Machine Learning Analysis of Maize Seedling Traits Under Drought Stress
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Test Materials
2.2. Experimental Design
2.3. Item Determination
2.4. Data Processing
2.4.1. Data Standardization
2.4.2. Data Set Division
2.5. Model Selection and Evaluation Metrics
3. Results
3.1. Descriptive Statistical Analysis of Seedling Phenotypic Traits Under Drought Stress
3.2. Analysis of Variance (ANOVA) of Seedling Phenotypic Traits Under Drought Stress
3.3. Feature Importance Analysis of Phenotypic Traits at Seedling Stage
3.4. Decomposition of Feature Contributions for Seedling Phenotypic Traits
3.5. Comparison of Model Training and Testing Results
3.6. Performance Evaluation of Machine Learning Models for Seedling Phenotypic Traits
4. Discussion
4.1. Changes in Phenotypic Traits of Maize Seedlings Under Drought Stress
4.2. Analysis of the Importance and Contribution of Phenotypic Traits of Maize Seedlings Under Drought Stress
4.3. Performance of Machine Learning Models for Drought Tolerance Prediction in Maize Seedlings
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ML | Machine learning |
RF | Random Forest |
KNN | K-Nearest Neighbors |
XGBoost | Extreme Gradient Boosting |
ROC | Receiver Operating Characteristic |
AUC | Area Under the Curve |
CE | Cross-Entropy Loss |
ACC | Accuracy |
R2 | Coefficient of Determination |
RMSE | Root Mean Square Error |
Min | Minimum |
Max | Maximum |
Ave | Average |
CV | Coefficient of Variation |
SD | Mean Square |
HT | Height |
ST | Stem |
CC | Chlorophyll Content |
RN | Root Number |
AFW | Aboveground Fresh Weight |
UFW | Underground Fresh Weight |
ADW | Aboveground Dry Weight |
UDW | Underground Dry Weight |
Appendix A
No. | Variety | No. | Variety | No. | Variety |
---|---|---|---|---|---|
V1 | WoFeng188 | V27 | HuangJinnuo | V53 | HuangNian5 |
V2 | YouQi909 | V28 | BaiTiannuo7 | V54 | YuZhuxiangtiannuo |
V3 | XiMeng208 | V29 | FengNuo2 | V55 | XiMeng668 |
V4 | XiMeng3358 | V30 | CaiNuo999 | V56 | LinYu1339 |
V5 | HongXing528 | V31 | BaiNuo68 | V57 | HuXin338 |
V6 | JiXing218 | V32 | HuangNuo688 | V58 | HuiTiannuo1 |
V7 | JinFengjie | V33 | ZengYu157 | V59 | JingZinuo218 |
V8 | JiNongyu309 | V34 | XingNong1 | V60 | NongKeyu318 |
V9 | JinAi588 | V35 | FengTian14 | V61 | JingCaitiannuo |
V10 | NongFu99 | V36 | BaiNuo1 | V62 | XinNuoyu10 |
V11 | ZhongXing618 | V37 | CaiTiannuo118 | V63 | CaiTiannuo218 |
V12 | HongXing990 | V38 | ZaoBaitianuo1 | V64 | TianJianuo1 |
V13 | QiangZaocaitianno | V39 | CaiTiannuo856 | V65 | FengNongcaitiannuo |
V14 | NuoYu2 | V40 | YuShuai3000 | V66 | SanMeng9599 |
V15 | JingNuo2000 | V41 | HuangNuo518 | V67 | YuanYuan1 |
V16 | HeiBao | V42 | JingKenuo2000 | V68 | XuanHe8 |
V17 | TianNuo828 | V43 | YuZhu3000 | V69 | QunCe888 |
V18 | TianJianuo518 | V44 | XiangHe9918 | V70 | YuHe536 |
V19 | ZiXiangnuo | V45 | FuYu109 | V71 | XiMeng6 |
