Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (93)

Search Parameters:
Keywords = amplified drought

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 10281 KiB  
Article
Identifying Forest Drought Sensitivity Drivers in China Under Lagged and Accumulative Effects via XGBoost-SHAP
by Ze Xue, Simeng Diao, Fuxiao Yang, Long Fei, Wenjuan Wang, Lantong Fang and Yan Liu
Remote Sens. 2025, 17(16), 2903; https://doi.org/10.3390/rs17162903 - 20 Aug 2025
Viewed by 174
Abstract
Drought, a complex and frequent natural hazard in the context of global change, poses a major threat to key forest ecosystems in the carbon cycle. However, current research lacks a systematic and quantitative analysis of the multi-factor drivers of drought sensitivity based on [...] Read more.
Drought, a complex and frequent natural hazard in the context of global change, poses a major threat to key forest ecosystems in the carbon cycle. However, current research lacks a systematic and quantitative analysis of the multi-factor drivers of drought sensitivity based on lagged and accumulative effects. To address this gap, a drought sensitivity model was established by integrating both lagged and accumulative effects derived from long-term remote sensing datasets. To leverage both predictive power and interpretability, the XGBoost–SHAP framework was employed to model nonlinear associations and identify the threshold effects of driving factors. In addition, the Geodetector model was applied to examine spatially explicit interactions among multiple drivers, thereby uncovering the coupling effects that jointly shape forest drought sensitivity across China. The results reveal the following: (1) Drought had lagged and accumulative effects on 99.52% and 95.55% of forest GPP, with evergreen broadleaf forest showing the strongest effects and deciduous needleleaf forest the weakest. (2) Evergreen needleleaf forests have the highest proportion of extremely high drought sensitivity (16.94%), while deciduous needleleaf forests have the least (1.02%), and the drought sensitivity index declined in 67.12% of forests over decades. (3) Temperature and precipitation are the primary drivers of drought sensitivity, with clear threshold effects. Evergreen forests are mainly driven by climatic factors, while forest age is a key driver in deciduous needleleaf forests. (4) Interactive effects among multiple factors significantly amplify spatial variations in drought sensitivity, with water–heat coupling dominating in evergreen forests and structure–climate interactions prevailing in deciduous forests. Full article
Show Figures

Figure 1

32 pages, 1681 KiB  
Review
Assessing the Risks of Extreme Droughts to Amphibian Populations in the Northwestern Mediterranean
by Eudald Pujol-Buxó and Albert Montori
Land 2025, 14(8), 1668; https://doi.org/10.3390/land14081668 - 18 Aug 2025
Viewed by 705
Abstract
Amphibians are particularly vulnerable to hydric stress due to their permeable skin, biphasic life cycle, and strong dependence on aquatic and moist terrestrial environments. In the Northwestern Mediterranean Basin—one of Europe’s most climate-sensitive regions—the intensification of droughts associated with climate change poses a [...] Read more.
Amphibians are particularly vulnerable to hydric stress due to their permeable skin, biphasic life cycle, and strong dependence on aquatic and moist terrestrial environments. In the Northwestern Mediterranean Basin—one of Europe’s most climate-sensitive regions—the intensification of droughts associated with climate change poses a critical threat to amphibian populations. Increased aridification, either due to higher temperatures or to more frequent, prolonged, and severe drought episodes, can affect both aquatic and terrestrial life stages, directly altering breeding opportunities, larval development, post-metamorphic survival, and dispersal capacity. This review aims to gather and synthesize current knowledge on the ecological, physiological, and demographic impacts of drought on amphibians of the Northwestern Mediterranean across habitat types, including ephemeral ponds, permanent water bodies, lotic systems, and terrestrial landscapes, including a final section on possible mitigation actions. Drought-induced shifts in hydroperiod can drastically reduce reproductive success and accelerate larval development with fitness consequences while, on land, desiccation risk and habitat degradation could limit access to refugia and fragment populations by reducing structural connectivity. These environmental constraints are compounded by the interactions between drought and emerging infectious diseases. We discuss the current knowledge on how chytrid fungi (Batrachochytrium dendrobatidis and B. salamandrivorans) and ranaviruses may respond to temperature and moisture regimes, and how drought may affect their transmission dynamics, host susceptibility, and pathogen persistence. In these cases, microbiome disruption, pollutant concentration, and increased contact rates between species may amplify disease outbreaks under dry conditions, but a better understanding of the multifactorial effects of drought on amphibian biology and disease ecology is needed for predicting species vulnerability, identifying high-risk populations, and guiding future conservation and management strategies in Mediterranean environments. Full article
(This article belongs to the Section Land–Climate Interactions)
Show Figures

