Temperature Areas of Local Inelasticity in Polyoxymethylene
Abstract
:1. Introduction
-[CH2-CH2]n- | PE |
-[CH2-O]n- | POM-H |
…-[CH2-O]p-[CH2-CH2-O-]q-… | POM-C [13] |
- Extended-chain crystals (ECCs)
;
- Folded-chain crystals (FCCs)
—lamellar crystals;
- The orthorhombic structure is characterized by a helical conformation of “two monomer units per helical turn of the macromolecule chain”, i.e., 2/1. In the orthorhombic structure, the unit cell is formed by two chains of macromolecules, each of which is included in the formation of the unit cell by two monomer units [37,38]. The orthorhombic modification is not common and easily transforms into the hexagonal modification when heated [39].
- We studied the internal friction spectra in the temperature range of −150 °C ÷ +160 °C and identified the local temperature regions of inelasticity;
- We obtained temperature dependencies of the frequency of the oscillatory process excited in POM specimens;
- We studied the influence of heat treatment (annealing) of the original sample on the dependencies and ;
- We calculated the physical–mechanical (shear modulus, shear modulus defect) and physical–chemical characteristics (activation energy of dissipative processes, discrete relaxation times, determination of the mechanisms of each dissipative process (relaxation, phase, hysteresis));
- We determined the influence of temperature conditions of the external thermal field (annealing) on the calculated physical–mechanical and physical–chemical characteristics of each individual dissipative process and the investigated polyoxymethylene system as a whole.
2. Experimental
2.1. Materials and Heat Treatment Methods
2.2. Relaxation Spectrometry Method
3. Results and Discussion
3.1. Internal Friction Spectra and Temperature Dependencies of Frequency
3.2. POM Structure According to Polarization Optical Microscopy Data
- POM spherulites obtained by cooling from the melt at temperatures well below 150 °C exhibit a distinct Maltese cross;
- When cooling at temperatures close to or slightly above 150 °C, the structure of the crystalline phase becomes dendritic, and the Maltese cross is barely visible [38].
3.3. DSK Method
3.4. POM and the Melt Flow Index
4. Theoretical Analysis of the Results Obtained by Relaxation Spectrometry
- We found the value of the relaxation time of the I-peak loss at −92 °C (in calculations, the temperatures were taken in degrees K and the value of the activation energy was taken from Table 4 and was 41.6 kJ/mol);
- We found the value of II-peak loss relaxation time at −48 °C (the value of activation energy was 45.6 kJ/mol);
- We found the following difference:The range of (IV + V) of the loss peaks was determined similarly.
Effect of Annealing on Internal Friction Spectra and Temperature Dependencies of Frequency
- There is a slight shift of the peaks along the temperature axis to the right;
- The intensities of the damping oscillatory process for the corresponding loss peaks remain unchanged;
- Frequencies at the point of maximum dissipative loss peaks decrease insignificantly;
- Activation energies and relaxation times increase insignificantly for all selected processes;
- Values of shear modulus defects for (I + II) and (IV + V) peaks of dissipative losses are almost unchanged;
- The temperature range at varies slightly.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, Z.; Chen, Y.; Liu, Z. The morphology, crystallization and conductive performance of a polyoxymethylene/carbon nanotube nanocomposite prepared under microinjection molding conditions. J. Polym. Res. 2014, 21, 451. [Google Scholar] [CrossRef]
- Hama, H.; Tashiro, K. Structural changes in isothermal crystallization process of polyoxymethylene investigated by time-resolved FTIR, SAXS and WAXS measurements. Polymer 2003, 44, 6973–6988. [Google Scholar] [CrossRef]
- Hama, H.; Tashiro, K. Structural changes in non-isothermal crystallization process of melt-cooled polyoxymethylene. [I] Detection of infrared bands characteristic of folded and extended chain crystal morphologies and extraction of a lamellar stacking model. Polymer 2003, 44, 3107–3116. [Google Scholar] [CrossRef]
- Hasegawa, S.; Takeshita, H.; Yoshii, F.; Sasaki, T.; Makuuchi, K.; Nishimoto, S. Thermal degradation behavior of gamma-irradiated acetyloxy end-capped poly(oxymethylene). Polymer 2000, 41, 111–120. [Google Scholar] [CrossRef]
- Lüftl, S.; Archodoulaki, V.-M.; Seidler, S. Thermal-oxidative induced degradation behaviour of polyoxymethylene (POM) copolymer detected by TGA/MS. Polym. Degrad. Stab. 2006, 91, 464–471. [Google Scholar] [CrossRef]
- Xu, W.; He, P. isothermal crystallization behavior of polyoxymethylene with and without nucleating agents. J. Appl. Polym. Sci. 2001, 80, 304–310. [Google Scholar] [CrossRef]
- Archodoulaki, V.-M.; Lüftl, S.; Seidler, S. Thermal degradation behaviour of poly(oxymethylene): 1. degradation and stabilizer consumption. Polym. Degrad. Stab. 2004, 86, 75–83. [Google Scholar] [CrossRef]
- Li, K.; Xiang, D.; Lei, X. Green and self-lubricating polyoxymethylene composites filled with low-density polyethylene and rice husk flour. J. Appl. Polym. Sci. 2008, 108, 2778–2786. [Google Scholar] [CrossRef]
- Polyformaldehyde. Available online: https://mplast.by/encyklopedia/poliformaldegid/ (accessed on 24 March 2024). (In Russian).