V20 | CaiTiannuo8 | V46 | XianYu335 | V72 | BiXiang809 |
V21 | PingAn1523 | V47 | GanTiannuo3 | V73 | HuXi712 |
V22 | HengYu369 | V48 | KeNuo167 | V74 | WoFeng9 |
V23 | XinNong008 | V49 | KeNuo2000 | V75 | XinYu66 |
V24 | WuGu568 | V50 | BaoNuo5 | V76 | XinYu24 |
V25 | TianXiangnuo9 | V51 | GanTiannuo2 | V77 | GanXin2818 |
V26 | BaiFumei66 | V52 | ZaoNuo8 | V78 | XinYu81 |
Index | Min | Max | Ave | SD | CV (%) | |||||
---|---|---|---|---|---|---|---|---|---|---|
CK | Drought | CK | Drought | CK | Drought | CK | Drought | CK | Drought | |
HT (cm) | 21.18 | 20.12 | 39.34 | 30.36 | 31.81 | 24.8 | 4.48 | 3.04 | 14.09 | 12.27 |
ST (mm) | 2.61 | 2 | 6.72 | 4.74 | 4.13 | 3.45 | 0.69 | 0.52 | 16.68 | 14.98 |
CC (SPAD) | 33.6 | 25.94 | 49.32 | 47.84 | 43.03 | 37.97 | 3.30 | 3.91 | 7.66 | 10.29 |
RN (per) | 12.2 | 7.4 | 27.4 | 24.2 | 20.59 | 16.1 | 3.50 | 3.31 | 17.01 | 20.53 |
AFW (g) | 12.04 | 1.71 | 29.82 | 19.57 | 21.16 | 12.24 | 4.60 | 4.13 | 21.74 | 33.76 |
UFW (g) | 1.34 | 0.33 | 7.58 | 7.07 | 4.15 | 2.71 | 1.44 | 1.29 | 34.84 | 47.65 |
ADW (g) | 1.86 | 0.61 | 7.94 | 7.75 | 4.8 | 2.97 | 1.50 | 1.55 | 31.31 | 52.13 |
UDW (g) | 0.39 | 0.18 | 2.71 | 2.32 | 1.39 | 0.8 | 0.57 | 0.40 | 40.58 | 49.92 |
References
- Zhu, J.K.; Ni, J.P. Abiotic Stress Signaling and Responses in Plant. China Rice. 2016, 22, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Cao, Y.; Shi, Y.; Qin, F.; Jiang, C.; Yang, S. Genetic and molecular exploration of maize environmental stress resilience: Toward sustainable agriculture. Mol. Plant 2023, 16, 1496–1517. [Google Scholar] [CrossRef]
- Wang, M.Q.; Mi, N.; Wang, J.; Zhang, Y.S.; Ji, R.P.; Chen, N.N.; Liu, X.X.; Han, Y.; Li, W.Y.P.; Zhang, J.Y. Simulation of Canopy Silking Dynamic and Kernel Number of Spring Maize Under Drought Stress. Sci. Agric. Sin. 2022, 55, 3530–3542. [Google Scholar]
- Lan, Q.; He, G.; Wang, D.; Li, S.; Jiang, Y.; Guan, H.; Li, Y.; Liu, X.; Wang, T.; Li, Y.; et al. Overexpression of ZmEULD1b enhances maize seminal root elongation and drought tolerance. Plant Sci. 2025, 352, 112355. [Google Scholar] [CrossRef] [PubMed]
- Gan, Y.W.; Zha, X.B. Effects of Drought Stress on Crop Growth Mechanism. Tibet. Agric. Sci. Technol. 2020, 42, 31–33. [Google Scholar]
- Kong, J.L.; Zeng, Y.; Li, S.C.; Cao, Z.F.; Wu, Y.T.; Li, Z.M. Effects of Drought Stress on Growth, Physiologica Indicators and Grain Quality of Maize. J. Maize Sci. 2023, 31, 91–98. [Google Scholar]
- Pipatsitee, P.; Theerawitaya, C.; Tiasarum, R.; Samphumphuang, T.; Singh, H.P.; Datta, A.; Cha-Um, S. Physio-morphological traits and osmoregulation strategies of hybrid maize (Zea mays) at the seedling stage in response to water-deficit stress. Protoplasma 2022, 259, 869–883. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.Y.; Zhao, Y.F.; Wang, Y.Q.; Zhu, L.Y. Drought Resistance Evaluation of Maize Hybrids at Seedling Stagebased on Physiological and Biochemical Indexes. Seed 2019, 38, 31–33+38. [Google Scholar]
