Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (147)

Search Parameters:
Keywords = amorphous specimens

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2865 KiB  
Article
Mitigation of Alkali–Silica Reactivity of Greywacke Aggregate in Concrete for Sustainable Pavements
by Kinga Dziedzic, Aneta Brachaczek, Dominik Nowicki and Michał A. Glinicki
Sustainability 2025, 17(15), 6825; https://doi.org/10.3390/su17156825 - 27 Jul 2025
Viewed by 342
Abstract
Quality requirements for mineral aggregate for concrete used to construct pavement for busy highways are high because of the fatigue traffic loads and environmental exposure. The use of local aggregate for infrastructure projects could result in important sustainability improvements, provided that the concrete’s [...] Read more.
Quality requirements for mineral aggregate for concrete used to construct pavement for busy highways are high because of the fatigue traffic loads and environmental exposure. The use of local aggregate for infrastructure projects could result in important sustainability improvements, provided that the concrete’s durability is assured. The objective of this study was to identify the potential alkaline reactivity of local greywacke aggregate and select appropriate mitigation measures against the alkali–silica reaction. Experimental tests on concrete specimens were performed using the miniature concrete prism test at 60 °C. Mixtures of coarse greywacke aggregate up to 12.5 mm with natural fine aggregate of different potential reactivity were evaluated in respect to the expansion, compressive strength, and elastic modulus of the concrete. Two preventive measures were studied—the use of metakaolin and slag-blended cement. A moderate reactivity potential of the greywacke aggregate was found, and the influence of reactive quartz sand on the expansion and instability of the mechanical properties of concrete was evaluated. Both crystalline and amorphous alkali–silica reaction products were detected in the cracks of the greywacke aggregate. Efficient expansion mitigation was obtained for the replacement of 15% of Portland cement by metakaolin or the use of CEM III/A cement with the slag content of 52%, even if greywacke aggregate was blended with moderately reactive quartz sand. It resulted in a relative reduction in expansion by 85–96%. The elastic modulus deterioration was less than 10%, confirming an increased stability of the elastic properties of concrete. Full article
(This article belongs to the Special Issue Sustainability of Pavement Engineering and Road Materials)
Show Figures

Figure 1

16 pages, 2052 KiB  
Article
Exploring the Potential of Granite Sawing Sludge from Cuasso Al Monte (Italy) for the Development of Aluminosilicate Gel for a Sustainable Industry
by Sabrina Elettra Zafarana, Alessandro Achilli, Germana Barone, Danilo Bersani, Claudio Finocchiaro, Laura Fornasini, Silvia Portale and Paolo Mazzoleni
Minerals 2025, 15(7), 718; https://doi.org/10.3390/min15070718 - 9 Jul 2025
Viewed by 201
Abstract
This study explores the feasibility of utilizing granite sawing sludge (FC) as a precursor to produce alkali-activated materials (AAMs). To enhance the reactivity of the system, metakaolin (MK) was added and binary mixtures were synthetized. A multidisciplinary approach, including mineralogical, chemical and mechanical [...] Read more.
This study explores the feasibility of utilizing granite sawing sludge (FC) as a precursor to produce alkali-activated materials (AAMs). To enhance the reactivity of the system, metakaolin (MK) was added and binary mixtures were synthetized. A multidisciplinary approach, including mineralogical, chemical and mechanical analysis, was employed to assess the suitability of these precursors to produce AAMs. X-Ray diffraction (XRD) and Fourier-Transform Infrared spectroscopy (FT-IR) confirmed the occurred activation reaction with the consequent increase in the amorphous content. Raman spectroscopy was used to further explore the mineralogical composition of the consolidated specimens, helping in the detection of salts, whose formation is ascribed to secondary carbonatation processes. Morphological analysis (SEM-EDS) displayed relatively uniform microstructures for all specimens. Compressive strength tests revealed that MK rich samples achieved best values compared to FC rich formulations, which exhibited reduced strength resistance. This study highlights, for the first time, the benefits of incorporating Cuasso al Monte granite sawing sludges into alkali-activated binders. Results suggested that the incorporation of FC is recommended for both environmental and economic advantages. Full article
Show Figures