- Erol, O.; Unal, H.I.; Sari, B. Electrorheology and creep-recovery behavior of conducting polythiophene/poly(oxymethylene)-blend suspensions. Chin. J. Polym. Sci. 2012, 30, 16–25. [Google Scholar] [CrossRef]
- Konnov, V.V.; Harutyunyan, M.R.; Vorobieva, M.V.; Khodorich, A.S.; Mukhamedov, R.N.; Domenyuk, D.A. Clinical efficiency of orthopedic treatment of dental defects by arc prostheses with polyoxymethylene frame. Med. Alph. 2020, 3, 29–34. [Google Scholar] [CrossRef]
- Bao, H.-D.; Guo, Z.-X.; Yu, J. Effect of electrically inert particulate filler on electrical resistivity of polymer/multi-walled carbon nanotube composites. Polymer 2008, 49, 3826–3831. [Google Scholar] [CrossRef]
- Margolis, J.M. Engineering Plastics Handbook; McGraw-Hill: New York, NY, USA, 2005. [Google Scholar]
- Lomovskoy Viktor, A.; Shatokhina Svetlana, A.; Chalykh Anatoly, E.; Matveev Vladimir, V. Spectra of internal friction in polyethylene. Polymers 2022, 14, 675. [Google Scholar] [CrossRef]
- Shatokhina, S.A. Relaxation Processes and Phenomena of Local Inelasticity in Some Polymers of the Vinyl Series: PhD Dissertation in Physical and Mathematical Sciences: 1.4.4.—Frumkin Institute of Physical Chemistry and Electrochemistry, RAS, 2022; 130p. Available online: https://vak.minobrnauki.gov.ru/advert/100065324 (accessed on 10 June 2023).
- Bartenev, G.M.; Aliguliyev, R.M.; Khiteyeva, D.M. Relaxation transitions in polyethylene. Polym. Sci. USSR 1981, 23, 2183–2193. [Google Scholar] [CrossRef]
- Tarago, S.; Calleja, D.; Guzman, G.M. Anales de Física/Serie B, Aplicaciones, Métodos e Instrumentos; Publicación de la Real Sociedad Española de Física: Madrid, Spain, 1986; Volume 82, pp. 26–34. [Google Scholar]
- Salakhov, I.I.; Shaidullin, N.M.; Chalykh, A.E.; Matsko, M.A.; Shapagin, A.V.; Batyrshin, A.Z.; Shandryuk, G.A.; Nifant’ev, I.E. Low-temperature mechanical properties of high-density and low-density polyethylene and their blends. Polymers 2021, 13, 1821. [Google Scholar] [CrossRef]
- Bershtein, V.A.; Yegorov, V.M.; Marikhin, V.A.; Myasnikova, L.P. Specific features of molecular motion in lamellar polyethylene between 100 and 400 K. Polym. Sci. USSR 1985, 27, 864–874. [Google Scholar] [CrossRef]
- Salakhov, I.I.; Chalykh, A.E.; Shaidullin, N.M.; Shapagin, A.V.; Budylin, N.Y.; Khasbiullin, R.R.; Nifant’ev, I.E.; Gerasimov, V.K. Phase Equilibria and interdiffusion in bimodal high-density polyethylene (HDPE) and linear low-density polyethylene (LLDPE) based compositions. Polymers 2021, 13, 811. [Google Scholar] [CrossRef] [PubMed]
- Shut, N.I.; Bartenev, G.M.; Kaspersky, A.V. Relaxation transitions in polyethylene according to structural and mechanical relaxation data. Acta Polym. 1989, 40, 529–532. [Google Scholar] [CrossRef]
- Khanna Yash, P.; Turi Edith, A.; Taylor Thomas, J.; Vickroy Virgil, V.; Abbott Richard, F. Dynamic mechanical relaxations in polyethylene. Macromolecules 1985, 18, 1302–1309. [Google Scholar] [CrossRef]
- Speight, J.G. Chemical and Process Design Handbook; McGraw-Hill: New York, NY, USA, 2002; ISBN 0-07-137433-7. [Google Scholar]
- Methanal (Formaldehyde). Available online: https://www.essentialchemicalindustry.org/chemicals/methanal.html (accessed on 24 March 2024).