Figure 1

20 pages, 6817 KiB  
Review
A Review of Jurassic Paleoclimatic Changes and Tectonic Evolution in the Qaidam Block, Northern Qinghai-Tibetan Plateau
by Ruiyang Chai, Yanan Zhou, Anliang Xiong, Zhenwei Chen, Dongwei Liu, Nan Jiang, Xin Cheng, Jingong Zhang and Hanning Wu
Sustainability 2025, 17(16), 7337; https://doi.org/10.3390/su17167337 - 14 Aug 2025
Viewed by 359
Abstract
Understanding the mechanisms and speed of paleo-aridification in the Qaidam Block—driven by tectonic uplift and shifts in atmospheric circulation—provides critical long-term context for assessing modern climate variability and anthropogenic impacts on water resources and desertification. This knowledge is essential for informing sustainable development [...] Read more.
Understanding the mechanisms and speed of paleo-aridification in the Qaidam Block—driven by tectonic uplift and shifts in atmospheric circulation—provides critical long-term context for assessing modern climate variability and anthropogenic impacts on water resources and desertification. This knowledge is essential for informing sustainable development strategies. We reconstruct the post-Triassic–Jurassic extinction tectonic-climatic evolution of the Qaidam Block on the northern Qinghai-Tibet Plateau margin through an integrated analysis of sedimentary facies, palynological assemblages, and Chemical Index of Alteration values from Late Triassic to Jurassic strata. The Indo-Eurasian convergence drove the uplift of the East Kunlun Orogen and strike-slip movement along the Altyn Tagh Fault, establishing a basin-range system. During the initial Late Triassic to Early Jurassic period, warm-humid conditions supported gymnosperm/fern-dominated ecosystems and facilitated coal formation. A Middle Jurassic shift from extensional to compressional tectonics coincided with a climatic transition from warm-humid, through cold-arid, to hot-arid states. This aridification, evidenced by a Bathonian-stage surge in drought-tolerant Classopollis pollen and a sharp decline in Chemical Index of Alteration values, intensified in the Late Jurassic due to the Yanshanian orogeny and distal subduction effects. Resultant thrust-strike-slip faulting and southeastward depocenter migration, under persistent aridity and intensified atmospheric circulation, drove widespread development of aeolian dune systems (e.g., Hongshuigou Formation) and arid fluvial-lacustrine environments. The tectonic-climate-ecosystem framework reveals how Jurassic tectonic processes amplified feedback to accelerate aridification. This mechanism provides a critical geological analog for addressing the current sustainability challenges facing the Qaidam Basin. Full article
Show Figures