Figure 1

21 pages, 10272 KiB  
Article
Fluoride Casein Phosphopeptide and Tri-Calcium Phosphate Treatments for Enamel Remineralization: Effects on Surface Properties and Biofilm Resistance
by Cecilia Carlota Barrera-Ortega, Sandra E. Rodil, Phaedra Silva-Bermudez, Arturo Delgado-Cardona, Argelia Almaguer-Flores and Gina Prado-Prone
Dent. J. 2025, 13(6), 246; https://doi.org/10.3390/dj13060246 - 30 May 2025
Viewed by 581
Abstract
Objectives: This study aimed to compare in vitro the protective effect of two enamel remineralizing agents, a varnish containing β-tricalcium phosphate with sodium fluoride (β-TCP-F) and a paste containing casein phosphopeptide-amorphous calcium phosphate with sodium fluoride (CPP-ACP-F), on artificially demineralized human enamel. Methods: [...] Read more.
Objectives: This study aimed to compare in vitro the protective effect of two enamel remineralizing agents, a varnish containing β-tricalcium phosphate with sodium fluoride (β-TCP-F) and a paste containing casein phosphopeptide-amorphous calcium phosphate with sodium fluoride (CPP-ACP-F), on artificially demineralized human enamel. Methods: A total of 120 human third molar enamel specimens were randomly assigned to four groups (n = 30 each): Group I (healthy enamel, control), Group II (initially demineralized, lesioned enamel), Group III (demineralized enamel and treated with β-TCP-F), and Group IV (demineralized enamel and treated with CPP-ACP-F). Groups II–IV underwent, for 15 days, a daily pH cycling regimen consisting of 21 h of demineralization under pH 4.4, followed by 3 h of remineralization under pH 7. Groups III and IV were treated with either β-TCP-F or CPP-ACP-F, prior to each 24 h demineralization–remineralization cycle. Fluoride ion release was measured after each pH cycle. Surface hardness, roughness, wettability, and Streptococcus mutans biofilm formation were assessed on days 5, 10, and 15 after a daily pH cycle. Results: CPP-ACP-F treatment showed a larger improvement in surface hardness (515.2 ± 10.7) compared to β-TCP-F (473.6 ± 12.8). Surface roughness decreased for both treatments compared to initially lesioned enamel; however, the decrease in roughness in the β-TCP-F group only reached a value of 1.193 μm after 15 days of treatment, a significantly larger value in comparison to healthy enamel. On the other hand, the decrease in roughness in the CPP-ACP-F treatment group reached a value of 0.76 μm, similar to that of healthy enamel. Contact angle measurements indicated that wettability increased in both treatment groups (β-TCP-F: 71.01°, CPP-ACP-F: 65.24°) compared to initially lesioned samples in Group II, reaching WCA values similar to or smaller than those of healthy enamel surfaces. Conclusions: Both treatments, β-TCP-F and CPP-ACP-F, demonstrated protective effects against enamel demineralization, with CPP-ACP-F showing superior enhancement of surface hardness and smoother enamel texture under in vitro pH cycling conditions. β-TCP-F varnish and CPP-ACP-F paste treatments counteracted surface modifications produced on human healthy enamel by in vitro demineralization. Full article
(This article belongs to the Special Issue Dental Materials Design and Application)
Show Figures

Figure 1

15 pages, 831 KiB  
Article
Microstructure and Thermophysical Characterization of Tetra-Arsenic Biselenide As4Se2 Alloy Nanostructured by Mechanical Milling
by Oleh Shpotyuk, Andrzej Kozdras, Yaroslav Shpotyuk, Guang Yang and Zdenka Lukáčová Bujňáková
Materials 2025, 18(11), 2422; https://doi.org/10.3390/ma18112422 - 22 May 2025
Viewed by 400
Abstract
Nanomilling-driven effects on polyamorphic transitions are examined in tetra-arsenic biselenide As4Se2 alloy, which is at the boundary of the glass-forming region in the As-Se system, using multifrequency temperature-modulated DSC-TOPEM® technique, supported by X-ray powder diffraction (XRPD) and micro-Raman spectroscopy [...] Read more.
Nanomilling-driven effects on polyamorphic transitions are examined in tetra-arsenic biselenide As4Se2 alloy, which is at the boundary of the glass-forming region in the As-Se system, using multifrequency temperature-modulated DSC-TOPEM® technique, supported by X-ray powder diffraction (XRPD) and micro-Raman spectroscopy analysis. As shown by XRPD analysis, this alloy reveals a glassy–crystalline nature due to rhombohedral As and cubic As2O3 (arsenolite) inclusions, which especially grew after milling in a PVP (polyvinylpyrrolidone) water solution. At the medium-range structure level, nanomilling-driven changes are revealed as the disruption of intermediate-range ordering and enhancement of extended-range ordering. The generalized molecular-to-network amorphization trend in this alloy is confirmed by the microstructure response revealed in the broadened and obscured features in micro-Raman scattering spectra collected for nanomilled specimens. Thermophysical heat-transfer phenomena are defined by molecular-to-network polyamorphic transformations activated under nanomilling. The domination of thioarsenide-type As4Sen entities in this alloy results in an abnormous nanomilling-driven network-enhanced glass transition temperature increase. The nanomilled alloys become notably stressed owing to the destruction of molecular thioarsenide and incorporation of their remnants into the newly polymerized arsenoselenide network. This effect is more pronounced in As4Se2 alloy subjected to dry nanomilling, while it is partly counterbalanced when this alloy is additionally subjected to wet milling in a PVP water solution, accompanied by the stabilization of the As4Se2/PVP nanocomposite. Full article
Show Figures