- Lobet, G.; Couvreur, V.; Meunier, F.; Javaux, M.; Draye, X. Plant water uptake in drying soils. Plant Physiol. 2014, 164, 1619–1627. [Google Scholar] [CrossRef]
- Xiao, W.X.; Wang, Y.B.; Ye, Y.S.; Sui, Y.H.; Wang, D.W.; Zhang, Y.; Xu, L.; Zhang, S.P. Response of Canopy Photosynthesis and Yield of Corn Inbred Lines with Different Drought Tolerance to Drought Stress at Reproductive Growth Stage. J. Maize Sci. 2022, 30, 47–53. [Google Scholar]
- Liu, H.T.; Yuan, Q.S.; Wei, C.; Jiao, Q.J.; Xu, Z.Y.; Zhang, J.J.; Li, G.Z.; Zhang, X.H.; Zheng, B.B.; Jiang, Y. Effects of exogenous chitosan on maize root architecture classificationand physiological parameters under drought stress. J. Henan Agric. Univ. 2023, 57, 646–656. [Google Scholar]
- Cui, Y.; Tang, H.Y.; Zhou, Y.L.; Jin, J.L.; Jiang, S.M. Accumulative and adaptive responses of maize transpiration, biomass, and yield under continuous drought stress. Front. Sustain. Food Syst. 2024, 8, 1444246. [Google Scholar] [CrossRef]
- Barnabas, B.; Jager, K.; Feher, A. The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ. 2008, 31, 11–38. [Google Scholar] [CrossRef]
- Sinha, R.; Fritschi, F.B.; Zandalinas, S.I.; Mittler, R. The impact of stress combination on reproductive processes in crops. Plant Sci. 2021, 311, 111007. [Google Scholar] [CrossRef]
- Cui, R.; Wang, T.Y.; Wang, C.Y.; Li, J.X.; Zhang, X.Y.; Liu, S.X. Effects of Drought Stress on Growth Characters and Yield of Different Maize Varieties. Acta Agric. Boreali-Sin. 2021, 36, 94–100. [Google Scholar]
- Rahdari, P.; Hoseini, S.M. Drought stress: A review. Int. J. Agron. Plant Prod. 2012, 3, 443–446. [Google Scholar]
- Ali, T.; Rehman, S.U.; Ali, S.; Mahmood, K.; Obregon, S.A.; Iglesias, R.C.; Khurshaid, T.; Ashraf, I. Smart agriculture: Utilizing machine learning and deep learning for drought stress identification in crops. Sci. Rep. 2024, 14, 30062. [Google Scholar] [CrossRef] [PubMed]
- Shahhosseini, M.; Hu, G.; Archontoulis, S.V. Forecasting Corn Yield With Machine Learning Ensembles. Front. Plant Sci. 2020, 11, 1120. [Google Scholar] [CrossRef]
- Yin, L.; Zhang, H.; Zhou, X.; Yuan, X.; Zhao, S.; Li, X.; Liu, X. KAML: Improving genomic prediction accuracy of complex traits using machine learning determined parameters. Genome Biol. 2020, 21, 146. [Google Scholar] [CrossRef]
- Wu, C.; Luo, J.; Xiao, Y. Multi-omics assists genomic prediction of maize yield with machine learning approaches. Mol. Breed. 2024, 44, 14. [Google Scholar] [CrossRef]
- Shahhosseini, M.; Hu, G.; Huber, I.; Archontoulis, S.V. Coupling machine learning and crop modeling improves crop yield prediction in the US Corn Belt. Sci. Rep. 2021, 11, 1606. [Google Scholar] [CrossRef]
- Pires, M.V.; de Castro, E.M.; de Freitas, B.S.M.; Souza Lira, J.M.; Magalhães, P.C.; Pereira, M.P. Yield-related phenotypic traits of drought resistant maize genotypes. Environ. Exp. Bot. 2020, 171, 103962. [Google Scholar] [CrossRef]