Figure 1

19 pages, 322 KiB  
Article
Health Inequalities in Primary Care: A Comparative Analysis of Climate Change-Induced Expansion of Waterborne and Vector-Borne Diseases in the SADC Region
by Charles Musarurwa, Jane M. Kaifa, Mildred Ziweya, Annah Moyo, Wilfred Lunga and Olivia Kunguma
Int. J. Environ. Res. Public Health 2025, 22(8), 1242; https://doi.org/10.3390/ijerph22081242 - 8 Aug 2025
Viewed by 319
Abstract
Climate change has magnified health disparities across the Southern African Development Community (SADC) region by destabilizing the critical natural systems, which include water security, food production, and disease ecology. The IPCC (2007) underscores the disproportionate impact on low-income populations characterized by limited adaptive [...] Read more.
Climate change has magnified health disparities across the Southern African Development Community (SADC) region by destabilizing the critical natural systems, which include water security, food production, and disease ecology. The IPCC (2007) underscores the disproportionate impact on low-income populations characterized by limited adaptive capacity, exacerbating existing vulnerabilities. Rising temperatures, erratic precipitation patterns, and increased frequency of extreme weather events ranging from prolonged droughts to catastrophic floods have created favourable conditions for the spread of waterborne diseases such as cholera, dysentery, and typhoid, as well as the expansion of vector-borne diseases zone also characterized by warmer and wetter conditions where diseases like malaria thrives. This study employed a comparative analysis of climate and health data across Malawi, Zimbabwe, Mozambique, and South Africa examining the interplay between climatic shifts and disease patterns. Through reviews of national surveillance reports, adaptation policies, and outbreak records, the analysis reveals the existence of critical gaps in preparedness and response. Zimbabwe’s Matabeleland region experienced a doubling of diarrheal diseases in 2019 due to drought-driven water shortages, forcing communities to rely on unsafe alternatives. Mozambique faced a similar crisis following Cyclone Idai in 2019, where floodwaters precipitated a threefold surge in cholera cases, predominantly affecting children under five. In Malawi, Cyclone Ana’s catastrophic flooding in 2022 contaminated water sources, leading to a devastating cholera outbreak that claimed over 1200 lives. Meanwhile, in South Africa, inadequate sanitation in KwaZulu-Natal’s informal settlements amplified cholera transmission during the 2023 rainy season. Malaria incidence has also risen in these regions, with warmer temperatures extending the geographic range of Anopheles mosquitoes and lengthening the transmission seasons. The findings underscore an urgent need for integrated, multisectoral interventions. Strengthening disease surveillance systems to incorporate climate data could enhance early warning capabilities, while national adaptation plans must prioritize health resilience by bridging gaps between water, agriculture, and infrastructure policies. Community-level interventions, such as water purification programs and targeted vector control, are essential to reduce outbreaks in high-risk areas. Beyond these findings, there is a critical need to invest in longitudinal research so as to elucidate the causal pathways between climate change and disease burden, particularly for understudied linkages like malaria expansion and urbanization. Without coordinated action, climate-related health inequalities will continue to widen, leaving marginalized populations increasingly vulnerable to preventable diseases. The SADC region must adopt evidence-based, equity-centred strategies to mitigate these growing threats and safeguard public health in a warming world. Full article
(This article belongs to the Special Issue Health Inequalities in Primary Care)
14 pages, 2403 KiB  
Article
Drought Stress Enhances Mycorrhizal Colonization in Rice Landraces Across Agroecological Zones of Far-West Nepal
by Urmila Dhami, Nabin Lamichhane, Sudan Bhandari, Gunanand Pant, Lal Bahadur Thapa, Chandra Prasad Pokhrel, Nikolaos Monokrousos and Ram Kailash Prasad Yadav
Soil Syst. 2025, 9(3), 72; https://doi.org/10.3390/soilsystems9030072 - 9 Jul 2025
Viewed by 482
Abstract
Mycorrhizal symbiosis in rice enhances drought adaptation but there are limited studies regarding the frequency and amplitude of mycorrhizae colonization in traditional landraces. This study investigates mycorrhizal colonization frequency (FMS) and intensity (IRS) in 12 rice landraces across three agroecological zones (Tarai, Inner-Tarai, [...] Read more.
Mycorrhizal symbiosis in rice enhances drought adaptation but there are limited studies regarding the frequency and amplitude of mycorrhizae colonization in traditional landraces. This study investigates mycorrhizal colonization frequency (FMS) and intensity (IRS) in 12 rice landraces across three agroecological zones (Tarai, Inner-Tarai, Mid-hill) of Far-West Nepal under drought stress. Field experiments exposed landraces to control, intermittent, and complete drought treatments, with soil properties and root colonization analyzed. Results revealed FMS and IRS variations driven by soil composition and genotype. Mid-hill soils (acidic, high organic matter) showed lower FMS but elevated IRS under drought, while neutral pH in Tarai and silt/clay-rich soils supported higher FMS. Sandy soil in Inner-Tarai also promoted FMS. Drought significantly increased IRS, particularly in Anjana and Sauthiyari (Tarai), Chiudi and Shanti (Inner-Tarai), and Chamade and Jhumke (Mid-hill), which exhibited IRS surges of 171–388%. These landraces demonstrated symbiotic resilience, linking mycorrhizal networks to enhanced nutrient/water uptake. Soil organic matter and nutrient levels amplified IRS responses, underscoring fertility’s role in adaptation. FMS ranged from 50 to 100%, and IRS 1.20–19.74%, with intensity being a stronger drought-tolerance indicator than frequency. The study highlights the conservation urgency for these landraces, as traditional varieties decline due to hybrid adoption. Their drought-inducible mycorrhizal symbiosis offers a sustainable strategy for climate-resilient rice production, emphasizing soil–genotype interactions in agroecological adaptation. Full article
Show Figures