Graphical abstract

24 pages, 20309 KiB  
Article
Study on the Influence and Mechanism of Steel, Polyvinyl Alcohol, and Polyethylene Fibers on Slag–Yellow River Sediment Geopolymers
by Ge Zhang, Enhui Jiang, Kunpeng Li, Huawei Shi, Chen Chen and Chengfang Yuan
Polymers 2025, 17(8), 1072; https://doi.org/10.3390/polym17081072 - 16 Apr 2025
Cited by 1 | Viewed by 386
Abstract
Steel fibers (STs), polyvinyl alcohol fibers (PVAs), and polyethylene fibers (PEs) were selected to systematically investigate the effects of different fiber types and dosages on the workability (slump and spread) and mechanical properties (compressive strength and splitting tensile strength) of slag–Yellow River sand [...] Read more.
Steel fibers (STs), polyvinyl alcohol fibers (PVAs), and polyethylene fibers (PEs) were selected to systematically investigate the effects of different fiber types and dosages on the workability (slump and spread) and mechanical properties (compressive strength and splitting tensile strength) of slag–Yellow River sand geopolymer eco-cementitious materials. By combining microstructural testing techniques such as thermogravimetric-differential thermal analysis (TG-DTA), X-ray diffraction (XRD), and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), the influence mechanisms of fibers on the characteristic products and microstructure of the matrix were thoroughly revealed, and the role of fibers in the strength development of Yellow River sediment-based geopolymers was elucidated. The results show that as the fiber content increases, the workability of the mixture significantly decreases. The appropriate incorporation of steel fibers and PVAs can significantly enhance the strength and toughness of the matrix. When the fiber dosage is 1%, the 28-day compressive strength of specimens with steel fibers and PVAs increased by 25.93% and 21.96%, respectively, compared to the control group, while the splitting tensile strength increased by 50.00% and 60.34%, respectively. However, the mechanisms of action differ significantly; steel fibers primarily enhance the compressive performance of the matrix through their high stiffness and strength, whereas PVAs inhibit crack propagation through their flexibility and excellent bonding properties. In contrast, the strength improvement of PEs is mainly reflected in toughening. When the fiber dosage is 1.5%, the 28-day splitting tensile strength of PE specimens increased by 72.61%, and the tensile-to-compressive ratio increased by 92.32% compared to the control group. Microstructural analysis indicates that the incorporation of different types of fibers does not alter the types of characteristic products in alkali-activated cementitious materials, but excessive fiber content affects the generation of gel-like products and the distribution of free water, thereby altering the thermal decomposition behavior of characteristic gel products. Additionally, the matrix incorporating PEs forms a honeycomb-like amorphous gel, resulting in weak interfacial bonding between the fibers and the matrix. This is one of the main reasons for the limited reinforcing effect of PEs at the microscopic scale and a key factor for their inferior long-term performance compared to steel fibers and PVAs. This study provides theoretical foundations and practical guidance for optimizing the performance of fiber-reinforced geopolymer materials. Full article
Show Figures

