Assessing the Risks of Extreme Droughts to Amphibian Populations in the Northwestern Mediterranean
Abstract
1. Introduction
2. General Susceptibility of the Amphibian Community to Drought
3. Potential Effects of Extreme Droughts
3.1. Lakes and Ponds
3.2. Rivers, Streams, and Brooks
3.3. Terrestrial Habitat
4. Emerging Diseases and Drought
4.1. Batrachochytrium Dendrobatidis (Bd)
4.2. Batrachochytrium Salamandrivorans Bsal
4.3. Ranaviruses
5. Mitigation
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Bd | Batrachochytrium dendrobatidis |
Bsal | Batrachochytrium salamandrivorans |
References
- Thomas, C.; Cameron, A.; Green, R.; Boulangeat, I.; Lafourcade, B.; Araujo, M.B. Extinction risk from climate change. Nature 2004, 427, 145–148. [Google Scholar] [CrossRef] [PubMed]
- Parmesan, C. Ecological and Evolutionary Responses to Recent Climate Change. Annu. Rev. Ecol. Evol. Syst. 2006, 37, 637–669. [Google Scholar] [CrossRef]
- Thuiller, W.; Lavergne, S.; Roquet, C.; Boulangeat, I.; Lafourcade, B.; Araujo, M.B. Consequences of climate change on the tree of life in Europe. Nature 2011, 470, 531–534. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Climate Change 2023: Synthesis Report. In Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; 184p. [Google Scholar] [CrossRef]
- Pörtner, H.O.; Scholes, R.J.; Agard, J.; Archer, E.; Arneth, A.; Bai, X.; Barnes, D.; Burrows, M.; Chan, L.; Cheung, W.L.; et al. IPBES-IPCC Co-Sponsored Workshop Report on Biodiversity and Climate Change; IPBES: Bonn, Germany; IPCC: Geneva, Switzerland, 2021. [Google Scholar] [CrossRef]
- Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Chang. 2013, 3, 52–58. [Google Scholar] [CrossRef]
- Chen, D.; Norris, J.; Thackeray, C.; Hall, A. Increasing precipitation whiplash in climate change hotspots. Environ. Res. Lett. 2022, 17, 124011. [Google Scholar] [CrossRef]
- Jézéquel, A.; Faranda, D.; Drobinski, P.; Lionello, P. Extreme Event Attribution in the Mediterranean. Int. J. Climatol. 2025, 45, e8799. [Google Scholar] [CrossRef]
- Swain, D.L.; Prein, A.F.; Abatzoglou, J.T.; Albano, C.M.; Brunner, M.; Diffenbaugh, N.S.; Singh, D.; Skinner, C.B.; Touma, D. Hydroclimate volatility on a warming Earth. Nat. Rev. Earth Environ. 2025, 6, 35–50. [Google Scholar] [CrossRef]
- Moss, W.E.; McDevitt-Galles, T.; Muths, E.; Bobzien, S.; Purificato, J.; Johnson, P. Resilience of native amphibian communities following catastrophic drought: Evidence from a decade of regional-scale monitoring. Biol. Conserv. 2021, 263, 109352. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, T.; Wu, P. Anthropogenic amplification of precipitation variability over the past century. Science 2024, 385, 427–432. [Google Scholar] [CrossRef]
- Lionello, P.; Scarascia, L. The Relation of Climate Extremes With Global Warming in the Mediterranean Region and Its North Versus South Contrast. Reg. Environ. Chang. 2020, 20, 31. [Google Scholar] [CrossRef]
- Tramblay, Y.; Koutroulis, A.; Samaniego, L.; Vicente-Serrano, S.M.; Volaire, F.; Boone, A.; Le Page, M.; Llasat, M.C.; Arbelgel, C.; Burak, S.; et al. Challenges for drought assessment in the Mediterranean region under future climate scenarios. Earth-Sci. Rev. 2020, 210, 103348. [Google Scholar] [CrossRef]
- Wen, L.; Saintilan, N.; Reid, J.R.; Colloff, M.J. Changes in distribution of waterbirds following prolonged drought reflect habitat availability in coastal and inland regions. Ecol. Evol. 2016, 6, 6672–6689. [Google Scholar] [CrossRef]
- Maron, M.; McAlpine, C.A.; Watson, J.E.; Maxwell, S.; Barnard, P. Climate-induced resource bottlenecks exacerbate species vulnerability: A review. Divers. Distrib. 2015, 21, 731–743. [Google Scholar] [CrossRef]
- Canarini, A.; Schmidt, H.; Fuchslueger, L.; Martin, V.; Herbold, C.V.; Zezula, D.; Gundler, P.; Hasibeder, R.; Jecmenica, M.; Bahn, M.; et al. Ecological memory of recurrent drought modifies soil processes via changes in soil microbial community. Nat. Commun. 2021, 12, 5308. [Google Scholar] [CrossRef] [PubMed]
- Steel, Z.L.; Jones, G.M.; Collins, B.M.; Green, R.; Koltunov, A.; Purcell, K.L.; Sawyer, S.C.; Slaton, M.R.; Stephens, S.L.; Stine, P.; et al. Mega-disturbances cause rapid decline of mature conifer forest habitat in California. Ecol. Appl. 2023, 33, e2763. [Google Scholar] [CrossRef] [PubMed]
- Everard, K.; Seabloom, E.W.; Harpole, W.S.; De Mazancourt, C. Plant water use affects competition for nitrogen: Why drought favors invasive species in California. Am. Nat. 2010, 175, 85–97. [Google Scholar] [CrossRef]
- Cavin, L.; Mountford, E.P.; Peterken, G.F.; Jump, A.S. Extreme drought alters competitive dominance within and between tree species in a mixed forest stand. Funct. Ecol. 2013, 27, 1424–1435. [Google Scholar] [CrossRef]
- Ledger, M.E.; Brown, L.E.; Edwards, F.K.; Milner, A.M.; Woodward, G. Drought alters the structure and functioning of complex food webs. Nat. Clim. Chang. 2013, 3, 223–227. [Google Scholar] [CrossRef]
- Prugh, L.R.; Deguines, N.; Grinath, J.B.; Suding, K.N.; Bean, W.T.; Stafford, R.; Brashare, J.S. Ecological winners and losers of extreme drought in California. Nat. Clim Chang. 2018, 8, 819–824. [Google Scholar] [CrossRef]
- Burke, E.J.; Brown, S.J.; Christidis, N. Modeling the recent evolution of global drought and projections for the twenty-first century with the Hadley Centre climate model. J. Hydrometeorol. 2006, 7, 1113–1125. [Google Scholar] [CrossRef]
- Van den Bosch, M.; Costanza, J.K.; Peek, R.A.; Mola, J.M.; Steel, Z.L. Climate change scenarios forecast increased drought exposure for terrestrial vertebrates in the contiguous United States. Commun. Earth Environ. 2024, 5, 708. [Google Scholar] [CrossRef]
- Iglesias, A.; Garrote, L.; Flores, F.; Moneo, M. Challenges to manage the risk of water scarcity and climate change in the Mediterranean. Water Resour. Manag. 2007, 21, 775–788. [Google Scholar] [CrossRef]
- García-Ruiz, J.M.; López-Moreno, J.I.; Vicente-Serrano, S.M.; Lasanta-Martínez, T.; Beguería, S. Mediterranean water resources in a global change scenario. Earth Sci. Rev. 2011, 105, 121–139. [Google Scholar] [CrossRef]
- Eekhout, J.P.C.; Nunes, J.P.; Tramblay, Y.; de Vente, J. Severe Impacts on Water Resources Projected for the Mediterranean Basin. WIREs Water 2025, 12, e70012. [Google Scholar] [CrossRef]
- Gimeno-Sotelo, L.; Sorí, R.; Nieto, R.; Vicente-Serrano, S.M.; Gimeno, L. Unravelling the origin of the atmospheric moisture deficit that leads to droughts. Nat. Water 2024, 2, 242–253. [Google Scholar] [CrossRef]
- Barrera-Escoda, A.; Gonçalves, M.; Guerreiro, D.; Cunillera, J.; Baldasano, J.M. Projections of temperature and precipitation extremes in the North Western Mediterranean Basin by dynamical downscaling of climate scenarios at high resolution (1971–2050). Clim. Chang. 2014, 122, 567–582. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Tramblay, Y.; Reig, F.; González-Hidalgo, J.C.; Beguería, S.; Brunetti, M.; Kalin, K.C.; Patalen, L.; Kržič, A.; Lionello, P.; et al. High temporal variability not trend dominates Mediterranean precipitation. Nature 2025, 639, 658–666. [Google Scholar] [CrossRef]
- Drobinski, P.; Azzopardi, B.; Ben Janet Allal, H.; Bouchet, V.; Civel, E.; Creti, A.; Duic, N.; Fylaktos, N.; Mutale, J.; Pariente-David, S.; et al. Energy Transition in the Mediterranean. In Climate and Environmental Change in the Mediterranean Basin—Current Situation and Risks for the Future. First Mediterranean Assessment Report; Cramer, W., Guiot, J., Marini, K., Eds.; Union for the Mediterranean, Plan Bleu, UNEP/MAP: Marseille, France, 2020; pp. 265–322. [Google Scholar] [CrossRef]
- Thivet, G.; Fernández, S. Water Demand Management: The Mediterranean Experience; Technical Focus Paper. Global Partnership Group; Plan Bleu: Marseille, France, 2020; 74p, Available online: https://planbleu.org/en/publications/water-demand-management-the-mediterranean-experience/ (accessed on 15 June 2025).
- Blinda, M.; Margat, J. Ressources et Demandes en eau en Région Méditerranéenne. Situations et Perspectives. In Proceedings of Congrès Mondial de L’eau; Plan Bleu: Marserille, France, 2008; 14p, Available online: https://iwra.org/proceedings/congress/resource/abs326_article.pdf (accessed on 5 August 2025).
- Toth, E.; Neri, M. Tourism Water Demand Modelling in Mediterranean Cities Under Current and Future Climate; EGU General Assembly: Vienna, Austria, 2024; p. EGU24-18575. [Google Scholar] [CrossRef]
- Howard, B. California Drought Spurs Groundwater Drilling Boom in Central Valley. National Geographic. 2014. Available online: https://www.nationalgeographic.com/culture/article/140815-central-valley-california-drilling-boom-groundwater-drought-wells (accessed on 16 August 2014).
- BAIC. Butlletí Anual d’Indicadors Climàtics (BAIC 2023). Servei Meteorològic de Catalunya 2023, Report. 127p. Available online: https://www.meteo.cat/wpweb/climatologia/butlletins-i-episodis-meteorologics/butlleti-anual-dindicadors-climatics/ (accessed on 15 June 2025).