- Gao, C.; Wu, P.; Wang, Y.; Wen, P.; Guan, X.; Wang, T. Drought and rewatering practices improve adaptability of seedling maize to drought stress by a super-compensate effect. Heliyon 2024, 10, e39602. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Jin, Y.; Tian, X.; Ma, Z.; Liu, S.; Su, Z. YOLOv5-T: A precise real-time detection method for maize tassels based on UAV low altitude remote sensing images. Comput. Electron. Agric. 2024, 221, 108991. [Google Scholar] [CrossRef]
- He, W.; Gage, J.L.; Rellán-Álvarez, R.; Xiang, L. Swin-Roleaf: A new method for characterizing leaf azimuth angle in large-scale maize plants. Comput. Electron. Agric. 2024, 224, 109120. [Google Scholar] [CrossRef]
- Chipindu, L.; Mupangwa, W.; Mtsilizah, J.; Nyagumbo, I.; Zaman-Allah, M. Maize Kernel Abortion Recognition and Classification Using Binary Classification Machine Learning Algorithms and Deep Convolutional Neural Networks. AI 2020, 1, 361–375. [Google Scholar] [CrossRef]
- Yu, Y.; Fan, C.; Li, Q.; Wu, Q.; Cheng, Y.; Zhou, X.; He, T.; Li, H. Research on Mass Prediction of Maize Kernel Based on Machine Vision and Machine Learning Algorithm. Processes 2025, 13, 346. [Google Scholar] [CrossRef]
- Song, X.; Cui, T.; Zhang, D.; Yang, L.; He, X.; Zhang, K. Reconstruction and spatial distribution analysis of maize seedlings based on multiple clustering of point clouds. Comput. Electron. Agric. 2025, 235, 110196. [Google Scholar] [CrossRef]
- Li, P.; Yang, H.Y.; Luan, T. Classification of Maize Grain Varieties and Embryo Surface Recognition Based on Deep Learning. J. Maize Sci. 2025, 33, 61–68. [Google Scholar]
- Zhang, D.L.; Chai, Q.; Yin, W.; Hu, F.L.; Fan, Z.L. Response of maize agronomic traits, yield, water and fertilizeruse efficieney to intercropping green manure underreduced irrigation levels in arid irrigation areas. Agric. Res. Arid Areas 2024, 42, 85–96. [Google Scholar]
- Wan, W.H.; Bai, M.X.; Lei, G.X.; Yang, X.W.; Ji, X.Z.; Zhuang, Z.L.; Zhang, Y.F.; Peng, Y.L. Mitigating effects of exogenous NO and SA on salt stress in maize seedlings. J. GanSu Agric. Univ. 2024, 59, 108–116+128. [Google Scholar]
- Yang, Z.Y.; Liu, J.L.; Lv, W.; Ren, H.W.; Dai, J.; Cui, Z. Effects of salt stress on growth physiology of different maize cultivars at seedling stage. Jiangsu Agric. Sci. 2024, 52, 127–133. [Google Scholar]
- Zhang, H.H.; Wei, C.; Liu, H.T.; Zhang, J.J.; Liu, F.; Zhao, Y.; Zhang, X.H.; Li, G.Z.; Jiang, Y. Effects of Exogenous Zinc on Growth and Root Architecture Classification of Maize Seedlings Under Cadmium Stress. Environ. Sci. Technol. 2024, 45, 1128–1140. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Speiser, J.L.; Miller, M.E.; Tooze, J.; Ip, E. A Comparison of Random Forest Variable Selection Methods for Classification Prediction Modeling. Expert Syst. Appl. 2019, 134, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Ganapathysubramanian, B.; Singh, A.K.; Sarkar, S. Machine Learning for High-Throughput Stress Phenotyping in Plants. Trends Plant Sci. 2016, 21, 110–124. [Google Scholar] [CrossRef]