Figure 1

20 pages, 2010 KiB  
Article
Machine Learning Analysis of Maize Seedling Traits Under Drought Stress
by Lei Zhang, Fulai Zhang, Wentao Du, Mengting Hu, Ying Hao, Shuqi Ding, Huijuan Tian and Dan Zhang
Biology 2025, 14(7), 787; https://doi.org/10.3390/biology14070787 - 29 Jun 2025
Viewed by 468
Abstract
The increasing concentration of greenhouse gases is amplifying the global risk of drought on crop productivity. This study sought to investigate the effects of drought on the growth of maize (Zea mays L.) seedlings. A total of 78 maize hybrids were employed [...] Read more.
The increasing concentration of greenhouse gases is amplifying the global risk of drought on crop productivity. This study sought to investigate the effects of drought on the growth of maize (Zea mays L.) seedlings. A total of 78 maize hybrids were employed in this study to replicate drought conditions through the potting method. The maize seedlings were subjected to a 10-day period of water breakage following a standard watering cycle until they reached the third leaf collar (V3) stage. Parameters including plant height, stem diameter, chlorophyll content, and root number were assessed. The eight phenotypic traits include the fresh and dry weights of both the aboveground and underground parts. Three machine learning methods—random forest (RF), K-nearest neighbor (KNN), and extreme gradient boosting (XGBoost)—were employed to systematically analyze the relevant traits of maize seedlings’ drought tolerance and to assess their predictive performance in this regard. The findings indicated that plant height, aboveground weight, and chlorophyll content constituted the primary indices for phenotyping maize seedlings under drought conditions. The XGBoost model demonstrated optimal performance in the classification (AUC = 0.993) and regression (R2 = 0.863) tasks, establishing itself as the most effective prediction model. This study provides a foundation for the feasibility and reliability of screening drought-tolerant maize varieties and refining precision breeding strategies. Full article
(This article belongs to the Special Issue Plant Breeding: From Biology to Biotechnology)
Show Figures

Graphical abstract

24 pages, 1964 KiB  
Article
Metabolomic Profiling Reveals PGPR-Driven Drought Tolerance in Contrasting Brassica juncea Genotypes
by Asha Rani Sheoran, Nita Lakra, Baljeet Singh Saharan, Annu Luhach, Yogesh K. Ahlawat, Rosa Porcel, Jose M. Mulet and Prabhakar Singh
Metabolites 2025, 15(6), 416; https://doi.org/10.3390/metabo15060416 - 19 Jun 2025
Viewed by 713
Abstract
Background: Drought stress is a major abiotic factor limiting Brassica juncea productivity, resulting in significant yield reductions. Plant Growth-Promoting Rhizobacteria (PGPR) have shown potential in enhancing drought tolerance; however, the metabolomic changes associated with their effects remain largely unexplored. This study examines the [...] Read more.
Background: Drought stress is a major abiotic factor limiting Brassica juncea productivity, resulting in significant yield reductions. Plant Growth-Promoting Rhizobacteria (PGPR) have shown potential in enhancing drought tolerance; however, the metabolomic changes associated with their effects remain largely unexplored. This study examines the metabolic changes induced by a PGPR consortium (Enterobacter hormaechei, Pantoea dispersa, and Acinetobacter sp.) in two contrasting genotypes B. juncea (L.) Czern. ‘RH 725’ (drought tolerant) and B. juncea (L.) Czern. ‘RH-749’ (drought sensitive for drought tolerance, under both control and drought conditions. Methods: Metabolite profiling was conducted using gas chromatography-mass spectrometry (GC-MS) to identify compounds that accumulated differentially across treatments. We applied multivariate statistical methods, such as Partial Least Squares Discriminant Analysis (PLS-DA), hierarchical clustering, and pathway enrichment analysis, to explore metabolic reprogramming. Results: Drought stress induced significant changes in metabolite profile, particularly increasing the levels of osmoprotectants such as trehalose, glucose, sucrose, proline, and valine. Additionally, alterations in organic acids (malic acid and citric acid) and fatty acids (oleic acid and linoleic acid) were observed. PGPR inoculation further amplified these metabolic responses to enhance the osmotic regulation, reactive oxygen species (ROS) detoxification, and carbon-nitrogen metabolism, with RH-725 displaying a stronger adaptive response. Pathway enrichment analysis revealed that PGPR treatment significantly influenced metabolic pathways related to starch and sucrose metabolism, galactose metabolism, and amino acid biosynthesis, which play critical roles in drought adaptation. Conclusion: These findings provide insights into how PGPR contributes to stress resilience in B. juncea by modulating key biochemical pathways. This study provides new molecular insights into the known effect of PGPR for mitigating drought stress in oilseed crops. Full article
(This article belongs to the Section Plant Metabolism)
Show Figures