- Blanqué, M.; de Cáceres, M.; García-Valdés, M.; Martínez-Vilalta, J.; Roces-Díaz, J.V.; Vayreda, J. FOREStime. Canvis dels Serveis Ecosistèmics dels Boscos de Catalunya al Llarg dels Darrers 25 Anys (Període 1990–2014). Oficina Catalana del Canvi Climàtic-CREAF-CTFC. Report. 35p. Available online: https://canviclimatic.gencat.cat/web/.content/02_OFICINA/publicacions/publicacions_de_canvi_climatic/Estudis_i_docs_adaptacio/FORESTIME.PDF (accessed on 4 June 2025).
- Luedtke, J.A.; Chanson, J.; Neam, K.; Hobin, L.; Maciel, A.O.; Catenazzi, A.; Borzee, A.; Hamidy, A.; Aowphol, A.; Jean, A.; et al. Ongoing declines for the world’s amphibians in the face of emerging threats. Nature 2023, 622, 308–314. [Google Scholar] [CrossRef]
- Richter-Boix, A.; Llorente, G.A.; Montori, A. Effects of phenotypic plasticity on post-metamorphic traits during pre-metamorphic stages in the anuran Pelodytes punctatus. Evol. Ecol. Res. 2006, 8, 309–320. Available online: https://www.evolutionary-ecology.com/issues/v08n02/iiar1861.pdf (accessed on 20 April 2025).
- Díaz-Paniagua, C.; Florencio, M.; de Felipe, M.; Ramírez-Soto, M.; Román, I.; Arribas, R. Groundwater decline has negatively affected the well-preserved amphibian community of Doñana National Park (SW Spain). Amphib.-Reptil. 2024, 45, 205–217. [Google Scholar] [CrossRef]
- Giacometti, D.; Tattersall, G.J. Putting the energetic-savings hypothesis underground: Fossoriality does not affect metabolic rates in amphibians. Evol. Ecol. 2023, 37, 761–777. [Google Scholar] [CrossRef]
- Hillman, S.S.; Withers, P.C.; Drews, R.C.; Hillyard, S.D. Ecological and Environmental Physiology of Amphibians; Oxford University Press: Oxford, UK, 2008. [Google Scholar] [CrossRef]
- Hillman, J.C.; Hillman, A.K.K. Mortality of wildlife in Nairobi National Park, during the drought of 1973–1974. Afr. J. Ecol. 1977, 15, 1–18. [Google Scholar] [CrossRef]
- McMenamin, S.K.; Hadly, E.A.; Wright, C.K. Climatic change and wetland desiccation cause amphibian decline in Yellowstone National Park. Proc. Natl. Acad. Sci. USA 2008, 105, 16988–16993. [Google Scholar] [CrossRef] [PubMed]
- Batllori, E.; Lloret, F.; Aakala, T.; Zeemann, B. Forest and woodland replacement patterns following drought-related mortality. Proc. Natl. Acad. Sci. USA 2020, 117, 29720–29729. [Google Scholar] [CrossRef] [PubMed]
- Aguirre-Gutiérrez, J.; Malhi, Y.; Lewis, S.L.; Fauset, S.; Adu-Bredu, S.; Affum-Baffoe, K.; Baker, T.R.; Gvozdevaite, A.; Hubau, W.; Moore, S.; et al. Long-term droughts may drive drier tropical forests towards increased functional, taxonomic and phylogenetic homogeneity. Nat. Commun. 2020, 11, 3346. [Google Scholar] [CrossRef]
- Walls, S.C.; Barichivich, W.J.; Brown, M.E. Drought, Deluge and Declines: The Impact of Precipitation Extremes on Amphibians in a Changing Climate. Biology 2013, 2, 399–418. [Google Scholar] [CrossRef]
- Twomey, E.; Sylvester, F.; Jourdan, J.; Hollert, H.; Schulte, L.M. Quantifying exposure of amphibian species to heat waves, cold spells, and droughts. Conserv. Biol. 2025, e70074. [Google Scholar] [CrossRef]
- Wu, N.C.; Bovo, R.P.; Enriquez-Urzelai, U.; Clusella-Trullàs, S.; Kearney, M.R.; Navas, C.A.; Kong, J.D. Global exposure risk of frogs to increasing environmental dryness. Nat. Clim. Chang. 2024, 14, 1314–1322. [Google Scholar] [CrossRef]
- Parmesan, C.; Root, T.L.; Willig, M.R. Impacts of extreme weather and climate on terrestrial biota. Bull. Am. Meteorol. Soc. 2000, 81, 443–450. [Google Scholar] [CrossRef]
- Fink, A.H.; Brücher, T.; Krüger, A.; Leckebusch, G.C.; Pinto, J.G.; Ulbrich, U. The 2003 European summer heatwaves and drought–synoptic diagnosis and impacts. Weather 2004, 59, 209–216. [Google Scholar] [CrossRef]
- Vautard, R.; Yiou, P.; D’Andrea, F.; de Noblet, N.; Viovy, N.; Cassou, C.; Polcher, J.; Ciais, P.; Kageyama, M.; Fan, Y. Summertime European heat and drought waves induced by wintertime Mediterranean rainfall deficit. Geophys. Res. Lett. 2007, 34, 1–5. [Google Scholar] [CrossRef]
- Pottier, P.; Kearney, M.R.; Wu, N.C.; Gunderson, A.R.; Rej, J.E.; Rivera-Villanueva, A.N.; Pollo, P.; Burke, S.; Drobniak, S.M.; Nakagawa, S. Vulnerability of amphibians to global warming. Nature 2025, 639, 954–961. [Google Scholar] [CrossRef] [PubMed]
- Alexander, L.V. Global observed long-term changes in temperature and precipitation extremes: A review of progress and limitations in IPCC assessments and beyond. Weather. Clim. Extrem. 2016, 11, 4–16. [Google Scholar] [CrossRef]
- Beck, H.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Lutsko, N.J.; Dufour, A.; Zeng, Z.; Jiang, X.; Van Dijk, A.I.J.M.; Miralles, D.G. High-resolution (1 km) Köppen-Geiger maps for 1901–2099 based on constrained CMIP6 projections. Sci. Data 2023, 10, 724. [Google Scholar] [CrossRef]
- Peñuelas, J.; Boada, M. A global change-induced biome shift in the Montseny mountains (NE Spain). Glob. Change Biol. 2003, 9, 131–140. [Google Scholar] [CrossRef]
- Enriquez-Urzelai, U.; Bernardo, N.; Moreno-Rueda, G.; Montori, A.; Llorente, G.A. Are amphibians tracking their climatic niches in response to climate warming? A test with Iberian amphibians. Clim. Chang. 2019, 154, 289–301. [Google Scholar] [CrossRef]
- Díaz-Paniagua, C. Variability in timing of larval season in an amphibian community in SW Spain. Ecography 1992, 15, 267–272. Available online: https://www.jstor.org/stable/3683156 (accessed on 21 November 2024.). [CrossRef]
- Díaz-Paniagua, C.; Gómez-Rodríguez, C.; Portheault, A.; Florencio, M. Why a system of heterogeneous temporary ponds favours amphibian communities? Amphibians in Doñana National Park, an example of preserved breeding habitats. In International Conference On Mediterranean Temporary Ponds, Maó Menorca, Spain, 5–8 May 2009; Fraga, I., Arguimbau, P., Eds.; Consell Insular Menorca, Recerca: Barcelona, Spain, 2009; pp. 245–254. Available online: https://www.menorcabiosfera.org/documents/documents/2034doc2.pdf (accessed on 20 March 2025).
- Richter-Boix, A.; Llorente, G.A.; Montori, A. A comparative study of predator-induced phenotype in tadpoles across a pond permanency gradient. Hydrobiologia 2007, 583, 43–56. [Google Scholar] [CrossRef]
- Scheele, B.C.; Driscoll, D.A.; Fischer, J.; Hunter, D.A. Decline of an endangered amphibian during an extreme climatic event. Ecosphere 2012, 3, 101. [Google Scholar] [CrossRef]
- Cayuela, H.; Arsovski, D.; Bonnaire, E.; Duguet, R.; Joly, P.; Besnard, A. The impact of severe drought on survival, fecundity, and population persistence in an endangered amphibian. Ecosphere 2016, 7, e01246. [Google Scholar] [CrossRef]
- Berven, K.A. Factors affecting population fluctuations in larval and adult stages of the wood frog (Rana sylvatica). Ecology 1990, 71, 1599–1608. [Google Scholar] [CrossRef]
- Tejedo, M.; Marangoni, F.; Pertoldi, C.; Richter-Boix, A.; Laurila, A.; Orizaola, G.; Nicieza, A.G.; Alvarez, D.; Gomez-Mestre, I. Contrasting effects of environmental factors during larval stage on morphological plasticity in post-metamorphic frogs. Clim. Res. 2010, 43, 31–39. [Google Scholar] [CrossRef]
- Kohli, A.K.; Lindauer, A.L.; Brannelly, L.A.; Ohmer, M.E.B.; Richards-Zawacki, C.; Rollins-Smith, L.; Voyles, J. Disease and the Drying Pond: Examining Possible Links among Drought, Immune Function, and Disease. Development in Amphibians. Physiol. Biochem. Zool. 2019, 92, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Sinsch, U. Postmetamorphic dispersal and recruitment of first breeders in a Bufo calamita metapopulation. Oecologia 1997, 112, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Sinsch, U.; Oromi, N.; Miaud, C.; Denton, J.; Sanuy, D. Spatial ecology of natterjack toads. Anim. Conserv. 2012, 15, 388–396. [Google Scholar] [CrossRef]
- Martínez-Gil, H.; Sánchez-Montes, G.; Montes-Gavilán, P.; Ugarte, G.; Martínez-Solano, I. Fine-scale functional connectivity of two syntopic pond-breeding amphibians with contrasting life-history traits: An integrative assessment of direct and indirect estimates of dispersal. Conserv. Genet. 2023, 24, 361–374. [Google Scholar] [CrossRef]
- Capellà-Marzo, B.; Sánchez-Montes, G.; Martínez-Solano, I. Contrasting demographic trends and asymmetric migration rates in a spatially structured amphibian population. Integr. Zool. 2020, 15, 482–497. [Google Scholar] [CrossRef]
- Price, S.J.; Browne, R.A.; Dorcas, M.E. Resistance and Resilience of A Stream Salamander To Supraseasonal Drought. Herpetologica 2012, 68, 312–323. [Google Scholar] [CrossRef]
- Taylor, B.E.; Scott, D.E.; Gibbons, J.W. Catastrophic reproductive failure, terrestrial survival, and persistence of the marbled salamander. Conserv. Biol. 2006, 20, 792–801. [Google Scholar] [CrossRef]
- Montori, A.; Herrero, P. Caudata. In Amphibia-Lissamphibia; Ramos, M.A., Alba, J., Bellés, X., Gosálbez, J., Guera, Á., Macpherson, E., Serrano, J., Templado, J., Eds.; Museo Nacional de Ciencias Naturales; Fauna Ibérica; CSIC: Madrid, Spain, 2004; Volume 24, pp. 43–275. ISBN 84-00-08292-3. [Google Scholar]
- Grossenbacher, K.; Thiesmeier, B.; Böhme, W. (Eds.) Handbuch der Reptilien und Amphibien Europas. Band 4/I: Schwanzlurche (Urodela) I; Aula-Verlag: Wiesbaden, Germany, 1999; 409p, ISBN 9783891040058. [Google Scholar]
- Grossenbacher, K.; Thiesmeier, B.; Böhme, W. (Eds.) Handbuch der Reptilien und Amphibien Europas. Band 4/IIa Schwanzlurche (Urodela) II; Aula-Verlag: Wiesbaden, Germany, 2003; 368p, ISBN 9783891046739. [Google Scholar]
- Thiesmeier, B.; Grossenbacher, K. (Eds.) Handbuch der Reptilien und Amphibien Europas. Band 4/IIb Schwanzlurche (Urodela) III; Aula-Verlag: Wiesbaden, Germany, 2004; 391p, ISBN 9783891046746. [Google Scholar]
- Sánchez-Montes, G.; Wang, J.; Ariño, A.H.; Martínez-Solano, Í. Mountains as barriers to gene flow in amphibians: Quantifying the differential effect of a major mountain ridge on the genetic structure of four sympatric species with different life history traits. J. Biogeogr. 2018, 45, 318–331. [Google Scholar] [CrossRef]
- Cayuela, H.; Valenzuela-Sánchez, A.; Teulier, L.; Martínez-Solano, I.; Léna, J.-P.; Merilä, J.; Muths, E.; Shine, R.; Quay, L.; Denoël, M.; et al. Determinants and Consequences of Dispersal in Vertebrates with Complex Life Cycles: A Review of Pond-Breeding Amphibians. Q. Rev. Biol. 2020, 95, 1–36. [Google Scholar] [CrossRef]
- Taylor, P.D.; Fahrig, L.; Henein, K.; Merriam, G. Connectivity Is a Vital Element of Landscape Structure. Oikos 1993, 68, 571. [Google Scholar] [CrossRef]
- Vogt, P.; Ferrari, J.R.; Lookingbill, T.R.; Gardner, R.H.; Riitters, K.H.; Ostapowicz, K. Mapping functional connectivity. Ecol. Indic. 2009, 9, 64–71. [Google Scholar] [CrossRef]
- Blaustein, A.R.; Walls, S.C.; Bancroft, B.A.; Lawler, J.J.; Searle, C.L.; Gervasi, S.S. Direct and Indirect Effects of Climate Change on Amphibian Populations. Diversity 2010, 2, 281–313. [Google Scholar] [CrossRef]
- Beebee, T.J.C. Amphibian breeding and climate. Nature 1995, 74, 219–220. [Google Scholar] [CrossRef]
- Tryjanowski, P.; Mariusz, R.; Sparks, T. Changes in spawning dates of Common Frogs and Common Toads in western Poland in 1978–2002. Ann. Zool. Fenn. 2003, 40, 459–464. Available online: http://www.jstor.org/stable/23735858 (accessed on 21 November 2024).
