–8.0 mm were designed to analyze geometric effects on internal flow dynamics. Unsteady RANS simulations predicted flow structures under multiple operating conditions (0.8–1.2Qdes). Fast Fourier Transform (FFT) extracted frequency–domain and time–frequency characteristics of pressure pulsations in critical flow regions. Key results reveal: (1) δ enlargement expands low-pressure zones within blade channels due to enhanced leakage vortices; (2) leading-edge pulsation shows 8.2–11.7% reduction in peak-to-peak amplitude and fundamental frequency magnitude with increasing δ; (3) trailing-edge response exhibits non-monotonic behavior, with maximum amplitude at δ = 5.0 mm (42.2% increase at design flow). These findings demonstrate that blade root clearance optimization requires condition-dependent thresholds to balance leakage management and pulsation control. Full article
Show Figures

Figure 1

19 pages, 9297 KB  
Article
Vibration Control of Wheels in Distributed Drive Electric Vehicle Based on Electro-Mechanical Braking
by Yinggang Xu, Zheng Zhu, Zhaonan Li, Xiangyu Wang, Liang Li and Heng Wei
Machines 2025, 13(8), 730; https://doi.org/10.3390/machines13080730 - 17 Aug 2025
Viewed by 274
Abstract
Electro-Mechanical Braking (EMB), as a novel brake-by-wire technology, is rapidly being implemented in vehicle chassis systems. Nevertheless, the integrated design of the EMB caliper contributes to an increased unsprung mass in Distributed Drive Electric Vehicles (DDEVs). Experimental results indicate that when the Anti-lock [...] Read more.
Electro-Mechanical Braking (EMB), as a novel brake-by-wire technology, is rapidly being implemented in vehicle chassis systems. Nevertheless, the integrated design of the EMB caliper contributes to an increased unsprung mass in Distributed Drive Electric Vehicles (DDEVs). Experimental results indicate that when the Anti-lock Braking System (ABS) is activated, these factors can induce high-frequency wheel oscillations. To address this issue, this study proposes an anti-oscillation control strategy tailored for EMB systems. Firstly, a quarter-vehicle model is established that incorporates the dynamics of the drive motor, suspension, and tire, enabling analysis of the system’s resonant behavior. The Discrete Fourier Transform (DFT) is applied to the difference between wheel speed and vehicle speed to extract the dominant frequency components. Then, an Adaptive Braking Intensity Field Regulation (ABIFR) strategy and a Model Predictive and Logic Control (MP-LC) framework are developed. These methods modulate the amplitude and frequency of braking torque reductions executed by the ABS to suppress high-frequency wheel oscillations, while ensuring sufficient braking force. Experimental validation using a real vehicle demonstrates that the proposed method increases the Mean Fully Developed Deceleration (MFDD) by 14.8% on low-adhesion surfaces and 15.2% on high-adhesion surfaces. Furthermore, the strategy significantly suppresses 12–13 Hz high-frequency oscillations, restoring normal ABS control cycles and enhancing both braking performance and ride comfort. Full article
(This article belongs to the Special Issue Advances in Dynamics and Control of Vehicles)
Show Figures

Figure 1

22 pages, 4416 KB  
Article
Small-Signal Stability Analysis of Converter-Interfaced Systems in DC Voltage Timescale Based on Amplitude/Frequency Operating Points
by Jin Lyu, Sicheng Wang and Jiabing Hu
Processes 2025, 13(8), 2583; https://doi.org/10.3390/pr13082583 - 15 Aug 2025
Viewed by 278
Abstract
The oscillations induced by voltage source converters (VSCs) in DC voltage timescale dynamics pose significant challenges to the safe and stable operation of VSC-dominated power systems. However, previous studies have conducted simplified analyses without fully understanding the fundamental roles of different timescale control [...] Read more.
The oscillations induced by voltage source converters (VSCs) in DC voltage timescale dynamics pose significant challenges to the safe and stable operation of VSC-dominated power systems. However, previous studies have conducted simplified analyses without fully understanding the fundamental roles of different timescale control loops in converter-interfaced systems. In light of this, this study first identifies the key state variables and operating points that directly characterize the energy storage levels of devices and networks in AC systems. A model for the converter-interfaced system is then established in the specified DC voltage timescale. The key contribution of this work is the proposal of an analytical framework that decomposes system stability into self-stabilizing (Self-stable) and externally coupled stabilizing (En-stable) paths based on internal voltage amplitude and frequency, aiming to reveal the physical mechanisms behind internal voltage amplitude and frequency oscillations in DC voltage timescale dynamics. Based on this framework, the Self-stable path and En-stable path of the internal voltage amplitude/frequency of converter-interfaced systems are derived. This novel analytical method mathematically decouples the stability of a single variable into a direct self-influence path and an indirect path coupled through other system variables. Subsequently, the causes of internal voltage amplitude/frequency oscillations in the specified voltage timescale are explained using the Self-stability and En-stability analysis method. A key finding of this study is that the stability of the internal voltage amplitude and frequency exhibits a dual relationship: for amplitude stability, the Self-stable path is stabilizing, whereas the coupled path is destabilizing; for frequency stability, the roles are reversed. Finally, the results are verified through simulations. Full article
Show Figures