Figure 1

13 pages, 6491 KiB  
Article
Characterization of Material Extrusion-Printed Amorphous Poly(Ether Ketone Ketone) (PEKK) Parts
by Thomas Hanemann, Alexander Klein, Siegfried Baumgärtner, Judith Jung, David Wilhelm and Steffen Antusch
Polymers 2025, 17(8), 1069; https://doi.org/10.3390/polym17081069 - 16 Apr 2025
Viewed by 572
Abstract
Poly(ether ketone ketone) (PEKK), as a representative of high-performance poly(aryl ether ketones), shows outstanding thermomechanical properties, opening up a huge range of different applications in various technical fields. Its appearance as a quasi-amorphous polymer with a certain suppression of the crystallization process facilitates [...] Read more.
Poly(ether ketone ketone) (PEKK), as a representative of high-performance poly(aryl ether ketones), shows outstanding thermomechanical properties, opening up a huge range of different applications in various technical fields. Its appearance as a quasi-amorphous polymer with a certain suppression of the crystallization process facilitates melt processing via additive manufacturing processes like material extrusion (MEX), especially in fused filament fabrication (FFF). The quality of the printing process is proven in this work by tensile testing and surface roughness measurements of suitable specimens. The MEX printing of semicrystalline PEKK faces two major challenges: on the one hand, the very high printing temperature is in contrast to established engineering plastics, and on the other hand, it is difficult to avoid crystallization after printing. The first issue can be addressed by using suitably enhanced MEX printers and the second one by selecting adapted printing parameters. The measured Young’s modulus (3.49 GPa) and tensile strength (104 MPa) values are higher than the related vendors’ data given for filaments (3.0 GPa and 92 MPa, respectively). In addition, the temperature-dependent thermal conductivity is determined, and the values of well-established PEEK (poly(ether ether ketone)) in the temperature range from 20 to 180 °C are mostly slightly higher in comparison to the related PEKK data. Based on the results, PEKK can be a useful substitute for well-established PEEK because of their comparable properties. However, PEKK has a pronouncedly lower FFF printing temperature, combined with a reduced tendency of the device to warp after printing. A larger printed test part with some surface structures shows the improved printability of PEKK in comparison to PEEK. Full article
Show Figures

Graphical abstract

21 pages, 50829 KiB  
Article
Strengthening the Cavitation Resistance of Cylinder Liners Using Surface Treatment with Electroless Ni-P (ENP) Plating and High-Temperature Heat Treatment
by Wenjuan Zhang, Hao Gao, Qianting Wang, Dong Liu and Enlai Zhang
Materials 2025, 18(5), 1087; https://doi.org/10.3390/ma18051087 - 28 Feb 2025
Cited by 1 | Viewed by 690
Abstract
As internal combustion engines (ICEs) develop towards higher explosion pressures and lower weights, their structures need to be more compact; thus, the wall thickness of their cylinder liners is reducing. However, intense vibrations in the cylinder liner can lead to coolant cavitation and, [...] Read more.
As internal combustion engines (ICEs) develop towards higher explosion pressures and lower weights, their structures need to be more compact; thus, the wall thickness of their cylinder liners is reducing. However, intense vibrations in the cylinder liner can lead to coolant cavitation and, in severe cases, penetration of the liner, posing a significant reliability issue for ICEs. Therefore, research on cylinder liner cavitation has attracted increasing interest. Gray cast iron is widely used in cylinder liners for its hardness and wear resistance; however, additional surface plating is necessary to improve cavitation resistance. This study developed a novel surface-modification technology using electroless Ni-P plating combined with high-temperature heat treatment to create cylinder liners with refined grains, low weight loss rate, and high hardness. The heat-treatment temperature ranged from 100 to 600 °C. An ultrasonic cavitation tester was used to simulate severe cavitation conditions, and we analyzed and compared Ni-P-plated and heat-treated Ni-P-plated surfaces. The findings showed that the combination of Ni-P plating with high-temperature heat treatment led to smoother, more refined surface grains and the formation of cellular granular structures. After heat treatment, the plating structure converted from amorphous to crystalline. From 100 to 600 °C, the weight loss of specimens was within the range of 0.162% to 0.573%, and the weight loss (80.2% lower than the plated surface) and weight loss rate at 600 °C were the smallest. Additionally, cavitation resistance improved by 80.1%. The microhardness of the heat-treated plated surface reached 895 HV at 600 °C, constituting a 306 HV (65.8%) increase compared with that of the unplated surface, and a 560 HV increase compared with that of the maximum hardness of the plated surface without heat treatment of 335 HV, with an enhancement rate of 62.6%. Full article
(This article belongs to the Special Issue Research on Performance Improvement of Advanced Alloys)
Show Figures