- Scott, A.W.; Pithart, D.; Adamson, J.K. Long-term United Kingdom trends in the breeding phenology of the common frog, Rana temporaria. J. Herpetol. 2008, 42, 89–96. [Google Scholar] [CrossRef]
- Prodon, R.; Geniez, P.; Cheylan, M.; Devers, F.; Chuine, I.; Besnard, A. A reversal of the shift towards earlier spring phenology in several Mediterranean reptiles and amphibians during the 1998–2013 warming slowdown. Glob. Change Biol. 2017, 23, 5481–5491. [Google Scholar] [CrossRef]
- Montori, A.; Amat, F. Surviving on the edge: Present and future effects of climate warming on the common frog (Rana temporaria) population in the Montseny massif (NE Iberia). PeerJ 2023, 11, e14527. [Google Scholar] [CrossRef]
- Ficetola, G.F.; Maiorano, L. Contrasting effects of temperature and precipitation change on amphibian phenology, abundance and performance. Oecologia 2016, 181, 683–693. [Google Scholar] [CrossRef]
- Wellborn, G.A.; Skelly, D.K.; Werner, E.E. Mechanisms creating community structure across a freshwater habitat gradient. Ann. Rev. Ecol. Evol. Syst. 1996, 27, 337–363. [Google Scholar] [CrossRef]
- Babbitt, K.J.; Baber, M.J.; Tarr, T.L. Patterns of larval amphibian distribution along a wetland hydroperiod gradient. Can. J. Zool. 2003, 81, 1539–1552. [Google Scholar] [CrossRef]
- Van Buskirk, J. Habitat partitioning in European and North American pond-breeding frogs and toads. Div. Distrib. 2003, 9, 399–410. [Google Scholar] [CrossRef]
- Richter-Boix, A.; Llorente, G.A.; Montori, A. A comparative analysis of the adaptive developmental plasticity hypothesis in six Mediterranean anuran species along a pond permanency gradient. Evol. Ecol. Res. 2006, 8, 1139–1154. Available online: https://www.evolutionary-ecology.com/issues/v08n06/ppar1922.pdf (accessed on 21 November 2024).
- Richter-Boix, A.; Llorente, G.A.; Montori, A. Segregación espacial y temporal de una comunidad de anfibios en una región mediterránea. Munibe (Supl./Gehigarria) 2007, 25, 120–128. [Google Scholar]
- Jakob, C.; Poizat, G.; Veith, M.; Seitz, A.; Crivelli, A. Breeding phenology and larval distribution of amphibians in a Mediterranean pond network with unpredictable hydrology. Hydrobiologia 2003, 499, 51–61. [Google Scholar] [CrossRef]
- Blondel, J.; Aronson, J. Biology and Wildlife of the Mediterranean Region; Oxford University Press: Oxford, UK, 1999; 318p, ISBN 9780198500353. [Google Scholar]
- Directive 92/43/EEC-Conservation of Natural Habitats and of Wild Fauna and Flora-Habitats Directive (21.05.1992). Available online: https://eur-lex.europa.eu/eli/dir/1992/43/oj/eng (accessed on 16 August 2025).
- Resetarits, W.J., Jr.; Wilbur, H.M. Choice of oviposition site by Hyla chrysoscelis: Role of predators and competitors. Ecology 1989, 70, 220–228. [Google Scholar] [CrossRef]
- Morand, A.; Joly, P. Habitat variability and space utilization by the amphibian communities of the French Upper-Rhone floodplain. Hydrobiologia 1995, 300/301, 249–257. [Google Scholar] [CrossRef]
- Morand, A.; Joly, P.; Grolet, O. Phenotypic variation in metamorphosis in five anuran species along a gradient of stream influence. C.R. Acad. Sci. Paris 1997, 320, 645–652. [Google Scholar] [CrossRef]
- Cayuela, H.; Cheylan, M.; Joly, P. The best of a harsh lot in a specialized species: Breeding habitat use by the yellow-bellied toad (Bombina variegata) on rocky riverbanks. Amphib.-Reptil. 2011, 32, 533–539. [Google Scholar] [CrossRef]
- Pujol-Buxó, E.; Riaño, G.M.; Llorente, G.A. Mild segregation in the breeding preferences of an invasive anuran (Discoglossus pictus) and its main native competitor (Epidalea calamita) in ephemeral ponds. Amphib.-Reptil. 2019, 40, 425–435. [Google Scholar] [CrossRef]
- Relyea, R.A.; Hoverman, J.T. The impact of larval predators and competitors on the morphology and fitness of juvenile treefrogs. Oecologia 2003, 134, 596–604. [Google Scholar] [CrossRef]
- Gervasi, S.S.; Foufopoulos, J. Costs of plasticity: Responses to desiccation decrease post-metamorphic immune function in a pond-breeding amphibian. Funct. Ecol. 2008, 22, 100–108. [Google Scholar] [CrossRef]
- Richter-Boix, A.; Tejedo, M.; Rezende, E.L. Evolution and plasticity of anuran larval development in response to desiccation. A comparative analysis. Ecol. Evol. 2011, 1, 15–25. [Google Scholar] [CrossRef]
- Gómez-Rodríguez, C.; Díaz-Paniagua, C.; Bustamante, J.; Portheault, A.; Florencio, M. Inter-annual variability in amphibian assemblages: Implications for diversity assessment and conservation in temporary ponds. Aquat. Conserv. Mar. Freshw. Ecosyst. 2010, 20, 668–677. [Google Scholar] [CrossRef]
- Gómez-Rodríguez, C.; Díaz-Paniagua, C.; Bustamante, J.; Serrano, L.; Portheault, A. Relative importance of dynamic and static environmental variables as predictors of amphibian diversity patterns. Acta Oecol. 2010, 36, 650–658. [Google Scholar] [CrossRef]
- Noss, R.F.; Carroll, C.; Vance-Borland, K.; Wuerthner, G. A multicriteria assessment of the irreplaceability and vulnerability of sites in the Greater Yellowstone Ecosystem. Conserv Biol 2002, 16, 895. [Google Scholar] [CrossRef]
- Mac Nally, R.; Horrocks, G.F.B.; Lada, H. Anuran responses to pressures from high-amplitude drought–flood–drought sequences under climate change. Clim. Chang. 2017, 141, 243–257. [Google Scholar] [CrossRef]
- Pollard, C.J.; Stockwell, M.P.; Bower, D.S.; Garnham, J.I.; Pickett, E.J.; Darcovich, K.; O’meara, J.; Clulow, J.; Mahony, M.J. Removal of an exotic fish influences amphibian breeding site selection. J. Wildl. Manag. 2017, 81, 720–727. [Google Scholar] [CrossRef]
- Colomer, M.A.; Margalida, A.; Sanuy, I.; Llorente, G.A.; Sanuy, D.; Pujol-Buxó, E. A computational model approach to assess the effect of climate change on the growth and development of tadpoles. Ecol. Model. 2021, 461, 109763. [Google Scholar] [CrossRef]
- Pujol-Buxó, E.; García-Salmerón, A.; Valera-Florensa, J.; Loras-Ortí, F.; Baena-Crespo, O.; Maluquer-Margalef, J.; Mora-Rueda, C.; Martínez-Silvestre, A. Seguiment i Diagnosi de les Poblacions D’amfibis a Diferents Punts D’aigua de la Xarxa de Parcs Naturals de la Diputació de Barcelona; Unpublished Report; Diputació de Barcelona: Barcelona, Spain, 2024; 58p. [Google Scholar]
- Zylstra, E.R.; Swann, D.E.; Hossack, B.R.; Muths, E.; Steidl, R.J. Drought-mediated extinction of an arid-land amphibian: Insights from a spatially explicit dynamic occupancy model. Ecol. Appl. 2019, 29, e01859. [Google Scholar] [CrossRef] [PubMed]
- Blaustein, A.R.; Urbina, J.; Snyder, P.W.; Reynolds, E.; Dang, T.; Hoverman, J.T.; Han, B.; Olson, D.H.; Searle, C.; Hambalek, N.M. Effects of Emerging Infectious Diseases on Amphibians: A Review of Experimental Studies. Diversity 2018, 10, 81. [Google Scholar] [CrossRef]
- Székely, D.; Cogălniceanu, D.; Székely, P.; Armijos-Ojeda, D.; Espinosa-Mogrovejo, V.; Denoël, M. How to recover from a bad start: Size at metamorphosis affects growth and survival in a tropical amphibian. BMC Ecol. 2020, 20, 24. [Google Scholar] [CrossRef] [PubMed]
- Anderson, T.L.; Rowland, F.E.; Semlitsch, R.D. Variation in phenology and density differentially affects predator–prey interactions between salamanders. Oecologia 2017, 185, 475–486. [Google Scholar] [CrossRef]
- Jara, F.G.; Thurman, L.L.; Montiglio, P.O.; Sih, A.; Garcia, T.S. Warming-induced shifts in amphibian phenology and behavior lead to altered predator–prey dynamics. Oecologia 2019, 189, 803–813. [Google Scholar] [CrossRef]
- Díaz-Paniagua, C. Facteurs associés à la reproduction des amphibiens de Doñana. Détermination de l’habitat. Bull. De La Société Herpétologique De Fr. 1982, 22, 24–26. [Google Scholar]
- Lorrain-Soligon, L.; Robin, F.; Bertin, X.; Jankovic, M.; Rousseau, P.; Lelong, V.; Brischoux, F. Long-term trends of salinity in coastal wetlands: Effects of climate, extreme weather events, and sea water level. Environ. Res. 2023, 237, 116937. [Google Scholar] [CrossRef]
- Lorrain-Soligon, L.; Boudard, L.; Sebastiano, M.; Costantini, D.; Angelier, F.; Ribout, C.; Leclerc, M.; Kato, A.; Robin, F.; Brischoux, F. Salty surprises: Developmental and behavioral responses to environmental salinity reveal higher tolerance of inland rather than coastal Bufo spinosus tadpoles. Environ. Res. 2025, 264, 120401. [Google Scholar] [CrossRef]
- Herbert, E.R.; Boon, P.; Burgin, A.J.; Neubauer, S.C.; Franklin, R.B.; Ardón, M.; Hopfensperger, K.N.; Lamers, L.P.M.; Gell, P. A global perspective on wetland salinization: Ecological consequences of agrowing threat to freshwater wetlands. Ecosphere 2015, 6, art206–art243. [Google Scholar] [CrossRef]