Figure 1

21 pages, 6504 KiB  
Article
Drought Amplifies the Suppressive Effect of Afforestation on Net Primary Productivity in Semi-Arid Ecosystems: A Case Study of the Yellow River Basin
by Futao Wang, Ziqi Zhang, Mingxuan Du, Jianzhong Lu and Xiaoling Chen
Remote Sens. 2025, 17(12), 2100; https://doi.org/10.3390/rs17122100 - 19 Jun 2025
Viewed by 534
Abstract
As a critical ecologicalbarrier in the semi-arid to semi-humid transition zone of northern China, the interaction between afforestation and climatic stressors in the Yellow River Basin constitutes a pivotal scientific challenge for regional sustainable development. However, the synthesis effects of afforestation and climate [...] Read more.
As a critical ecologicalbarrier in the semi-arid to semi-humid transition zone of northern China, the interaction between afforestation and climatic stressors in the Yellow River Basin constitutes a pivotal scientific challenge for regional sustainable development. However, the synthesis effects of afforestation and climate on primary productivity require further investigation. Integrating multi-source remote sensing data (2000–2020), meteorological observations with the Standardized Precipitation Evapotranspiration Index (SPEI) and an improved CASA model, this study systematically investigates spatiotemporal patterns of vegetation net primary productivity (NPP) responses to extreme drought events while quantifying vegetation coverage’s regulatory effects on ecosystem drought sensitivity. Among drought events identified using a three-dimensional clustering algorithm, high-intensity droughts caused an average NPP loss of 23.2 gC·m−2 across the basin. Notably, artificial irrigation practices in the Hetao irrigation district significantly mitigated NPP reduction to −9.03 gC·m−2. Large-scale afforestation projects increased the NDVI at a rate of 3.45 × 10−4 month−1, with a contribution rate of 78%, but soil moisture competition from high-density vegetation reduced carbon-sink benefits. However, mixed forest structural optimization in the Three-North Shelterbelt Forest Program core area achieved local carbon-sink gains, demonstrating that vegetation configuration alleviates water competition pressure. Drought amplified the suppressive effect of afforestation through stomatal conductance-photosynthesis coupling mechanisms, causing additional NPP losses of 7.45–31.00 gC·m−2, yet the April–July 2008 event exhibited reversed suppression effects due to immature artificial communities during the 2000–2004 baseline period. Our work elucidates nonlinear vegetation-climate interactions affecting carbon sequestration in semi-arid ecosystems, providing critical insights for optimizing ecological restoration strategies and climate-adaptive management in the Yellow River Basin. Full article
Show Figures

Graphical abstract

24 pages, 8013 KiB  
Article
Assessing the Combined Impact of Land Surface Temperature and Droughts to Heatwaves over Europe Between 2003 and 2023
by Foteini Karinou, Ilias Agathangelidis and Constantinos Cartalis
Remote Sens. 2025, 17(9), 1655; https://doi.org/10.3390/rs17091655 - 7 May 2025
Cited by 2 | Viewed by 1111
Abstract
The increasing frequency, intensity, and duration of heatwaves and droughts pose significant societal and environmental challenges across Europe. This study analyzes land surface temperature (LST) observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) between 2003 and 2023 to identify thermal anomalies associated with [...] Read more.
The increasing frequency, intensity, and duration of heatwaves and droughts pose significant societal and environmental challenges across Europe. This study analyzes land surface temperature (LST) observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) between 2003 and 2023 to identify thermal anomalies associated with heatwaves. Additionally, this study examines the role of different land cover types in modulating heatwave impacts, employing turbulent flux observations from micrometeorological towers. The interaction between heatwaves and droughts is further explored using the Standardized Precipitation Evapotranspiration Index (SPEI) and soil moisture data, highlighting the amplifying role of water stress through land–atmosphere feedbacks. The results reveal a statistically significant upward trend in LST-derived thermal anomalies, with the 2022 heatwave identified as the most extreme event, when approximately 75% of Europe experienced strong positive anomalies. On average, 91% of heatwave episodes identified in reanalysis-based air temperature records coincided with LST-defined anomaly events, confirming LST as a robust proxy for heatwave detection. Flux tower observations show that, during heatwaves, evergreen coniferous and mixed forests predominantly enhance sensible heat fluxes (mean anomalies during midday of 74 W/m2 and 62 W/m2, respectively), while grasslands exhibit increased latent heat flux (89 W/m2). Notably, under extreme compound heat–drought conditions, this pattern reverses for grassed sites due to rapid soil moisture depletion. Overall, the findings underscore the combined influence of surface temperature and drought in driving extreme heat events and introduce a novel, multi-source approach that integrates satellite, reanalysis, and ground-based data to assess heatwave dynamics across scales. Full article
Show Figures