Figure 1

22 pages, 4812 KiB  
Article
Mechanical Characterization of a Novel Cyclic Olefin-Based Hot-Melt Adhesive
by Vasco C. M. B. Rodrigues, Ana T. F. Venâncio, Eduardo A. S. Marques, Ricardo J. C. Carbas, Armina Klein, Ejiri Kazuhiro, Björn Nelson and Lucas F. M. da Silva
Materials 2025, 18(4), 855; https://doi.org/10.3390/ma18040855 - 15 Feb 2025
Cited by 1 | Viewed by 797
Abstract
A novel hot-melt cyclic olefin-based adhesive was designed as a transparent, non-tacky film of amorphous thermoplastic with a unique polymer micro-structure. The aim of the present paper is to assess the mechanical properties of the 0.1 mm thick COP hot-melt adhesive film through [...] Read more.
A novel hot-melt cyclic olefin-based adhesive was designed as a transparent, non-tacky film of amorphous thermoplastic with a unique polymer micro-structure. The aim of the present paper is to assess the mechanical properties of the 0.1 mm thick COP hot-melt adhesive film through adhesive characterizations tests. The glass transition temperature was determined using dynamic mechanical analysis (DMA). For mechanical characterization, bulk and thick adherend shear specimens were manufactured and tested at a quasi-static rate, where at least three specimens were used to calculate the average and standard deviation values. Tensile tests revealed the effects of molecular chain drawing and reorientation before the onset of strain hardening. Thick adherend shear specimens were used to retrieve shear properties. Fracture behaviour was assessed with the double cantilever beam (DCB) test and end-notched flexure (ENF) test, for characterization under modes I and II, respectively. To study the in-joint behaviour, single lap joints (SLJs) of aluminium and carbon fibre-reinforced polymer (CFRP) were manufactured and tested under different temperatures. Results showed a progressive interfacial failure following adhesive plasticization, allowing deformation prior to failure at 8 MPa. An adhesive failure mode was confirmed through scanning electron microscopy (SEM) analysis of aluminium SLJ. The adhesive exhibits tensile properties comparable to existing adhesives, while demonstrating enhanced lap shear strength and a distinctive failure mechanism. These characteristics suggest potential advantages in applications involving heat and pressure across automotive, electronics and structural bonding sectors. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

13 pages, 2687 KiB  
Article
Quantitative Modeling of High-Energy Electron Scattering in Thick Samples Using Monte Carlo Techniques
by Bradyn Quintard, Xi Yang and Liguo Wang
Appl. Sci. 2025, 15(2), 565; https://doi.org/10.3390/app15020565 - 9 Jan 2025
Cited by 1 | Viewed by 1086
Abstract
Cryo-electron microscopy (cryo-EM) is a powerful tool for imaging biological samples but is typically limited by sample thickness, which is restricted to a few hundred nanometers depending on the electron energy. However, there is a growing need for imaging techniques capable of studying [...] Read more.
Cryo-electron microscopy (cryo-EM) is a powerful tool for imaging biological samples but is typically limited by sample thickness, which is restricted to a few hundred nanometers depending on the electron energy. However, there is a growing need for imaging techniques capable of studying biological samples up to 10 µm in thickness while maintaining nanoscale resolution. This need motivates the use of mega-electron-volt scanning transmission electron microscopy (MeV-STEM), which leverages the high penetration power of MeV electrons to generate high-resolution images of thicker samples. In this study, we employ Monte Carlo simulations to model electron–sample interactions and explore the signal decay of imaging electrons through thick specimens. By incorporating material properties, interaction cross-sections for energy loss, and experimental parameters, we investigate the relationship between the incident and transmitted beam intensities. Key factors such as detector collection angle, convergence semi-angle, and the material properties of samples were analyzed. Our results demonstrate that the relationship between incident and transmitted beam intensities follows the Beer–Lambert law over thicknesses ranging from a few microns to several tens of microns, depending on material composition, electron energy, and collection angles. The linear depth of silicon dioxide reaches 3.9 µm at 3 MeV, about 6 times higher than that at 300 keV. Meanwhile, the linear depth of amorphous ice reaches 17.9 µm at 3 MeV, approximately 11.5 times higher than that at 300 keV. These findings are crucial for advancing the study of thick biological and semiconductor samples using MeV-STEM. Full article
Show Figures