- Relyea, R.; Mattes, B.; Schermerhorn, C.; Shepard, I. Freshwater salinization and the evolved tolerance of amphibians. Ecol. Evol. 2024, 14, e11069. [Google Scholar] [CrossRef]
- Lorrain-Soligon, L.; Brischoux, F.; Pétillon, J. The interactive effects of salt and heat on coastal ectotherms. Trends Ecol. Evol. 2024, 39, 1076–1079. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Mestre, I.; Tejedo, M.; Ramayo, E.; Estepa, J. Developmental alterations and osmoregulatory physiology of a larval anuran under osmotic stress. Physiol. Biochem. Zool. 2004, 77, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Hart, B.T.; Lake, P.S.; Webb, J.A.; Grace, M.R. Ecological risk to aquatic systems from salinity increases. Aust. J. Bot. 2003, 51, 689–702. [Google Scholar] [CrossRef]
- Walker, R.H.; Belvin, A.C.; Mouser, J.B.; Pennino, A.; Plont, S.; Robinson, C.D.; Smith, L.B.; Thapa, J.; Zipper, C.E.; Angermeier, P.L.; et al. Global review reveals how disparate study motivations, analytical designs, and focal ions limit understanding of salinization effects on freshwater animals. Sci. Total Environ. 2023, 892, 164061. [Google Scholar] [CrossRef]
- Burraco, P.; Gomez-Mestre, I. Physiological stress responses in amphibian larvae to multiple stressors reveal marked anthropogenic effects even below lethal levels. Physiol. Biochem. Zool. 2016, 89, 462–472. [Google Scholar] [CrossRef]
- Tornabene, B.J.; Hossack, B.R.; Crespi, E.J.; Breuner, C.W. Corticosterone mediates a growth-survival tradeoff for an amphibian exposed to increased salinity. J. Exp. Zool. Part A Ecol. Integr. Physiol. 2021, 335, 703–715. [Google Scholar] [CrossRef]
- Tornabene, B.J.; Crespi, E.J.; Breuner, C.W.; Hossack, B.R. Testing whether adrenal steroids mediate phenotypic and physiologic effects of elevated salinity on larval tiger salamanders. Integr. Zool. 2022, 18, 27–44. [Google Scholar] [CrossRef]
- Gomez-Mestre, I.; Tejedo, M. Local adaptation of an anuran amphibian to osmotically stressful environments. Evolution 2003, 57, 1889–1899. [Google Scholar] [CrossRef]
- Gomez-Mestre, I.; Tejedo, M. Adaptation or exaptation? An experimental test of hypotheses on the origin of salinity tolerance in Bufo calamita. J. Evol. Biol. 2005, 18, 847–855. [Google Scholar] [CrossRef]
- Wu, C.-S.; Kam, Y.C. Effects of salinity on the survival, growth, development, and metamorphosis of Fejervarya limnocharis tadpoles living in brackish water. Zool. Sci. 2009, 26, 476–482. [Google Scholar] [CrossRef]
- Bernabò, I.; Bonacci, A.; Coscarelli, F.; Tripepi, M.; Brunelli, E. Effects of salinity stress on Bufo balearicus and Bufo bufo tadpoles: Tolerance, morphological gill alterations and Na+/K+-ATPase localization. Aquat. Toxicol. 2013, 132–133C, 119–133. [Google Scholar] [CrossRef]
- Wood, L.; Welch, A.M. Assessment of interactive effects of elevated salinity and three pesticides on life history and behavior of southern toad (Anaxyrus terrestris) tadpoles. Environ. Toxicol. Chem. 2015, 34, 667–676. [Google Scholar] [CrossRef]
- Lukens, E.; Wilcoxen, T.E. Effects of elevated salinity on Cuban treefrog Osteopilus septontrionalis aldosterone levels, growth, and development. Mar. Freshw. Behav. Physiol. 2020, 53, 99–111. [Google Scholar] [CrossRef]
- Tornabene, B.J.; Breuner, C.W.; Hossack, B.R. Comparative effects of energy-related saline wastewaters and sodium chloride on hatching, survival, and fitness-associated traits of two amphibian species. Environ. Toxicol. Chem. 2021, 40, 3137–3147. [Google Scholar] [CrossRef] [PubMed]
- Hall, E.M.; Brady, S.P.; Mattheus, N.M.; Earley, R.L.; Diamond, M.; Crespi, E.J. Physiological consequences of exposure to salinized roadside ponds on wood frog larvae and adults. Biol. Conserv. 2017, 209, 98–106. [Google Scholar] [CrossRef]
- Haramura, T. Hatching plasticity in response to salinity levels in a rhacophorid frog inhabiting a coastal area. J. Zool. 2016, 299, 125–131. [Google Scholar] [CrossRef]
- Denoël, M.; Bichot, M.; Ficetola, G.F.; Delcourt, J.; Ylieff, M.; Kestemont, P.; Poncin, P. Cumulative effects of road de-icing salt on amphibian behavior. Aquat. Toxicol. 2010, 99, 275–280. [Google Scholar] [CrossRef]
- Beebee, T.J.C. Salt tolerance of natterjack toad (Bufo calamita) eggs and larvae from coastal and inland populations in Britain. J. Herpetol. 1985, 1, 14–16. [Google Scholar]
- Ortiz-Santaliestra, M.E.; Fernández-Benéitez, M.J.; Lizana, M.; Marco, A. Adaptation to osmotic stress provides protection against ammonium nitrate in Pelophylax perezi embryos. Environ. Pollut. 2010, 158, 934–940. [Google Scholar] [CrossRef]
- Thirion, J.M. Salinity of the reproductive habitats of the Western Spadefoot Toad Pelobates cultripes (Cuvier, 1829), along the Atlantic coast of France (Anura: Pelobatidae). Herpetozoa 2014, 27, 13–20. [Google Scholar]
- Galán, P.; Rodríguez-Fernández, S. Efecto de los temporales atlánticos invernales sobre la población de Discoglossus galganoi de los acantilados costeros de Galicia. Boletín Asoc. Herpetol. Española 2018, 29, 70–75. [Google Scholar]
- Belmar, O.; Velasco, J.; Martinez-Capel, F. Hydrological Classification of Natural Flow Regimes to Support Environmental Flow Assessments in Intensively Regulated Mediterranean Rivers, Segura River Basin (Spain). Environ. Manag. 2011, 47, 992–1004. [Google Scholar] [CrossRef]
- Bonada, N.; Cañedo-Argüelles, M.; Gallart, F.; von Schiller, D.; Fortuño, P.; Latron, J.; Llorens, P.; Múrria, C.; Soria, M.; Vinyoles, D.; et al. Conservation and management of isolated pools in temporary rivers. Water 2020, 12, 2870. [Google Scholar] [CrossRef]
- Magand, C.; Alves, M.H.; Calleja, E.; Datry, T.; Dörflinger, G.; England, J.; Gallart, F.; Gómez, R.; Jorda-Capdevila, D.; Marti, E.; et al. Intermittent Rivers and Ephemeral Streams: What Water Managers Need to Know; Technical report–Cost ACTION CA 15113; European Cooperation in Science and Technology: Brussels, Belgium, 2020. [Google Scholar] [CrossRef]
- Datry, T.; Larned, S.T.; Tockner, K. Intermittent Rivers: A Challenge for Freshwater Ecology. Bioscience 2014, 64, 229–235. [Google Scholar] [CrossRef]
- Leigh, C.; Boulton, A.J.; Courtwright, J.L.; Fritz, K.; May, C.L.; Walker, R.H.; Datry, T. Ecological research and management of intermittent rivers: An historical review and future directions. Freshw. Biol. 2016, 61, 1181–1199. [Google Scholar] [CrossRef]
- Munné, A.; Bonada, N.; Cid, N.; Gallart, F.; Solà, C.; Bardina, M.; Rovira, A.; Sierra, C.; Soria, M.; Fortuño, P.; et al. A Proposal to Classify and Assess Ecological Status in Mediterranean Temporary Rivers: Research Insights to Solve Management Needs. Water 2021, 13, 767. [Google Scholar] [CrossRef]
- Soria, M.; Leigh, C.; Datry, T.; Bini, L.M.; Bonada, N. Biodiversity in perennial and intermittent rivers: A meta-analysis. Oikos 2017, 126, 1078–1089. [Google Scholar] [CrossRef]
- Acuña, V.; Hunter, M.; Ruhí, A. Managing temporary streams and rivers as unique rather than second-class ecosystems. Biol. Conserv. 2017, 211, 12–19. [Google Scholar] [CrossRef]
- Bernardo, J.M.; Ilhéu, M.; Matono, P.; Costa, A.M. Interannual variation of fish assemblage structure in a Mediterranean river: Implications of streamflow on the dominance of native or exotic species. River Res. Appl. 2003, 19, 521–532. [Google Scholar] [CrossRef]
- Muñoz, I.; García-Berthou, E.; Sabater, S. The Effect of Multiple Stressors on Biological Communities in the Llobregat. In The Llobregat. The Handbook of Environmental Chemistry; Sabater, S., Ginebreda, A., Barceló, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 21. [Google Scholar] [CrossRef]
- Matono, P.; Da Silva, J.; Ilhéu, M. How Does an Invasive Cyprinid Benefit from the Hydrological Disturbance of Mediterranean Temporary Streams? Diversity 2018, 10, 47. [Google Scholar] [CrossRef]
- Guareschi, S.; South, J. Biological invasions in intermittent rivers and streams: Current knowledge, and future frontiers. Ecosistemas 2024, 33, 2600. [Google Scholar] [CrossRef]
- King, A.J.; Townsend, S.A.; Douglas, M.M.; Kennard, M.J. Implications of water extraction on the low-flow hydrology and ecology of tropical savannah rivers: An appraisal for northern Australia. Freshw. Sci. 2015, 34, 741–758. [Google Scholar] [CrossRef]
- Stefanidis, K.; Panagopoulos, Y.; Psomas, A.; Mimikou, M. Assessment of the natural flow regime in a Mediterranean river impacted from irrigated agriculture. Sci. Total Environ. 2016, 573, 1492–1502. [Google Scholar] [CrossRef]