Graphical abstract

32 pages, 13922 KiB  
Article
Urban Air Pollution in the Global South: A Never-Ending Crisis?
by Rasa Zalakeviciute, Jesus Lopez-Villada, Alejandra Ochoa, Valentina Moreno, Ariana Byun, Esteban Proaño, Danilo Mejía, Santiago Bonilla-Bedoya, Yves Rybarczyk and Fidel Vallejo
Atmosphere 2025, 16(5), 487; https://doi.org/10.3390/atmos16050487 - 22 Apr 2025
Viewed by 1240
Abstract
Among the challenges the human population needs to address are threats of global pandemics, increasing socioeconomic inequality, especially in developing countries, and anthropogenic climate change. The latter’s effect has been amplified with the arrival of 2023/24 El Niño, causing an exceptional drought in [...] Read more.
Among the challenges the human population needs to address are threats of global pandemics, increasing socioeconomic inequality, especially in developing countries, and anthropogenic climate change. The latter’s effect has been amplified with the arrival of 2023/24 El Niño, causing an exceptional drought in the Amazon basin, significantly affecting fire conditions and hydroelectric power production in several South American countries, including Ecuador. This study analyzes five criteria pollutants—carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone (O3), and particulate matter ≤ 2.5 µm (PM2.5)—during 2019–2024 in Quito, Ecuador, a high-elevation tropical metropolis. Despite long-term efforts to regulate emissions, air pollution levels continue to rise, driven by overlapping crises, including energy shortages, political unrest, and extreme weather events. The persistent failure to improve air quality underscores the vulnerability of developing nations to climate change-induced energy instability and the urgent need for adaptive, diversified, and resilient future energy planning. Without immediate shifts in climate adaptation policies, cities like Quito will continue to experience worsening air quality, with severe implications for public health and environmental sustainability. Full article
(This article belongs to the Special Issue Air Quality in Metropolitan Areas and Megacities (Second Edition))
Show Figures

Figure 1

23 pages, 13387 KiB  
Article
Comparative Analysis of SPEI and WEI+ Indices: Drought and Water Scarcity in the Umbria Region, Central Italy
by Stefano Casadei, Sara Venturi and Silvia Di Francesco
Hydrology 2025, 12(4), 74; https://doi.org/10.3390/hydrology12040074 - 27 Mar 2025
Viewed by 1003
Abstract
The purpose of this study is to assess the possibility of relating two phenomena: first, meteorological drought, which is exclusively dependent on climate; second, water scarcity and its uses, which are predominantly anthropogenic in nature. Sometimes these phenomena may overlap, with the former [...] Read more.
The purpose of this study is to assess the possibility of relating two phenomena: first, meteorological drought, which is exclusively dependent on climate; second, water scarcity and its uses, which are predominantly anthropogenic in nature. Sometimes these phenomena may overlap, with the former amplifying the latter, but direct correlation is not always highlightable due to the anthropogenic character of water shortage and the variability of water supply sources. In the literature, many papers evaluate these two phenomena separately: in particular, the SPEI (Standardized Precipitation-Evapotranspiration Index) is widely used for detecting meteorological drought, while the link between water shortage and its uses is assessed through an index of water resource exploitation, WEI+ (Water Exploitation Index Plus), which is based on the calculation of an anthropogenic factor, withdrawals net of restitutions. Specifically, this study examines the SPEI and WEI+, respectively, calculated for the July–August–September quarter (SPEI3 sept) and during the low-flow period (WEI+EF low flow), according to the environmental flow constraint. These periods are considered seasonally overlapping in the study area of the Umbria region. The results analyzed by spatial method show the more critical areas, where SPEI3 sept and WEI+EF overlap their critical values, respectively, <−1.0 and >100%. The proposed methodological approach provides stakeholders in the water sector with essential information to adopt a proactive approach to drought phenomena. Full article
Show Figures