Figure 1

29 pages, 6663 KB  
Article
Vortex-Induced Vibration of Deep-Sea Mining Riser Under Different Currents and Tension Conditions Using Wake Oscillator Model
by Liwen Deng, Haining Lu, Jianmin Yang, Rui Guo, Bei Zhang and Pengfei Sun
J. Mar. Sci. Eng. 2025, 13(8), 1565; https://doi.org/10.3390/jmse13081565 - 15 Aug 2025
Viewed by 316
Abstract
The vortex-induced vibration (VIV) dynamics of commercial-scale deep-sea mining risers with complex component arrangements (pumps, buffer stations, buoyancy modules) remain insufficiently explored, especially for 6000 m systems with nonlinear tension. This study investigates VIV control strategy by adjusting tension for a nonlinear riser [...] Read more.
The vortex-induced vibration (VIV) dynamics of commercial-scale deep-sea mining risers with complex component arrangements (pumps, buffer stations, buoyancy modules) remain insufficiently explored, especially for 6000 m systems with nonlinear tension. This study investigates VIV control strategy by adjusting tension for a nonlinear riser system using the Iwan-Blevins wake oscillator model integrated with Morison equation-based analysis. An analytical model incorporating four typical current profiles was established to quantify the dynamic response under different flow velocities, internal flow density, and structural parameters. Increased buffer station mass effectively suppressed drift distance (over 35% reduction under specific conditions) by regulating axial tension. Dynamic comparisons demonstrated distinct VIV energy distribution patterns under different current conditions. Spectral analysis revealed that the vibration follows Strouhal vortex shedding lock-in principles. Spatial modal differentiation was observed due to nonlinear variations in velocity profiles, pipe diameters, and axial tension, accompanied by multi-frequency resonance, coexistence of standing and traveling waves, and broadband resonance with amplitude surges under critical velocities (1.75 m/s in Current-B). This study proposes to control the VIV amplitude by adjusting internal flow density and buffer mass, which is proved effective for reducing vibrations in upper (0–2000 m) risers. It validates vibration amplitude and frequency control through current velocity, buffer mass and slurry density regulation in a nonlinear riser system. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

23 pages, 2768 KB  
Article
Nonlinear Algebraic Parameter Estimation of Doubly Fed Induction Machine Based on Rotor Current Falling Curves
by Alexander Glazyrin, Dmitriy Bunkov, Evgeniy Bolovin, Yusup Isaev, Vladimir Kopyrin, Sergey Kladiev, Alexander Filipas, Sergey Langraf, Rustam Khamitov, Vladimir Kovalev, Evgeny Popov, Semen Popov and Marina Deneko
Energies 2025, 18(16), 4316; https://doi.org/10.3390/en18164316 - 14 Aug 2025
Viewed by 193
Abstract
Currently, wind turbines utilize doubly fed induction machines that incorporate a frequency converter in the rotor circuit to manage slip energy. This setup ensures a stable voltage amplitude and frequency that align with the alternating current. It is crucial to accurately determine the [...] Read more.
Currently, wind turbines utilize doubly fed induction machines that incorporate a frequency converter in the rotor circuit to manage slip energy. This setup ensures a stable voltage amplitude and frequency that align with the alternating current. It is crucial to accurately determine the parameters of the equivalent circuit from the rotor side of the vector control system of the frequency converter. The objective of this study is to develop a method for the preliminary identification of the doubly fed induction machines parameters by analyzing the rotor current decay curves using Newton’s method. The numerical estimates of the equivalent circuit parameters a doubly fed induction machines with a fixed short-circuited rotor are obtained during the validation of the results on a real plant. It is along with the integral errors of deviation between the experimental rotor current decay curve and the response of the adaptive regression model. The integral errors do not exceed 4% in nearly all sections of the curves. It is considered acceptable in engineering practice. The developed algorithm for the preliminary identification for the parameters of the doubly fed induction machines substitution scheme can be applied with the configuring machines control systems, including a vector control system. Full article
Show Figures