- Skoulikidis, N.T.; Vardakas, L.; Karaouzas, I.; Economou, A.N.; Dimitrou, E.; Zogaris, S. Assessing water stress in Mediterranean lotic systems: Insights from an artificially intermittent river in Greece. Aquat. Sci. 2011, 73, 581–597. [Google Scholar] [CrossRef]
- Sabo, J.L. Predicting the river’s blue line for fish conservation. Proc. Natl. Acad. Sci. USA 2014, 111, 13686–13687. [Google Scholar] [CrossRef] [PubMed]
- Ruhí, A.; Olden, J.D.; Sabo, J.L. Declining streamflow induces collapse and replacement of native fish in the American Southwest. Front. Ecol. Environ. 2016, 14, 465–472. [Google Scholar] [CrossRef]
- Jaeger, K.L.; Olden, J.D.; Pelland, N.A. Climate change poised to threaten hydrologic connectivity and endemic fishes in dryland streams. Proc. Natl. Acad. Sci. USA 2014, 111, 13894–13899. [Google Scholar] [CrossRef]
- Lytle, D.A.; Poff, N.L. Adaptation to natural flow regimes. Trends Ecol. Evol. 2004, 19, 94–100. [Google Scholar] [CrossRef]
- Chessman, B.C. Relationships between lotic macroinvertebrate traits and responses to extreme drought. Freshw. Biol. 2015, 60, 50–63. [Google Scholar] [CrossRef]
- Serra-Cobo, J.; Marques, T.; Martínez-Rica, J.P. Ecological segregation between Rana pyrenaica and Rana temporaria, and differential predation of Euproctus asper on their tadpoles. Netherland J. Zool. 2000, 50, 65–73. [Google Scholar] [CrossRef]
- Colomer, M.À.; Montori, A.; García, E.; Fondevilla, C. Using a bioinspired model to determine the extinction risk of Calotriton asper populations as a result of an increase in extreme rainfall in a scenario of climatic change. Ecol. Model. 2014, 281, 1–14. [Google Scholar] [CrossRef]
- Guinart, D.; Solórzano, S.; Amat, F.; Grau, J.; Fernández-Guiberteau, D.; Montori, A. Habitat Management of the Endemic and Critical Endangered Montseny Brook Newt (Calotriton arnoldi). Land 2022, 11, 449. [Google Scholar] [CrossRef]
- Ball, S.E.; Bovero, S.; Sotgiu, G.; Tessa, G.; Angelini, C.; Bielby, J.; Durrant, C.; Favelli, M.; Gazzaniga, E.; Garner, T.W.J. Islands within an island: Population genetic structure of the endemic Sardinian newt, Euproctus platycephalus. Ecol. Evol. 2017, 7, 1190–1211. [Google Scholar] [CrossRef] [PubMed]
- Montori, A.; Llorente, G.A.; Richter-Boix, À. Habitat features affecting the small-scale distribution and longitudinal migration patterns of Calotriton asper in a Pre-Pyrenean population. Amphib.-Reptil. 2008, 29, 371–381. [Google Scholar] [CrossRef]
- Ribera, I.; Vogler, A. Habitat type as a determinant of species range sizes: The example of lotic-lentic differences in aquatic Coleoptera. Biol. J. Linn. Soc. 2000, 71, 33–52. [Google Scholar] [CrossRef]
- Ribera, I.; Foster, G.N.; Vogler, A.P. Does habitat use explain large scale species richness patterns of aquatic beetles in Europe? Ecography 2003, 26, 145–152. Available online: https://www.jstor.org/stable/3683429 (accessed on 21 November 2024). [CrossRef]
- Abellán, P.; Ribera, I. Geographic location and phylogeny are the main determinants of the size of the geographical range in aquatic beetles. BMC Evol. Biol. 2011, 11, 344. Available online: http://www.biomedcentral.com/1471-2148/11/344 (accessed on 5 August 2025). [CrossRef]
- Talavera, A.; Palmada-Flores, M.; Burriel-Carranza, B.; Valbuena-Ureña, E.; Mochales-Riaño, G.; Adams, D.C.; Tejero-Cicuentes, H.; Soler-Membrives, A.; Amat, F.; Guinart, D.; et al. Genomic insights into the montseny brook newt (Calotriton arnoldi), a critically endangered glacial relict. iScience 2024, 27, 108665. [Google Scholar] [CrossRef]
- Puig-Gironès, R.; Bel, G.; Cid, N.; Cañedo-Argüelles, M.; Fernández-Calero, J.M.; Quevedo-Ortiz, G.; Fortuño, P.; Vinyoles, D.; Real, J.; Pujol-Buxó, E.; et al. Water availability and biological interactions shape amphibian abundance and diversity in Mediterranean temporary rivers. Sci. Total Environ. 2024, 953, 175917. [Google Scholar] [CrossRef]
- Kerezsy, A.; Gido, K.; Magalhães, M.F.; Skelton, P.H. The Biota of Intermittent Rivers and Ephemeral Streams: Fishes. In Intermittent Rivers and Ephemeral Streams; Academic Press: Cambridge, MA, USA, 2017; pp. 273–298. [Google Scholar] [CrossRef]
- Huxter, E.H.H.; Van Meerveld, H.J. Intermittent and perennial streamflow regime characteristics in the Okanagan. Can. Water Resour. J. 2012, 37, 391–414. [Google Scholar] [CrossRef]
- Fraser, N.; Schumer, R. Intermittency in dust deposition rates around the world. In Proceedings of the AGU Fall Meeting, San Francisco, CA, USA, 5–9 December 2011; Available online: https://ui.adsabs.harvard.edu/abs/2011AGUFMPP23B1850F (accessed on 5 August 2025).
- Camarasa-Belmonte, A.M. Flash-flooding of Ephemeral Streams in the Context of Climate Change. CIG 2021, 47, 121–142. [Google Scholar] [CrossRef]
- Jiang, J.; Wang, Z.; Zhang, Z.; Wu, X.; Lai, C.; Zeng, Z.; Chen, X. Extreme drought-heatwave exacerbates water quality deterioration in China. Ecol. Indic. 2025, 170, 113008. [Google Scholar] [CrossRef]
- Corominas, L.; Foley, J.; Guest, J.S.; Hospido, A.; Larsen, H.F.; Morera, S.; Shaw, A. Life cycle assessment applied to wastewater treatment: State of the art. Water Res. 2013, 47, 5480–5492. [Google Scholar] [CrossRef] [PubMed]
- Wagner, N.; Reichenbecher, W.; Teichmann, H.; Tappeser, B.; Lötters, S. Questions concerning the potential impact of glyphosate-based herbicides on amphibians. Environ. Toxicol. Chem. 2013, 32, 1688–1700. [Google Scholar] [CrossRef] [PubMed]
- Chow, R.; Curchod, L.; Davies, E.; Veludo, A.F.; Oltramare, C.; Dalvie, M.A.; Stamm, C.; Röösli, M.; Fuhrimann, S. Seasonal drivers and risks of aquatic pesticide pollution in drought and post-drought conditions in three Mediterranean watersheds. Sci. Total Environ. 2023, 858, 159784. [Google Scholar] [CrossRef]
- Curchod, L.; Oltramare, C.; Junghan, M.; Stamm, C.; Dalvie, M.A.; Röösli, M.; Fuhrimann, S. Temporal variation of pesticide mixtures in rivers of three agricultural watersheds during a major drought in the Western Cape, South Africa. Water Res. X 2020, 6, 100039. [Google Scholar] [CrossRef]
- Church, D.R.; Bailey, L.L.; Wilbur, H.M.; Kendall, W.L.; Hines, J.E. Iteroparity in the variable environment of the salamander Ambystoma tigrinum. Ecology 2007, 88, 891–903. [Google Scholar] [CrossRef]
- Carnicer, J.; Coll, M.; Ninyerola, M.; Pons, X.; Sanchez, X.; Peñuelas, J. Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proc. Natl. Acad. Sci. USA 2011, 108, 1474–1478. [Google Scholar] [CrossRef]
- Carnicer, J.; Vives-Ingla, M.; Blanquer, L.; Méndez-Camps, X.; Rosell, C.; Sabaté, S.; Gutiérrez, E.; Sauras, T.; Peñuelas, J.; Barbeta, A. Forest resilience to global warming is strongly modulated by local-scale topographic, microclimatic and biotic conditions. J. Ecol. 2021, 109, 3322–3339. [Google Scholar] [CrossRef]
- Reading, C.J. Linking global warming to amphibian declines through its effects on female body condition and survivorship. Oecologia 2007, 151, 125–131. [Google Scholar] [CrossRef]
- Daszak, P.; Scott, D.E.; Kilpatrick, A.M.; Faggioni, C.; Gibbons, J.W.; Porter, D. Amphibian population declines at savannah river site are linked to climate, not chytridiomycosis. Ecology 2005, 86, 3232–3237. [Google Scholar] [CrossRef]
- Hossack, B.R.; Lowe, W.H.; Corn, P.S. Rapid increases and time-lagged declines in amphibian occupancy after wildfire. Conserv. Biol. 2013, 27, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, F.; Lasserre, B.; Chirici, G.; Tognetti, R.; Marchetti, M. Deadwood occurrence and forest structure as indicators of old-growth forest conditions in Mediterranean mountainous ecosystems. Ecoscience 2012, 19, 344–355. [Google Scholar] [CrossRef]
- Badalamenti, E.; La Mantia, T.; La Mantia, G.; Cairone, A.; La Mela Veca, D.S. Living and dead aboveground biomass in Mediterranean forests: Evidence of old-growth traits in a Quercus pubescens Willd. sl stand. Forests 2017, 8, 187. [Google Scholar] [CrossRef]
- Parisi, F.; Pioli, S.; Lombardi, F.; Fravolini, G.; Marchetti, M.; Tognetti, R. Linking deadwood traits with saproxylic invertebrates and fungi in European forests-a review. iForest-Biogeosci. For. 2018, 11, 423. [Google Scholar] [CrossRef]
- Batllori, E.; De Cáceres, M.; Brotons, L.; Ackerly, D.D.; Moritz, M.A.; Lloret, F. Cumulative effects of fire and drought in Mediterranean ecosystems. Ecosphere 2017, 8, e01906. [Google Scholar] [CrossRef]