Figure 1

19 pages, 5543 KiB  
Article
Temperature Areas of Local Inelasticity in Polyoxymethylene
by Viktor A. Lomovskoy, Svetlana A. Shatokhina, Raisa A. Alekhina and Nadezhda Yu. Lomovskaya
Polymers 2024, 16(24), 3582; https://doi.org/10.3390/polym16243582 - 21 Dec 2024
Viewed by 665
Abstract
The spectra of internal friction and temperature dependencies of the frequency of a free-damped oscillation process excited in the specimens of an amorphous–crystalline copolymer of polyoxymethylene with the co-monomer trioxane (POM-C) with a degree of crystallinity ~60% in the temperature range from −150 [...] Read more.
The spectra of internal friction and temperature dependencies of the frequency of a free-damped oscillation process excited in the specimens of an amorphous–crystalline copolymer of polyoxymethylene with the co-monomer trioxane (POM-C) with a degree of crystallinity ~60% in the temperature range from −150 °C to +170 °C has been studied. It has been established that the spectra of internal friction show five local dissipative processes of varying intensity, manifested in different temperature ranges of the spectrum. An anomalous decrease in the frequency of the oscillatory process was detected in the temperature ranges where the most intense dissipative losses appear on the spectrum of internal friction. Based on phenomenological model representations of a standard linear solid, the physical–mechanical (shear modulus defect, temperature position of local regions of inelasticity) and physical–chemical (activation energy, discrete relaxation time, intensities of detected dissipative processes) characteristics of each local dissipative process were calculated. It was found that the intensities of dissipative processes remain virtually unchanged for both annealed and non-annealed samples. The maximum variation in the shear modulus defect is 0.06%. Additionally, according to computational data, small changes are also characteristic of the following parameters: the activation energy varies from 0.5 to 1.4 kJ/mol and the relaxation time changes from 0.002 to 0.007 s, depending on the presence or absence of annealing. As a result of annealing, there is a significant increase in the relaxation microinheterogenity of the polymer system across the entire temperature range (250% for the low-temperature region and 115% for the high-temperature region). Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

19 pages, 31778 KiB  
Article
Effect of Microsize and Nanosize TiO2 on Porous Mullite-Alumina Ceramic Prepared by Slip Casting
by Ludmila Mahnicka-Goremikina, Maris Rundans, Vadims Goremikins, Ruta Svinka, Visvaldis Svinka, Liga Orlova and Inna Juhnevica
Materials 2024, 17(24), 6171; https://doi.org/10.3390/ma17246171 - 17 Dec 2024
Cited by 1 | Viewed by 796
Abstract
Sintered porous mullite-alumina ceramics are obtained from the concentrated suspension of powdered raw materials such as kaolin, gamma and alpha Al2O3, and amorphous SiO2, mainly by a solid-state reaction with the presence of a liquid phase. The [...] Read more.
Sintered porous mullite-alumina ceramics are obtained from the concentrated suspension of powdered raw materials such as kaolin, gamma and alpha Al2O3, and amorphous SiO2, mainly by a solid-state reaction with the presence of a liquid phase. The modification of mullite ceramic is achieved by the use of micro- and nanosize TiO2 powders. The phase compositions were measured using an X-ray powder diffraction (XRD) Rigaku Ultima+ (Tokyo, Japan) and microstructures of the sintered specimens were analysed using scanning electron microscopy (SEM) Hitachi TM3000-TableTop (Tokyo, Japan). The shrinkage, bulk density, apparent porosity, and water uptake of the specimens was determined after firing using Archimedes’ principle. The apparent porosity of the modified mullite ceramic is 52–69 ± 1%, water uptake is 33–40 ± 1%, pore size distributions are 0.05–0.8 μm, 0.8–10 μm and 10–1000 μm, and bulk density are variated from 1.15 ± 0.05 to 1.4 ± 0.05 g/cm3. The microsize TiO2 and nanosize TiO2 speed up the mullitisation process and allow the decrease in the quantity used as raw material amorphous SiO2, which was the purpose of the study. The use of nanosize TiO2 additive increases the porosity of such a ceramic, decreasing the bulk density and linear thermal expansion. Full article
Show Figures