Figure 1

15 pages, 979 KiB  
Article
Yield and Sensorial and Nutritional Quality of Strawberry (Fragaria × ananassa Duch.) Fruits from Plants Grown Under Different Amounts of Irrigation in Soilless Cultivation
by Davide Raffaelli, Rohullah Qaderi, Luca Mazzoni, Bruno Mezzetti and Franco Capocasa
Plants 2025, 14(2), 286; https://doi.org/10.3390/plants14020286 - 20 Jan 2025
Cited by 1 | Viewed by 2121
Abstract
Water scarcity is an ecological issue affecting over 10% of Europe. It is intensified by rising temperatures, leading to greater evaporation and reduced precipitation. Agriculture has been confirmed as the sector accounting for the highest water consumption globally, and it faces significant challenges [...] Read more.
Water scarcity is an ecological issue affecting over 10% of Europe. It is intensified by rising temperatures, leading to greater evaporation and reduced precipitation. Agriculture has been confirmed as the sector accounting for the highest water consumption globally, and it faces significant challenges relating to drought, impacting crop yields and food security. Sustainable practices, precision irrigation, and the development of drought-resistant crops are essential for the mitigation of this threat. Effective, innovative solutions are crucial for optimizing water use for intensive crops such as cultivated strawberries (Fragaria × ananassa). This study emphasizes the importance of identifying the genotypes most resilient to low water availability. Experimental trials involving reduced irrigation levels were set up to identify genotypes with a greater capacity to increase fruit quality and maintain fruit yield. Reduced water conditions positively influenced strawberry fruit quality, exhibiting improved citric acid, soluble solids, and color brightness linked to decreased water use, while firmness remained stable. Notably, the total phenolic content was most affected by stress, indicating strong antioxidant responses. With these interesting variations in fruit quality came a different response in plant yield. Plants belonging to the Lauretta and AN15,07,53 cultivars maintained a 98% fruit yield when grown under WS1 conditions. While the yield for the Francesca cultivar increased by 10% under the stressed WS1 conditions in comparison to the control conditions, water stress in the WS2 treatment caused a strong reduction in yield in all three genotypes. Overall, the findings emphasize the importance of identifying for each new cultivar the most appropriate water regime in order to amplify the quality of the fruit, thus maintaining high production standards and saving water. Full article
Show Figures

Figure 1

24 pages, 4153 KiB  
Article
Mapping Burned Area in the Caatinga Biome: Employing Deep Learning Techniques
by Washington J. S. Franca Rocha, Rodrigo N. Vasconcelos, Soltan Galano Duverger, Diego P. Costa, Nerivaldo A. Santos, Rafael O. Franca Rocha, Mariana M. M. de Santana, Ane A. C. Alencar, Vera L. S. Arruda, Wallace Vieira da Silva, Jefferson Ferreira-Ferreira, Mariana Oliveira, Leonardo da Silva Barbosa and Carlos Leandro Cordeiro
Fire 2024, 7(12), 437; https://doi.org/10.3390/fire7120437 - 27 Nov 2024
Cited by 4 | Viewed by 2427
Abstract
The semi-arid Caatinga biome is particularly susceptible to fire dynamics. Periodic droughts amplify fire risks, while anthropogenic activities such as agriculture, pasture expansion, and land-clearing significantly contribute to the prevalence of fires. This research aims to evaluate the effectiveness of a fire detection [...] Read more.
The semi-arid Caatinga biome is particularly susceptible to fire dynamics. Periodic droughts amplify fire risks, while anthropogenic activities such as agriculture, pasture expansion, and land-clearing significantly contribute to the prevalence of fires. This research aims to evaluate the effectiveness of a fire detection model and analyze the spatial and temporal patterns of burned areas, providing essential insights for fire management and prevention strategies. Utilizing deep neural network (DNN) models, we mapped burned areas across the Caatinga biome from 1985 to 2023, based on Landsat-derived annual quality mosaics and minimum NBR values. Over the 38-year period, the model classified 10.9 Mha (12.7% of the Caatinga) as burned, with an average annual burned area of approximately 0.5 Mha (0.56%). The peak burned area reached 0.89 Mha in 2021. Fire scars varied significantly, ranging from 0.18 Mha in 1985 to substantial fluctuations in subsequent years. The most affected vegetation type was savanna, with 9.8 Mha burned, while forests experienced only 0.28 Mha of burning. October emerged as the month with the highest fire activity, accounting for 7266 hectares. These findings underscore the complex interplay of climatic and anthropogenic factors, highlighting the urgent need for effective fire management strategies. Full article
Show Figures