- Karavani, A.; Boer, M.M.; Baudena, M.; Colinas, C.; Díaz-Sierra, R.; Pemán, J.; de Luis, M.; Enríquez-de-Salamanca, Á.; Resco de Dios, V. Fire-induced deforestation in drought-prone Mediterranean forests: Drivers and unknowns from leaves to communities. Ecol. Monogr. 2018, 88, 141–169. [Google Scholar] [CrossRef]
- Ogaya, R.; Peñuelas, J. Climate change effects in a Mediterranean forest following 21 consecutive years of experimental drought. Forests 2021, 12, 306. [Google Scholar] [CrossRef]
- Naiman, R.J.; Bechtold, J.S.; Drake, D.C.; Latterell, J.J.; O’Keefe, T.C.; Balian, E.V. Origins, Patterns, and Importance of Heterogeneity in Riparian Systems. In Ecosystem Function in Heterogeneous Landscapes; Lovett, G.M., Turner, M.G., Jones, C.G., Weathers, K.C., Eds.; Springer: New York, NY, USA, 2005. [Google Scholar] [CrossRef]
- Naiman, R.J.; Decamps, H. The ecology of interfaces: Riparian zones. Annu. Rev. Ecol. Syst. 1997, 28, 621–658. [Google Scholar] [CrossRef]
- Burbrink, F.T.; Phillips, C.A.; Heske, E.J. A riparian zone in Southern Illinois as a potential dispersal corridor for reptiles and amphibians. Biol. Conserv. 1998, 86, 107–115. [Google Scholar] [CrossRef]
- Aguilar, F.F.; Velo-Antón, G.; Tarroso, P.; Segurado, P. Fine-scale habitat preferences of riparian ectotherms in a human-influenced landscape: Insights from two herptiles endemic to the Iberian Peninsula. Biodivers. Conserv. 2025, 34, 2227–2245. [Google Scholar] [CrossRef]
- Pausas, J.G.; Fernández-Muñoz, S. Fire regime changes in the Western Mediterranean Basin: From fuel-limited to drought-driven fire regime. Clim. Chang. 2012, 110, 215–226. [Google Scholar] [CrossRef]
- Wasserman, T.N.; Mueller, S.E. Climate influences on future fire severity: A synthesis of climate-fire interactions and impacts on fire regimes, high-severity fire, and forests in the western United States. Fire Ecol. 2023, 19, 43. [Google Scholar] [CrossRef]
- Pausas, J.G. Changes in Fire and Climate in the Eastern Iberian Peninsula (Mediterranean Basin). Clim. Chang. 2004, 63, 337–350. [Google Scholar] [CrossRef]
- Dunham, J.B.; Rosenberger, A.E.; Luce, C.H.; Rieman, B.E. Influences of wildfire and channel reorganization on spatial and temporal variation in stream temperature and the distribution of fish and amphibians. Ecosystems 2007, 10, 335–346. [Google Scholar] [CrossRef]
- Dos Anjos, A.G.; Solé, M.; Benchimol, M. Fire effects on anurans: What we know so far? For. Ecol. Manag. 2021, 495, 119338. [Google Scholar] [CrossRef]
- Montori, A.; Llorente, G.A.; Clivillé, S.; Santos, X.; Carretero, M.A. Efectes de l’incendi forestal de 1994 sobre les poblacions d’amfibis del Parc Natural del Garraf. Monogr. Diput. De Barc. 2000, 30, 105–108. Available online: https://parcs.diba.cat/documents/182160/f3fbe2c5-c98f-4498-b808-abd350256b69 (accessed on 21 December 2024).
- Montori, A. Estat de les Poblacions D’amfibis del Parc del Garraf 16 Anys Després de L’incendi Forestal de 1994 i Efectes dels Focs Repetitius Sobre les Comunitats D’amfibis; Unpublished Report; ACOM 2010; Department D’innovació, Universitats i Empreses, Generalitat de Catalunya: Catalona, Spain, 2010; 55p. [Google Scholar]
- Chergui, B.; Ayres, C.; Santos, X. Assessing the response of amphibians to wildfire according to forest type and bioregion affinity of species. Basic Appl. Herpetol. 2022, 36, 5–17. [Google Scholar] [CrossRef]
- Carretero, J.M.; Guzmán, E.; Martínez, M.; Úbeda, X. Els Incendis Forestals a L’àrea del Garraf-Castelldefels; II premi “Castelldefels ambit sostenible”; Diputacio Barcelona: Barcelona, Spain, 2003; 148p. [Google Scholar]
- Moretti, M.; Duelli, P.; Obrist, M.K. Biodiversity and resilience of arthropod communities after fire disturbance in temperate forests. Oecologia 2006, 149, 312–327. [Google Scholar] [CrossRef]
- Santos, X.; Bros, V.; Miño, A. Recolonization of a burned Mediterranean area by terrestrial gastropods. Biodivers. Conserv. 2009, 18, 3153–3165. [Google Scholar] [CrossRef]
- Moretti, M.; Legg, C. Combining plant and animal traits to assess community functional responses to disturbance. Ecography 2008, 31, 299–309. [Google Scholar] [CrossRef]
- Burrow, A.; Maerz, J. How plants affect amphibian populations. Biol. Rev. 2022, 97, 1749–1767. [Google Scholar] [CrossRef] [PubMed]
- Haggerty, C.J.; Crisman, T.L.; Rohr, J.R. Effects of forestry-driven changes to groundcover and soil moisture on amphibian desiccation, dispersal, and survival. Ecol. Appl. 2019, 29, e01870. [Google Scholar] [CrossRef] [PubMed]
- Haggerty, C.J.; Crisman, T.L.; Rohr, J.R. Direct and indirect effects of pine silviculture on the larval occupancy and breeding of declining amphibian species. J. Appl. Ecol. 2019, 56, 2652–2662. [Google Scholar] [CrossRef]
- Muñoz, A.; Felicisimo, A.M.; Santos, X. Assessing the resistance of a breeding amphibian community to a large wildfire. Acta Oecologica 2019, 99, 103439. [Google Scholar] [CrossRef]
- Martínez-Silvestre, A.; Garcia-Salmeron, A.; Pujol-Buxó, E.; Baena, O. Anàlisi de patògens emergents dels amfibis dins de 7 parcs de la Xarxa de Parcs Naturals de la Diputació de Barcelona. Butll. Soc. Catalana D’herpetologia 2022, 29, 44–55. [Google Scholar]
- Longcore, J.E.; Pessier, A.P.; Nichols, D.K. Batrachochytrium dendrobatidis gen. et sp. nov., a chytrid pathogenic to amphibians. Mycologia 1999, 91, 219–227. [Google Scholar] [CrossRef]
- Martel, A.; Spitzen-van der Sluijs, A.; Blooi, M.; Bert, W.; Ducatelle, R.; Fisher, M.C.; Woeltjes, A.; Bosman, W.; Chiers, K.; Bossuyt, F.; et al. Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians. Proc. Natl. Acad. Sci. USA 2013, 110, 15325–15329. [Google Scholar] [CrossRef]
- Granoff, A.; Came, P.E.; Breeze, D.C. Viruses and renal carcinoma of Rana pipiens: I. The isolation and properties of virus from normal and tumor tissues. Virology 1966, 29, 133–148. [Google Scholar] [CrossRef]
- Bosch, J.; Martínez-Solano, I.; García-París, M. Evidence of a chytrid fungus infection involved in the decline of the common midwife toad (Alytes obstetricans) in protected areas of central Spain. Biol. Conserv. 2001, 97, 331–337. [Google Scholar] [CrossRef]
- Walker, S.F.; Bosch, J.; James, T.Y.; Litvintseva, A.P.; Valls, J.A.O.; Piña, S.; García, G.; Rosa, G.A.; Cunningham, A.A.; Hole, S.; et al. Invasive pathogens threaten species recovery programs. Curr. Biol. 2008, 18, R853–R854. [Google Scholar] [CrossRef] [PubMed]
- Martel, A.; Vila-Escale, M.; Fernández-Giberteau, D.; Martinez-Silvestre, A.; Canessa, S.; Van Praet, S.; Pannon, P.; Chiers, K.; Ferran, A.; Kelly, M.; et al. Integral chain management of wildlife diseases. Conserv. Lett. 2020, 13, e12707. [Google Scholar] [CrossRef]
- Price, S.J.; Garner, T.W.J.; Nichols, R.A.; Balloux, F.; Ayres, C.; Mora-Cabello de Alba, A.; Bosch, J. Collapse of amphibian communities due to an introduced Ranavirus. Curr. Biol. 2014, 24, 2586–2591. [Google Scholar] [CrossRef] [PubMed]
- Scheele, B.C.; Hunter, D.A.; Banks, S.C.; Pierson, J.C.; Skerratt, L.F.; Webb, R.; Driscoll, D.A. High adult mortality in disease-challenged frog populations increases vulnerability to drought. J. Anim. Ecol. 2016, 85, 1453–1460. [Google Scholar] [CrossRef]
- Buttimer, S.; Medina, D.; Martins, R.A.; da Silva, A.G.M.; Neely, W.J.; Haddad, C.F.B.; DiRenzo, G.V.; Catenazzi, A.; Bell, R.C.; Becker, C.G. Experimental Drought Suppresses Amphibian Pathogen Yet Intensifies Transmission and Disrupts Protective Skin Microbiome. Glob. Change Biol. 2025, 31, e70275. [Google Scholar] [CrossRef]
- Johnson, M.L.; Berger, L.; Philips, L.; Speare, R. Fungicidal effects Batrachochytrium dendrobatidis, UV light, desiccation and heat on the amphibian chytrid Batrachochytrium dendrobatidis. Dis. Aquat. Org. 2003, 57, 255–260. [Google Scholar] [CrossRef]
- Piotrowski, J.S.; Annis, S.L.; Longcore, J.E. Physiology of Batrachochytrium dendrobatidis, a chytrid pathogen of amphibians. Mycologia 2004, 96, 9–15. [Google Scholar] [CrossRef]
- Kilpatrick, A.M.; Briggs, C.J.; Daszak, P. The ecology and impact of chytridiomycosis: An emerging disease of amphibians. Trends Ecol. Evol. 2010, 25, 109–118. [Google Scholar] [CrossRef]
- Van Rooij, P.; Martel, A.; Haesebrouck, F.; Pasmans, F. Amphibian chytridiomycosis: A review with focus on fungus-host interactions. Vet. Res. 2015, 46, 137. [Google Scholar] [CrossRef]
- Global Invasive Species Database (GISD). Species profile Batrachochytrium dendrobatidis. 2015. Available online: http://www.iucngisd.org/gisd/species.php?sc=123 (accessed on 12 April 2025).