Figure 1

20 pages, 4389 KiB  
Article
Preparation of Low Carbon Silicomanganese Slag-Based Alkali-Activated Materials Using Alkali-Activated Silica Waste
by Yang Zheng, Zhi-Yuan Zhang, Yisong Liu, Xiaozhu Zhang, Shaoguo Kang, Leyang Lv and Junbo Zhou
Buildings 2024, 14(12), 3835; https://doi.org/10.3390/buildings14123835 - 29 Nov 2024
Cited by 2 | Viewed by 956
Abstract
The utilization of silicomanganese slag (SiMnS) as a precursor for alkali-activated materials (AAMs) is considered as an efficient approach for sustainable and eco-friendly large-scale resource utilization. However, sodium silicate solutions account for more than 50% of the production costs and carbon emissions of [...] Read more.
The utilization of silicomanganese slag (SiMnS) as a precursor for alkali-activated materials (AAMs) is considered as an efficient approach for sustainable and eco-friendly large-scale resource utilization. However, sodium silicate solutions account for more than 50% of the production costs and carbon emissions of AAMs. In this study, AAM activators were prepared by silica-containing waste (acid leaching residue of boron mud, BM-AR) and NaOH as raw materials, and were successfully substituted for commercial sodium silicate-NaOH activators. Results indicated that the NaOH dosage had a great effect on the concentration and modulus of the activator. With the appropriate dosage of NaOH (NaOH: BM-AR = 0.4–0.7), suitable moduli of AAM activators can be produced at a wide range of solid/liquid ratios (L/S = 3–4.5) under mild conditions (80–100 °C). The compressive strength of the SiMnS AAM specimens prepared by this activator can reach 68.58 MPa, and its hydration products were mainly hydrated calcium silicate and amorphous silica–alumina gel, indicating the successful preparation of AAM. Calculation showed that the carbon emission of the AAMs prepared in this study was 12.4% and 37.6% of that of OPC and commercial water glass/NaOH-activated AAMs, and the cost was only 67.14% and 60.78% of them. The process achieves the use of waste materials to replace commercial activators, and is expected to be extended to a variety of AAMs raw materials and silica-containing waste. This makes it a highly promising alternative method for the production of AAMs, particularly the ‘just add water’ AAMs. Full article
Show Figures

Figure 1

23 pages, 7325 KiB  
Article
Dissolution of Volcanic Ash in Alkaline Environment for Cold Consolidation of Inorganic Binders
by Giovanni Dal Poggetto, Philippe Douwe, Antonio Stroscio, Elie Kamseu, Isabella Lancellotti, Antoine Elimbi and Cristina Leonelli
Materials 2024, 17(20), 5068; https://doi.org/10.3390/ma17205068 - 17 Oct 2024
Cited by 2 | Viewed by 1176
Abstract
A systematic study on the dissolution in concentrated alkali of two volcanic ashes from Cameroon, denoted as DAR and VN, is presented here. One volcanic ash, DAR, was 2 wt% richer in Fe and Ca and 4 wt% lower in Si than the [...] Read more.
A systematic study on the dissolution in concentrated alkali of two volcanic ashes from Cameroon, denoted as DAR and VN, is presented here. One volcanic ash, DAR, was 2 wt% richer in Fe and Ca and 4 wt% lower in Si than the other, designated as VN. Such natural raw materials are complex mixtures of aluminosilicate minerals (kaersutite, plagioclase, magnetite, diopside, thenardite, forsterite, hematite, and goethite) with a good proportion of amorphous phase (52 and 74 wt% for DAR and VN, respectively), which is more reactive than the crystalline phase in alkaline environments. Dissolution in NaOH + sodium silicate solution is the first step in the geopolymerisation process, which, after hardening at room temperature, results in solid and resistant building blocks. According to XRD, the VN finer ash powders showed a higher reactivity of Al-bearing soluble amorphous phases, releasing Al cations in NaOH, as indicated by IPC-MS. In general, dissolution in a strong alkaline environment did not seem to be affected by the NaOH concentration, provided that it was kept higher than 8 M, or by the powder size, remaining below 75 µm, while it was affected by time. However, in the time range studied, 1–120 min, the maximum element release was reached at about 100 min, when an equilibrium was reached. The hardened alkali activated materials show a good reticulation, as indicated by the low weight loss in water (10 wt%) when a hardening temperature of 25 °C was assumed. The same advantage was found for of the room-temperature consolidated specimens’ mechanical performance in terms of resistance to compression (4–6 MPa). The study of the alkaline dissolution of volcanic ash is, therefore, an interesting way of predicting and optimising the reactivity of the phases of which it is composed, especially the amorphous ones. Full article
(This article belongs to the Special Issue Advances in Natural Building and Construction Materials)
Show Figures