Figure 1

22 pages, 2042 KiB  
Review
Drought Dynamics in Sub-Saharan Africa: Impacts and Adaptation Strategies
by Pedro Lombe, Elsa Carvalho and Paulo Rosa-Santos
Sustainability 2024, 16(22), 9902; https://doi.org/10.3390/su16229902 - 13 Nov 2024
Cited by 13 | Viewed by 8697
Abstract
The escalation in both frequency and severity of drought events has significantly amplified the vulnerability of numerous countries, particularly in developing ones, imposing substantial economic, environmental, and social pressures. This article presents a systematic review of drought occurrences in Sub-Saharan Africa (SSA), examining [...] Read more.
The escalation in both frequency and severity of drought events has significantly amplified the vulnerability of numerous countries, particularly in developing ones, imposing substantial economic, environmental, and social pressures. This article presents a systematic review of drought occurrences in Sub-Saharan Africa (SSA), examining historical trends, current impacts, and projected future implications. Through this comprehensive assessment, a clear trend of intensifying drought phenomena emerges across SSA, leading to crop failures, drying of water sources, loss of pasture, food shortages, and an increase in food prices. This review also highlights the concerning potential for worsening conditions in certain regions, resulting in consequences such as migration, food insecurity, malnutrition, family disintegration, crop losses, and increased disease prevalence, notably HIV/AIDS. This study further reveals that current adaptation measures by governments and NGOs should be improved to effectively adapt to the diverse impacts of drought, and it contributes to a deeper understanding of drought dynamics in Sub-Saharan Africa and assesses its critical impacts on food security and social well-being. It also evaluates adaptation measures across different countries, highlighting their strengths and weaknesses and enabling quick identification of areas for improvement. Additionally, it informs resilience-building efforts in vulnerable communities. Full article
Show Figures

Figure 1

20 pages, 8615 KiB  
Article
Divergent Drying Mechanisms in Humid and Non-Humid Regions Across China
by Yao Feng and Xuejie Mou
Remote Sens. 2024, 16(22), 4193; https://doi.org/10.3390/rs16224193 - 11 Nov 2024
Cited by 2 | Viewed by 1257
Abstract
Understanding the drying mechanism is critical for formulating targeted mitigation strategies to combat drought impacts. This study aimed to reveal divergent drying mechanisms in humid and non-humid regions across China from the multidimensional perspectives of climate, vegetation, and energy balance. During the period [...] Read more.
Understanding the drying mechanism is critical for formulating targeted mitigation strategies to combat drought impacts. This study aimed to reveal divergent drying mechanisms in humid and non-humid regions across China from the multidimensional perspectives of climate, vegetation, and energy balance. During the period 1982–2012, the Standardized Precipitation Evapotranspiration Index (SPEI) revealed non-significant drying trends across China. Simultaneously, temperature and precipitation indicated a warming and drying pattern in the humid regions, contrasted with a warming and moistening pattern in the non-humid areas. The coupling effects of declined precipitation, increased vegetation coverage, and elevated temperature exacerbated dryness in the humid regions, while pronounced warming dominantly caused dryness in the non-humid regions. The inverse correlations between the actual evapotranspiration (ET) with precipitation and potential ET (PET) highlighted the principal role of moisture availability in divergent drying mechanisms over humid and non-humid regions. Random Forest models recognized precipitation and PET as the primary factors influencing SPEI in the humid and non-humid regions, respectively. Ongoing warming from 2013 to 2022 mitigated dryness in the humid regions due to the increased latent heat at the expense of sensible heat. Conversely, warming, amplified by the heightened sensible heat, exacerbated drought in the non-humid regions. By identifying the contrasting responses of humid and non-humid regions to warming and moisture availability, this study provides crucial insights for policymakers to mitigate drought impacts and enhance resilience in vulnerable non-humid areas. Full article
Show Figures

Figure 1

Back to TopTop