- Garmyn, A.; Van Rooij, P.; Pasmans, F.; Hellebuyck, T.; Van Den Broeck, W.; Haesebrouck, F.; Martel, A. Waterfowl: Potential environmental reservoirs of the chytrid fungus Batrachochytrium dendrobatidis. PLoS ONE 2012, 7, e35038. [Google Scholar] [CrossRef]
- Farrer, R.A.; Weinert, L.A.; Bielby, J.; Garner, T.W.; Balloux, F.; Clare, F.; Bosch, J.; Cunningham, A.A.; Weldon, C.; du Preez, L.H.; et al. Multiple emergences of genetically diverse amphibian-infecting chytrids include a globalized hypervirulent recombinant lineage. Proc. Natl. Acad. Sci. USA 2011, 108, 18732–18736. [Google Scholar] [CrossRef] [PubMed]
- Walker, S.F.; Bosch, J.; Gomez, V.; Garner, T.W.; Cunningham, A.A.; Schmeller, D.S.; Ninyerola, M.; Henk, D.A.; Ginestet, C.; Arthur, C.P.; et al. Factors driving pathogenicity vs. prevalence of amphibian panzootic chytridiomycosis in Iberia. Ecol. Lett. 2010, 13, 372–382. [Google Scholar] [CrossRef] [PubMed]
- Ruggeri, J.; Martins, A.G.D.S.; Domingos, A.H.R.; Santos, I.; Viroomal, I.B.; Toledo, L.F. Seasonal prevalence of the amphibian chytrid in a tropical pond-dwelling tadpole species. Dis. Aquat. Org. 2020, 142, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Kolby, J.E.; Ramirez, S.D.; Berger, L.; Richards-Hrdlicka, K.L.; Jocque, M.; Skerratt, L.F. Terrestrial dispersal and potential environmental transmission of the amphibian chytrid fungus (Batrachochytrium dendrobatidis). PLoS ONE 2015, 10, e0125386. [Google Scholar] [CrossRef]
- Prado, J.S.; Ernetti, J.R.; Pontes, M.R.; Toledo, L.F. Chytrid in the clouds: An alternative passive transport of a lethal pathogen for amphibians. Hydrobiologia 2023, 850, 2061–2073. [Google Scholar] [CrossRef]
- Padgett-Flohr, G.E.; Hopkins, R.L. Landscape epidemiology of Batrachochytrium dendrobatidis in central California. Ecography 2010, 33, 688–697. [Google Scholar] [CrossRef]
- Strauss, A.; Smith, K.G. Why does amphibian chytrid (Batrachochytrium dendrobatidis) not occur everywhere? An exploratory study in Missouri ponds. PLoS ONE 2013, 8, e76035. [Google Scholar] [CrossRef]
- Martínez-Silvestre, A.; Loras-Ortí, F.; Garcia-Salmeron, A.; Pujol-Buxó, E.; Pérez-Novo, I.; Maluquer-Margalef, J.; Poch, S.; Thumsová, B.; Bosch, J. Introduced Mediterranean painted frogs (Discoglossus pictus) are possible supershedders of the fungus Batrachochytrium dendrobatidis in Catalonia (NE Spain). Amphib.-Reptil. 2023, 44, 257–261. [Google Scholar] [CrossRef]
- Montori, A.; San Sebastián, O.; Franch, M.; Pujol-Buxó, E.; Llorente, G.A.; Fernández-Loras, A.; Richter-Boix, A.; Bosch, J. Observations on the intensity and prevalence of Batrachochytridium dendrobatidis in sympatric and allopatric Epidalea calamita (native) and Discoglossus pictus (invasive) populations. Basic Appl. Herpetol. 2019, 33, 5–17. [Google Scholar] [CrossRef]
- Ruggeri, J.; de Carvalho-e-Silva, S.P.; James, T.Y.; Toledo, L.F. Amphibian chytrid infection is influenced by rainfall seasonality and water availability. Dis. Aquat. Org. 2018, 127, 107–115. [Google Scholar] [CrossRef]
- Kupferberg, S.J.; Moidu, H.; Adams, A.J.; Catenazzi, A.; Grefsrud, M.; Bobzien, S.; Leidy, R.; Carlson, S.M. Seasonal drought and its effects on frog population dynamics and amphibian disease in intermittent streams. Ecohydrology 2022, 15, e2395. [Google Scholar] [CrossRef]
- Fernández, S. Factores Bióticos y Abióticos Responsables de la Distribución e Incidencia de Batrachochytrium dendrobatidis en Poblaciones de Anfibios de Zonas Templadas. Ph.D. Thesis, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain, 2018; 231p. Available online: https://hdl.handle.net/20.500.14352/16207 (accessed on 3 November 2024).
- Bosch, J.; Thumsová, B.; Puschendorf, R.; Bielby, J. Drivers of Batrachochytrium dendrobatidis infection load, with evidence of infection tolerance in adult male toads (Bufo spinosus). Oecologia 2023, 202, 165–174. [Google Scholar] [CrossRef]
- Buttimer, S.; Moura-Campos, D.; Greenspan, S.E.; Neely, W.J.; Ferrante, L.; Toledo, L.F.; Becker, C.G. Skin microbiome disturbance linked to drought-associated amphibian disease. Ecol. Lett. 2024, 27, e14372. [Google Scholar] [CrossRef]
- McDevitt-Galles, T.; Moss, W.E.; Calhoun, D.M.; Briggs, C.J.; Pieter, T.J. How extreme drought events, introduced species, and disease interact to influence threatened amphibian populations. Johns. Freshw. Sci. 2022, 41, 680–694. [Google Scholar] [CrossRef]
- More, S.; Miranda, A.; Bicout, M.; Bøtner, D.; Butterworth, A.; Calistri, P.; Depner, K.; Edwards, S.; Garin-Bastuji, B.; Good, M.; et al. Scientific Opinion on the risk of survival, establishment and spread of Batrachochytrium salamandrivorans (Bsal) in the EU. EFSA J. 2018, 16, 5259. [Google Scholar] [CrossRef]
- Malagon, D.A.; Melara, L.A.; Prosper, O.F.; Lenhart, S.; Carter, E.D.; Fordyce, J.A.; Peternon, A.E.; Miller, D.L.; Gray, M.J. Host density and habitat structure influence host contact rates and Batrachochytrium salamandrivorans transmission. Sci. Rep. 2020, 10, 5584. [Google Scholar] [CrossRef] [PubMed]
- Deiß, F.; Ginal, P.; Rödder, D. Microclimatic Growth Rates of Batrachochytrium salamandrivorans under Current and Future Climates: A Very High Spatial Resolution SDM for Bsal and Salamandra salamandra (Linnaeus, 1758) within Forest Habitats of the European Hotspot Area. Diversity 2024, 16, 510. [Google Scholar] [CrossRef]
- Stegen, G.; Pasmans, F.; Schmidt, B.R.; Rouffaer, L.O.; Van Praet, S.; Schaub, M.; Canessa, S.; Laudelout, A.; Kinet, T.; Adriaensen, C.; et al. Drivers of salamander extirpation mediated by Batrachochytrium salamandrivorans. Nature 2017, 544, 353–356. [Google Scholar] [CrossRef]
- Spitzen van der Sluijs, A.; Stegen, G.; Bogaerts, S.; Canesa, S.; Steinfarzt, S.; Jansen, N.; Bosman, W.; Pasmans, F.; Martel, A. Post-epizootic salamander persistence in a disease-free refugium suggests poor dispersal ability of Batrachochytrium salamandrivorans. Sci. Rep. 2018, 8, 3800. [Google Scholar] [CrossRef]
- Kelly, M.; Cuomo, C.A.; Beukema, W.; Carranza, S.; Erens, J.; Foubert, M.; Li, Z.; Lötters, S.; Schulz, V.; Steinfartz, S.; et al. High phenotypic diversity correlated with genomic variation across the European Batrachochytrium salamandrivorans epizootic. PLoS Pathog. 2024, 20, e1012579. [Google Scholar] [CrossRef]
- Jancovich, J.K.; Davidson, E.W.; Parameswaran, N.; Mao, J.; Chinchar, V.G.; Collins, J.P.; Jacobs, B.L.; Storfer, A. Evidence for emergence of an amphibian iridoviral disease because of human-enhanced spread. Mol. Ecol. 2005, 14, 213–224. [Google Scholar] [CrossRef]
- Jancovich, J.K.; Bremont, M.; Touchman, J.W.; Jacobs, B.L. Evidence for multiple recent host species shifts among the ranaviruses (family Iridoviridae). J. Virol. 2010, 84, 2636–2647. [Google Scholar] [CrossRef] [PubMed]
- Bandín, I.; Dopazo, C. Host range, host specificity and hypothesized host shift events among viruses of lower vertebrates. Vet. Res. 2011, 42, 67. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.; Green, D.E.; Fellers, G.; Chinchar, V.G. Molecular characterization of iridoviruses isolated from sympatric amphibians and fish. Virus Res. 1999, 63, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Bayley, A.E.; Hill, B.J.; Feist, S.W. Susceptibility of the European common frog Rana temporaria to a panel of ranavirus isolates from fish and amphibian hosts. Dis. Aquat. Org. 2013, 103, 171–183. [Google Scholar] [CrossRef]
- Thumsová, B.; Donaire-Barroso, D.; Mouden El, E.H.; Bosch, J. Fatal chytridiomycosis in the Moroccan midwife toad Alytes maurus and potential distribution of Batrachochytrium dendrobatidis across Morocco. Afr. J. Herpetol. 2022, 71, 72–82. [Google Scholar] [CrossRef]
- Altizer, S.; Ostfeld, R.S.; Johnson, P.T.; Kutz, S.; Harvell, C.D. Climate change and infectious diseases: From evidence to a predictive framework. Science 2013, 341, 514–519. [Google Scholar] [CrossRef]
- Price, S.J.; Leung, W.T.M.; Owen, C.J.; Puschendorf, R.; Sergeant, C.; Cunningham, A.A.; Balloux, F.; Garner, T.W.J.; Nichols, R.A. Effects of historic and projected climate change on the range and impacts of an emerging wildlife disease. Glob. Change Biol. 2019, 25, 2648–2660. [Google Scholar] [CrossRef]
- Allender, M.C.; Mitchell, M.A.; Torres, T.; Sekowska, J.; Driskell, E.A. Pathogenicity of Frog Virus 3-like Virus in Red-eared Slider Turtles (Trachemys scripta elegans) at Two Environmental Temperatures. J. Comp. Pathol. 2013, 149, 356–367. [Google Scholar] [CrossRef]