- Sotiropoulou, K.F.; Vavatsikos, A.P.; Botsaris, P.N. A hybrid AHP-PROMETHEE II onshore wind farms multicriteria suitability analysis using kNN and SVM regression models in northeastern Greece. Renew. Energy 2024, 221, 119795. [Google Scholar] [CrossRef]
- Khaki, S.; Wang, L. Crop Yield Prediction Using Deep Neural Networks. Front. Plant Sci. 2019, 10, 621. [Google Scholar] [CrossRef]
- Wang, Y.; Tong, L.; Liu, H.; Li, B.; Zhang, R. Integrated metabolome and transcriptome analysis of maize roots response to different degrees of drought stress. BMC Plant Biol. 2025, 25, 505. [Google Scholar] [CrossRef]
- He, Y.; Gu, X.T.; Feng, L.Q.; Duan, H.J.; Tao, Y.S. Screening and Evaluation of Drought Resistance Index for Maize Hybrids During Seedling and Germination Stages. J. Agric. Sci. Technol. 2024, 26, 30–40. [Google Scholar]
- Wen, J.R.; Ke, Y.P.; Yu, X.J.; Ren, S.X.; Qu, B.W.H.; Xia, W.; Shi, H.C. Evaluation of Drought Resistance of Maize Hybrid Combination at Germination and Seedling Stages. J. Maize Sci. 2021, 29, 8–16. [Google Scholar]
- Baker, N.R. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 2008, 59, 89–113. [Google Scholar] [CrossRef]
- Vadez, V.; Grondin, A.; Chenu, K.; Henry, A.; Laplaze, L.; Millet, E.J.; Carminati, A. Crop traits and production under drought. Nat. Rev. Earth Environ. 2024, 5, 211–225. [Google Scholar] [CrossRef]
- Wang, X.M.; Cao, L.R.; Lu, X.M. Effects of Abscisic Acid on Growth and Physiological and Biochemical Characteristics of Maize Seedlings under Drought Stress. Mol. Plant Breed. 2021, 19, 7193–7201. [Google Scholar]
- Wang, Q.L.; Jin, K.P.; Liu, Y.Z.; Li, W.X.; Cao, J.J.; Li, D.; Li, X.X. Identification Index and Comprehensive Evaluation of Drought Resistance in Maize Seedling Stage. J. Shanxi Agric. Scienoes 2019, 47, 319–322+365. [Google Scholar]
- Liu, S.; Qin, F. Genetic dissection of maize drought tolerance for trait improvement. Mol. Breed. 2021, 41, 8. [Google Scholar] [CrossRef]
- Eziz, A.; Yan, Z.; Tian, D.; Han, W.; Tang, Z.; Fang, J. Drought effect on plant biomass allocation: A meta-analysis. Ecol. Evol. 2017, 7, 11002–11010. [Google Scholar] [CrossRef]
- Shahzad, A.; Gul, H.; Ahsan, M.; Wang, D.; Fahad, S. Comparative Genetic Evaluation of Maize Inbred Lines at Seedling and Maturity Stages Under Drought Stress. J. Plant Growth Regul. 2022, 42, 989–1005. [Google Scholar] [CrossRef]
- Rida, S.; Maafi, O.; Lopez-Malvar, A.; Revilla, P.; Riache, M.; Djemel, A. Genetics of Germination and Seedling Traits under Drought Stress in a MAGIC Population of Maize. Plants 2021, 10, 1786. [Google Scholar] [CrossRef]
- Cheng, M.; Sun, C.; Nie, C.; Liu, S.; Yu, X.; Bai, Y.; Liu, Y.; Meng, L.; Jia, X.; Liu, Y.; et al. Evaluation of UAV-based drought indices for crop water conditions monitoring: A case study of summer maize. Agric. Water Manag. 2023, 287, 108442. [Google Scholar] [CrossRef]