Figure 1

19 pages, 2374 KB  
Article
Magnetothermal Energy Conversion of Polydopamine-Coated Iron Oxide Ferrogels Under High-Frequency Rotating Magnetic Fields
by Jakub Musiał, Artur Jędrzak, Rafał Bielas and Andrzej Skumiel
Energies 2025, 18(16), 4291; https://doi.org/10.3390/en18164291 - 12 Aug 2025
Viewed by 310
Abstract
This study provides a comparison between magnetic-to-thermal energy conversion efficiency in liquid and gel phases under high-frequency magnetic fields. Magnetite cores (11 ± 2 nm) were tested as water-based ferrofluids and as 5 wt% agar ferrogels, both with and without a biocompatible polydopamine [...] Read more.
This study provides a comparison between magnetic-to-thermal energy conversion efficiency in liquid and gel phases under high-frequency magnetic fields. Magnetite cores (11 ± 2 nm) were tested as water-based ferrofluids and as 5 wt% agar ferrogels, both with and without a biocompatible polydopamine (PDA) shell. A custom two-phase coil switched between rotating (RMF) and alternating (AMF) modes, enabling phase- and coating-dependent effects to be measured at identical field strengths and frequencies (100–300 kHz, 1–4 kA/m). Across all conditions, RMF generated 1.7–2.1 times more specific loss power (SLP) than AMF, and moving from the liquid to the gel phase reduced SLP by 5–8%, indicating that heating is controlled by Néel relaxation with negligible Brownian contribution. SLP rose with magnetic-field amplitude according to a power law, while hysteretic losses remained minimal. PDA improved colloidal stability and biocompatibility without harming the heating performance, lowering SLP by <17%. Within Brezovich limits, the system still exceeded therapeutic hyperthermia thresholds. Thus, in this iron-oxide/PDA system, neither medium viscosity nor the PDA shell’s non-magnetic mass significantly affects thermal energy output, an important finding for translating laboratory calorimetry data into reliable, application-oriented modelling for magnetic hyperthermia. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

28 pages, 2274 KB  
Article
Vibration Control and Energy-Regenerative Performance Analysis of an Energy-Regenerative Magnetorheological Semi-Active Suspension
by Wenkai Wei, Jiayu Lu, Cao Tan, Haodong Wu and Xiaoxuan Xie
World Electr. Veh. J. 2025, 16(8), 455; https://doi.org/10.3390/wevj16080455 - 10 Aug 2025
Viewed by 272
Abstract
To improve both ride comfort and energy efficiency, this study proposes a semi-active suspension system equipped with an electromagnetic linear energy-regenerative magnetorheological damper (ELEMRD). The ELEMRD integrates a magnetorheological damper (MRD) with a linear generator. A neural network-based surrogate model was employed to [...] Read more.
To improve both ride comfort and energy efficiency, this study proposes a semi-active suspension system equipped with an electromagnetic linear energy-regenerative magnetorheological damper (ELEMRD). The ELEMRD integrates a magnetorheological damper (MRD) with a linear generator. A neural network-based surrogate model was employed to optimize the key parameters of the linear generator for better compatibility with semi-active suspensions. A prototype was fabricated and tested. Experimental results show that with an excitation current of 1.5 A, the prototype generates a peak output force of 1415 N. Under harmonic excitation at 5 Hz, the no-load regenerative power reaches 11.1 W and 37.3 W at vibration amplitudes of 5 mm and 10 mm, respectively. An energy-regenerative magnetorheological semi-active suspension model was developed and controlled using a Linear Quadratic Regulator (LQR). Results indicate that, on a Class C road at 20 m/s, the proposed system reduces sprung mass acceleration and suspension working space by 14.2% and 7.5% compared to a passive suspension. The root mean square and peak regenerative power reach 49.8 W and 404.2 W, respectively. The proposed semi-active suspension also exhibits enhanced low-frequency vibration isolation, demonstrating its effectiveness in improving ride quality while achieving energy recovery. Full article
(This article belongs to the Special Issue Vehicle System Dynamics and Intelligent Control for Electric Vehicles)
Show Figures