Graphical abstract

13 pages, 6515 KiB  
Article
Histopathological Analysis of Pseudoexfoliation Material in Ocular Surgeries: Clinical Implications
by Laura Denisa Stejar, Anca-Maria Istrate-Ofițeru, Ioana Teodora Tofolean, Dana Preoteasa and Florian Baltă
Diagnostics 2024, 14(19), 2187; https://doi.org/10.3390/diagnostics14192187 - 30 Sep 2024
Viewed by 1611
Abstract
Background: Pseudoexfoliation syndrome (PEX) is a common age-related ocular condition characterized by the accumulation of a fibrillar, pseudoexfoliative material on the anterior segment of the eye. This study aims to investigate the histopathological characteristics of pseudoexfoliative material within different ocular structures, including the [...] Read more.
Background: Pseudoexfoliation syndrome (PEX) is a common age-related ocular condition characterized by the accumulation of a fibrillar, pseudoexfoliative material on the anterior segment of the eye. This study aims to investigate the histopathological characteristics of pseudoexfoliative material within different ocular structures, including the eyelid, conjunctiva, and anterior lens capsule. Methods: A total of 32 anterior lens capsules, 3 eyelid fragments, and 12 conjunctival specimens were obtained from patients clinically diagnosed with PEX during ocular surgeries at the Onioptic Hospital of Ophthalmology. The tissue specimens were subsequently processed using the classical histological technique of paraffin embedding. This process enabled the production of serial sections with a thickness of 4 microns, facilitating the microscopic examination of fine details. The sections were stained with the hematoxylin-eosin (HE) method for the observation of microscopic structures. Results: This study’s findings reveal that PEX material, characterized by its fibrillar and amorphous components, is consistently present across multiple ocular structures, including the anterior lens capsule, eyelid, and conjunctiva. When stained with H&E, the PEX material typically appears as amorphous, eosinophilic deposits. Under higher magnification, these deposits exhibit a fibrillar structure, often appearing as irregular, granular, or filamentous aggregates. Conclusions: The deposit of fibrillar material in the eyelid and conjunctiva, though less commonly emphasized compared to other structures, is a significant finding that sheds light on the systemic nature of the syndrome. The consistent identification of fibrillar eosinophilic deposits across these structures highlights the systemic distribution of PEX material, reinforcing the notion that PEX syndrome is not confined to the anterior segment of the eye. Full article
Show Figures

Figure 1

17 pages, 8517 KiB  
Article
Evaluation of Different ZX Tensile Coupon Designs in Additive Manufacturing of Amorphous and Semi-Crystalline Polymer Composites
by Raviteja Rayaprolu, Ajay Kumar Kadiyala and Joseph G. Lawrence
J. Compos. Sci. 2024, 8(9), 379; https://doi.org/10.3390/jcs8090379 - 22 Sep 2024
Cited by 2 | Viewed by 1821
Abstract
The layer-by-layer deposition of molten polymer filament in fused deposition modeling (FDM) has evolved as a disruptive technology for building complex parts. This technology has drawbacks such as the anisotropic property of the printed parts resulting in lower strength for parts printed in [...] Read more.
The layer-by-layer deposition of molten polymer filament in fused deposition modeling (FDM) has evolved as a disruptive technology for building complex parts. This technology has drawbacks such as the anisotropic property of the printed parts resulting in lower strength for parts printed in the vertical Z direction compared with the other two planes. In this manuscript, we attempt to address these challenges as well as the lack of standardization in sample preparation and mechanical testing of the printed parts. The paper focuses on process parameters and design optimization of the ZX build orientation. Type I tensile bars in ZX orientation were printed as per the ASTM D638 standard using two (2B) and four (4B) tensile bar designs. The proposed design reduces material loss and post-processing to extract the test coupons. Printing a type I tensile bar in the ZX orientation is more challenging than type IV and type V due to the increased length of the specimen and changes in additional heat buildup during layer-by-layer deposition. Three different polymer composite systems were studied: fast-crystallizing nanofiller-based high-temperature nylon (HTN), slow-crystallizing nanofiller-based polycyclohexylene diethylene terephthalate glycol-modified (PCTG), and amorphous carbon fiber-filled polyetherimide (PEI-CF). For all the polymer composite systems, the 2B showed the highest strength properties due to the shorter layer time aiding the diffusion in the interlayers. Further, rheological studies and SEM imaging were carried out to understand the influence of the two designs on fracture mechanics and interlayer bonding, providing valuable insights for the field of additive manufacturing and material science. Full article
(This article belongs to the Special Issue Application of Composite Materials in Additive Manufacturing)
Show Figures

Figure 1

Back to TopTop