- Attri, I.; Awasthi, L.K.; Sharma, T.P. Machine learning in agriculture: A review of crop management applications. Multimed. Tools Appl. 2023, 83, 12875–12915. [Google Scholar] [CrossRef]
Source of Variation | Index | Sum of Squares | Mean Square | F Value |
---|---|---|---|---|
Variety | HT | 7950.86 | 103.26 | 11.40 ** |
ST | 232.28 | 3.02 | 4.06 ** | |
CC | 6642.84 | 86.27 | 5.57 ** | |
RN | 7348.14 | 95.43 | 5.40 ** | |
AFW | 10,801.85 | 140.28 | 15.51 ** | |
UFW | 1255.07 | 16.30 | 20.88 ** | |
ADW | 1474.50 | 19.15 | 18.81 ** | |
UDW | 151.63 | 1.97 | 7.70 ** | |
Drought | HT | 9577.41 | 9577.41 | 1056.99 ** |
ST | 89.80 | 89.80 | 120.96 ** | |
CC | 4995.23 | 4995.23 | 322.47 ** | |
RN | 3935.26 | 3935.26 | 222.72 ** | |
AFW | 15,514.73 | 15,514.73 | 1715.35 ** | |
UFW | 403.69 | 403.69 | 517.05 ** | |
ADW | 651.10 | 651.10 | 639.59 ** | |
UDW | 68.26 | 68.26 | 267.04 ** | |
Variety * Drought | HT | 3356.49 | 43.59 | 4.81 ** |
ST | 52.88 | 0.69 | 0.93 | |
CC | 3416.26 | 44.37 | 2.86 ** | |
RN | 1581.54 | 20.54 | 1.16 | |
AFW | 3911.40 | 50.80 | 5.62 ** | |
UFW | 189.91 | 2.47 | 3.16 ** | |
ADW | 319.69 | 4.15 | 4.08 ** | |
UDW | 33.41 | 0.43 | 1.70 ** | |
Error | HT | 5654.07 | 9.06 | |
ST | 463.26 | 0.74 | ||
CC | 9665.98 | 15.49 | ||
RN | 11,025.60 | 17.67 | ||
AFW | 5643.86 | 9.04 | ||
UFW | 487.19 | 0.78 | ||
ADW | 635.22 | 1.02 | ||
UDW | 159.50 | 0.26 |
Model | CE | ACC | AUC | |||
---|---|---|---|---|---|---|
Train | Test | Train | Test | Train | Test | |
RF | 0.090 | 0.098 | 0.910 | 0.902 | 0.963 | 0.955 |
KNN | 0.090 | 0.098 | 0.910 | 0.902 | 0.975 | 0.976 |
XGBoost | 0.048 | 0.034 | 0.952 | 0.966 | 0.994 | 0.993 |
Model | R2 | RMSE | ||
---|---|---|---|---|
Train | Test | Train | Test | |
RF | 0.641 | 0.606 | 0.300 | 0.314 |
KNN | 0.641 | 0.606 | 0.300 | 0.314 |
XGBoost | 0.809 | 0.863 | 0.218 | 0.185 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Zhang, F.; Du, W.; Hu, M.; Hao, Y.; Ding, S.; Tian, H.; Zhang, D. Machine Learning Analysis of Maize Seedling Traits Under Drought Stress. Biology 2025, 14, 787. https://doi.org/10.3390/biology14070787
Zhang L, Zhang F, Du W, Hu M, Hao Y, Ding S, Tian H, Zhang D. Machine Learning Analysis of Maize Seedling Traits Under Drought Stress. Biology. 2025; 14(7):787. https://doi.org/10.3390/biology14070787
Chicago/Turabian StyleZhang, Lei, Fulai Zhang, Wentao Du, Mengting Hu, Ying Hao, Shuqi Ding, Huijuan Tian, and Dan Zhang. 2025. "Machine Learning Analysis of Maize Seedling Traits Under Drought Stress" Biology 14, no. 7: 787. https://doi.org/10.3390/biology14070787
APA StyleZhang, L., Zhang, F., Du, W., Hu, M., Hao, Y., Ding, S., Tian, H., & Zhang, D. (2025). Machine Learning Analysis of Maize Seedling Traits Under Drought Stress. Biology, 14(7), 787. https://doi.org/10.3390/biology14070787