Figure 1

17 pages, 4774 KB  
Article
Washout-Filter Power-Sharing-Based Resilient Control Strategy for Microgrids Against False Data Injection Attacks
by Shiwang Fan, Wenjie Zhu, Xiaowei Wang, Tao Qian and Yinghao Shan
Eng 2025, 6(8), 198; https://doi.org/10.3390/eng6080198 - 8 Aug 2025
Viewed by 302
Abstract
Secondary control (SC) under false data injection attacks (FDIAs) in microgrids can compromise control decisions and disrupt the normal operation of the system. This paper proposes a washout-filter power-sharing-based resilient control strategy to tackle FDIAs. This strategy ensures the primary control continues to [...] Read more.
Secondary control (SC) under false data injection attacks (FDIAs) in microgrids can compromise control decisions and disrupt the normal operation of the system. This paper proposes a washout-filter power-sharing-based resilient control strategy to tackle FDIAs. This strategy ensures the primary control continues to function normally by enabling the timely disconnection of the attacked SC. To address the under-rated operation state caused by the loss of SC, washout-filter power sharing is activated to restore the rated operation. Furthermore, for the FDIAs that affect both system frequency and voltage simultaneously after power sharing, a voltage compensation control loop is designed for the local voltage drop, allowing the attacked voltage value to further recover to the rated value. This strategy secures a steady frequency and enhanced voltage amplitude in the system, achieving a resilient effect against FDIAs. The proposed strategy has been validated through various simulation scenarios and FPGA-in-the-loop experiments. Full article
(This article belongs to the Section Electrical and Electronic Engineering)
Show Figures

Figure 1

21 pages, 3918 KB  
Article
Design of BPC LF Time Code Signal Generator Based on ARM Architecture Microcontroller and FPGA
by Hongzhen Cao, Jianfeng Wu, Xiaolong Guan, Dangli Zhao, Yan Xing, Zhibo Zhou, Yuji Li and Kexin Yin
Electronics 2025, 14(15), 3128; https://doi.org/10.3390/electronics14153128 - 6 Aug 2025
Viewed by 388
Abstract
Low-frequency (LF) time code timing technology holds significant importance in civilian applications such as radio-controlled clocks. This study focuses on the design and implementation of a high-precision Binary Phase Code (BPC) LF time code signal generator. A generator system was constructed, demonstrating good [...] Read more.
Low-frequency (LF) time code timing technology holds significant importance in civilian applications such as radio-controlled clocks. This study focuses on the design and implementation of a high-precision Binary Phase Code (BPC) LF time code signal generator. A generator system was constructed, demonstrating good stability, superior resolution, and flexible adjustment capabilities for both amplitude and phase. The system employs an ARM + FPGA cooperative architecture: the ARM processor is responsible for parsing and scheduling the time code data, while the FPGA implements carrier wave generation and high-precision digital modulation. This digital processing is combined with analog circuitry to achieve digital-to-analog (D/A) signal conversion. Compared to traditional methods, carrier generation is achieved using Direct Digital Synthesis (DDS) technology. Digital modulation techniques enable the precise control of the modulation depth (adjustable between 70% and 90%) and phase (with a resolution of 1 ns). A sliding window algorithm was utilized for time difference calculation and compensation. Testing confirmed the stability of key signal parameters, including integrity, carrier frequency and modulation depth. These results validate the feasibility and superiority of the digital LF time code generation technology proposed in this study, providing a valuable reference for the development of next-generation timing equipment. Full article
Show Figures

Figure 1

16 pages, 2772 KB  
Article
Double Demodulation Incorporates Reciprocal Modulation and Residual Amplitude Modulation Feedback to Enhance the Bias Performance of RFOG
by Zhijie Yang, Xiaolong Yan, Guoguang Chen and Xiaoli Tian
Photonics 2025, 12(8), 792; https://doi.org/10.3390/photonics12080792 - 5 Aug 2025
Viewed by 233
Abstract
The suppression of Rayleigh backscattering noise in a resonant fiber optic gyro (RFOG) is accompanied by the emergence of residual amplitude modulation (RAM) effects, which impact the bias performance of the RFOG output. In this paper, we propose a double demodulation technique that [...] Read more.
The suppression of Rayleigh backscattering noise in a resonant fiber optic gyro (RFOG) is accompanied by the emergence of residual amplitude modulation (RAM) effects, which impact the bias performance of the RFOG output. In this paper, we propose a double demodulation technique that integrates reciprocal modulation and RAM feedback. By utilizing reciprocal modulation–demodulation along with a RAM feedback control method, we effectively suppress both RAM and laser frequency noise. Furthermore, the inherent suppression characteristics of the double modulation–demodulation scheme facilitate effective backscatter noise reduction. As a result, the gyro angular random walk of the RFOG has improved to 3°/h, and the long-term bias instability has been enhanced to 0.1°/h over a test duration of 10 h. Full article
(This article belongs to the Special Issue Emerging Trends in Optical Fiber Sensors and Sensing Techniques)
Show Figures

Figure 1

Back to TopTop