- Rojas, S.; Richards, K.; Jancovich, J.K.; Davidson, E.W. Influence of temperature on ranavirus infection in larval salamanders, Ambystoma tigrinum. Dis. Aquat. Org. 2005, 63, 95–100. [Google Scholar] [CrossRef]
- Brunner, J.L.; Storfer, A.; Le Sage, E.H.; Garner, T.W.J.; Gray, M.J.; Hoverman, J.T. Ranavirus Ecology: From Individual Infections to Population Epidemiology to Community Impacts. In Ranaviruses; Gray, M.J., Chinchar, V.G., Eds.; Springer: Cham, Switzerland, 2025. [Google Scholar] [CrossRef]
- Cohen, J.M.; Sauer, E.L.; Santiago, O.; Spencer, S.; Rohr, J.R. Divergent impacts of warming weather on wildlife disease risk across climates. Science 2020, 370, eabb1702. [Google Scholar] [CrossRef]
- Daszak, P.; Cunningham, A.A.; Hyatt, A.D. Anthropogenic environmental change and the emergence of infectious diseases in wildlife. Acta Trop. 2001, 78, 103–116. [Google Scholar] [CrossRef]
- Davis, D.R.; Ferguson, K.J.; Schwarz, M.S.; Kerby, J.L. Effects of agricultural pollutants on stress hormones and viral infection in larval salamanders. Wetlands 2020, 40, 577–586. [Google Scholar] [CrossRef]
- Rosa, G.; Sabino-Pinto, J.; Laurentino, T.; Martel, A.; Pasmans, F.; Rebelo, R.; Griffiths, R.A.; Stöhr, A.C.; Marsschang, R.E.; Price, S.J.; et al. Impact of asynchronous emergence of two lethal pathogens on amphibian assemblages. Sci. Rep. 2017, 7, 43260. [Google Scholar] [CrossRef] [PubMed]
- Humphries, J.E.; Lanctôt, C.M.; Robert, J.; McCallum, H.I.; Newell, D.A.; Grogan, L.F. Do immune system changes at metamorphosis predict vulnerability to chytridiomycosis? An update. Dev. Comp. Immunol. 2022, 136, 104510. [Google Scholar] [CrossRef] [PubMed]
- Harrison, X.A.; Price, S.J.; Hopkins, K.; Leung, W.T.M.; Sergeant, C.; Garner, T.W.J. Diversity-stability dynamics of the amphibian skin microbiome and susceptibility to a lethal viral pathogen. Front. Microbiol. 2019, 10, 2883. [Google Scholar] [CrossRef] [PubMed]
- Campbell, L.J.; Pawlik, A.H.; Harrison, X.A. Amphibian ranaviruses in Europe: Important directions for future research. Facets 2020, 5, 598–614. [Google Scholar] [CrossRef]
- Haislip, N.A.; Gray, M.J.; Hoverman, J.T.; Miller, D.L. Development and disease: How susceptibility to an emerging pathogen changes through anuran development. PLoS ONE 2011, 6, e22307. [Google Scholar] [CrossRef]
- Kwon, S.; Park, J.; Choi, W.J.; Koo, K.S.; Lee, J.G.; Park, D. First case of ranavirus-associated mass mortality in a natural population of the Huanren frog (Rana huanrenensis) tadpoles in South Korea. Anim. Cells Syst. 2017, 21, 358–364. [Google Scholar] [CrossRef]
- Teacher, A.G.F.; Cunningham, A.A.; Garner, T.W.J. Assessing the long-term impact of Ranavirus infection in wild common frog populations. Anim. Conserv. 2010, 13, 514–522. [Google Scholar] [CrossRef]
- De Necker, L.; Brendonck, L.; Vanschoenwinkel, B.; Florencio, M.; Rhazi, L.; Gołdyn, B. Lessons from pond creation and restoration projects in Europe. Restor. Ecol. 2025, 33, e14342. [Google Scholar] [CrossRef]
- Mathwin, R.; Wassens, S.; Young, J.; Ye, Q.; Bradshaw, C.J. Manipulating water for amphibian conservation. Conserv. Biol. 2021, 35, 24–34. [Google Scholar] [CrossRef]
- Shoo, L.P.; Olson, D.H.; McMenamin, S.K.; Murray, K.A.; Van Sluys, M.; Donnelly, M.A.; Stratford, D.; Terhivuo, J.; Merino-Viteri, A.; Herbert, S.M.; et al. Engineering a future for amphibians under climate change. J. Appl. Ecol. 2011, 48, 487–492. [Google Scholar] [CrossRef]
- Henao-Casas, J.D.; Fernández-Escalante, E.; Ayuga, F. Alleviating drought and water scarcity in the Mediterranean region through managed aquifer recharge. Hydrogeol. J. 2022, 30, 1685–1699. [Google Scholar] [CrossRef]
- Sanz, D.B.; Iribas, B.L.; Calvo, P.C. Proposal for analysis of minimum ecological flow regimes based on the achievement of technical and environmental objectives: Tagus River basin case study (Spain). Environ. Earth Sci. 2025, 84, 26. [Google Scholar] [CrossRef]
- Mezger, G.; del Tánago, M.G.; De Stefano, L. Environmental flows and the mitigation of hydrological alteration downstream from dams: The Spanish case. J. Hydrol. 2021, 598, 125732. [Google Scholar] [CrossRef]
- Tickner, D.; Opperman, J.J.; Abell, R.; Acreman, M.; Arthington, A.H.; Bunn, S.E.; Cooke, S.J.; Dalton, J.; Darwall, W.; Edwards, G.; et al. Bending the curve of global freshwater biodiversity loss: An emergency recovery plan. BioScience 2020, 70, 330–342. [Google Scholar] [CrossRef] [PubMed]
- Rowe, J.C.; Pearl, C.A.; Duarte, A.; McCreary, B.; Adams, M.J. Population dynamics of the threatened Oregon spotted frog before and after drought mitigation. J. Wildl. Manag. 2024, 88, e22496. [Google Scholar] [CrossRef]
- Beranek, C.T.; Sanders, S.; Clulow, J.; Mahony, M. Factors influencing persistence of a threatened amphibian in restored wetlands despite severe population decline during climate change driven weather extremes. Biodivers. Conserv. 2022, 31, 1267–1287. [Google Scholar] [CrossRef]
- Baumberger, K.L.; Backlin, A.R.; Gallegos, E.A.; Hitchcock, C.J.; Fisher, R.N. Mitigation ponds offer drought resiliency for western spadefoot (Spea hammondii) populations. Bull. South. Calif. Acad. Sci. 2020, 119, 6–17. [Google Scholar] [CrossRef]
- Ruhí, A.; San Sebastian, O.; Feo, C.; Franch, M.; Gascon, S.; Richter-Boix, A.; Boix, D.; Llorente, G. Man-made Mediterranean temporary ponds as a tool for amphibian conservation. Ann. De Limnol.-Int. J. Limnol. 2012, 48, 81–93. [Google Scholar] [CrossRef]
- Evans, M.J.; Scheele, B.C.; Westgate, M.J.; Yebra, M.; Newport, J.S.; Manning, A.D. Beyond the pond: Terrestrial habitat use by frogs in a changing climate. Biol. Conserv. 2020, 249, 108712. [Google Scholar] [CrossRef]
. | Larval Period | Breeding Season | Reproductive Strategy | Reproductive Strategy | Pond Permanency Preference | Life Expectancy/Longevity | Spawn | Susceptibility |
---|---|---|---|---|---|---|---|---|
Winter (0) | ||||||||
Spring (1) | ||||||||
Long (2) | Summer (2) | Permanent (2) | ||||||
Medium (1) | Autumn (0) | Explosive (1) | Flexible (0) | Temporary (1) | Short (1) | Little (1) | ||
Genus | Short (0) | All Year (0) | Long (0) | Non-Flexible (1) | Ephemeral (0) | Long (0) | Great (0) | Sum. |
Salamandra | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 4 |
Salamandrina | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 6 |
Triturus | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 7 |
Lissotriton | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 7 |
Pleurodeles | 1 | 1 | 0 | 0 | 2 | 0 | 1 | 5 |
Ichthyosaura | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 6 |
Calotriton | 2 | 2 | 0 | 0 | 2 | 0 | 1 | 7 |
Euproctus | 2 | 2 | 0 | 1 | 2 | 0 | 1 | 8 |
Chioglossa | 2 | 2 | 0 | 0 | 2 | 1 | 1 | 8 |
Speleomantes | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 4 |
Alytes | 2 | 2 | 0 | 0 | 2 | 1 | 0 | 7 |
Discoglossus | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
Bombina | 0 | 1.5 | 0 | 0 | 0 | 0 | 0 | 1.5 |
Pelobates | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 2 |
Pelodytes | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 2 |
Bufo | 1 | 0 | 1 | 1 | 2 | 0 | 0 | 5 |
Epidalea | 0 | 1 | 0 | 0 | 0.5 | 1 | 0 | 2.5 |
Bufotes | 0 | 1 | 0 | 0 | 0.5 | 1 | 0 | 2.5 |
Hyla | 1 | 1 | 0 | 0 | 1.5 | 1 | 1 | 5.5 |
Rana | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 5 |
Pelophylax | 2 | 1.5 | 0 | 1 | 2 | 1 | 0 | 7.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pujol-Buxó, E.; Montori, A. Assessing the Risks of Extreme Droughts to Amphibian Populations in the Northwestern Mediterranean. Land 2025, 14, 1668. https://doi.org/10.3390/land14081668
Pujol-Buxó E, Montori A. Assessing the Risks of Extreme Droughts to Amphibian Populations in the Northwestern Mediterranean. Land. 2025; 14(8):1668. https://doi.org/10.3390/land14081668
Chicago/Turabian StylePujol-Buxó, Eudald, and Albert Montori. 2025. "Assessing the Risks of Extreme Droughts to Amphibian Populations in the Northwestern Mediterranean" Land 14, no. 8: 1668. https://doi.org/10.3390/land14081668
APA StylePujol-Buxó, E., & Montori, A. (2025). Assessing the Risks of Extreme Droughts to Amphibian Populations in the Northwestern Mediterranean. Land, 14(8), 1668. https://doi.org/10.3390/land14081668