- Acetal Copolymer: Properties, Formation, and Uses. Available online: https://www.xometry.com/resources/materials/acetal-copolymer/ (accessed on 24 March 2024).
- Lebedev, E.V.; Lipatov, Y.S.; Anokhin, O.V. On the interaction of high- and low-density polyethylene in mixtures with polyoxymethylene. Polym. Sci. USSR 1981, 23, 1723–1729. (In Russian) [Google Scholar] [CrossRef]
- Archodoulaki, V.-M.; Lüftl, S.; Koch, T.; Seidler, S. Property changes in polyoxymethylene (POM) Resulting from processing, ageing and recycling. Polym Degrad Stab 2007, 92, 2181–2189. [Google Scholar] [CrossRef]
- Big Chemical Encyclopedia Chemical Substances, Components, Reactions, Process Design. Available online: https://chempedia.info/page/040255195050078046095159215159034229134083132124/ (accessed on 22 March 2024).
- Olabisi, O.; Adewale, K. (Eds.) Handbook of Thermoplastics; CRC Press: Boca Raton, FL, USA, 2016; ISBN 9780429101625. [Google Scholar]
- Difference Between POM-H and POM-C. Available online: https://www.differencebetween.com/difference-between-pom-h-and-vs-pom-c/ (accessed on 25 March 2024).
- Tashiro, K.; Hanesaka, M.; Ohhara, T.; Ozeki, T.; Kitano, T.; Nishu, T.; Kurihara, K.; Tamada, T.; Kuroki, R.; Fujiwara, S.; et al. Structural refinement and extraction of hydrogen atomic positions in polyoxymethylene crystal based on the first successful measurements of 2-dimensional high-energy synchrotron x-ray diffraction and wide-angle neutron diffraction patterns of hydrogenated and deuterated species. Polym. J. 2007, 39, 1253–1273. [Google Scholar] [CrossRef]
- Mohanraj, J.; Morawiec, J.; Pawlak, A.; Barton, D.C.; Galeski, A.; Ward, I.M. Orientation of polyoxymethylene by rolling with side constraints. Polymer 2008, 49, 303–316. [Google Scholar] [CrossRef]
- Kongkhlang, T.; Reddy, K.R.; Kitano, T.; Nishu, T.; Tashiro, K. Cocrystallization phenomenon of polyoxymethylene blend samples between the deuterated and hydrogenated species. Polym. J. 2011, 43, 66–73. [Google Scholar] [CrossRef]
- Reneker, D.H.; Geil, P.H. Morphology of polymer single crystals. J. Appl. Phys. 1960, 31, 1916–1925. [Google Scholar] [CrossRef]
- Preedy, J.E.; Wheeler, E.J. Phase transformations in cold rolled polyoxymethylene. Nat. Phys. Sci. 1972, 236, 60–61. [Google Scholar] [CrossRef]
- Iguchi, M.; Murase, I. Growth of needle-like polyoxymethylene crystals. J. Cryst. Growth 1974, 24–25, 596–599. [Google Scholar] [CrossRef]
- Zamboni, V.; Zerbi, G. Vibrational spectrum of a new crystalline modification of polyoxymethylene. J. Polym. Sci. Part C Polym. Symp. 1964, 7, 153–161. [Google Scholar] [CrossRef]
- Lüftl, S.; Visakh, P.M.; Chandran, S. (Eds.) Polyoxymethylene Handbook. Structure, Properties, Applications and Their Nanocomposites; Wiley: Hoboken, NJ, USA, 2014; ISBN 9781118385111. [Google Scholar]
- Kurosu, H.; Komoto, T.; Ando, I. 13C NMR Chemical shift and crystal structure of polyoxymethylene in the solid state. J. Mol. Struct. 1988, 176, 279–284. [Google Scholar] [CrossRef]
- Raimo, M. An Overview on the processing of polymers growth rate data and on the methods to verify the accuracy of the input parameters in crystallization regime analysis. Prog. Cryst. Growth Charact. Mater. 2011, 57, 65–92. [Google Scholar] [CrossRef]
- Raimo, M. Analysis of layer-by-layer phase transformation of a polyoxymethylene copolymer film. Acta Mater. 2008, 56, 4217–4225. [Google Scholar] [CrossRef]
- Read, B.E.; Williams, G. The dielectric and dynamic mechanical properties of polyoxymethylene (delrin). Polymer 1961, 2, 239–255. [Google Scholar] [CrossRef]
- McCrum, N.G. Internal friction in polyoxymethylene. J. Polym. Sci. 1961, 54, 561–568. [Google Scholar] [CrossRef]
- Kazen, M.E.; Geil, P.H. Electron microscopy studies of relaxation behavior of polyoxymethylene. J. Macromol. Sci. Part B 1977, 13, 381–404. [Google Scholar] [CrossRef]
- Yamada, N.; Orito, Z.; Minami, S. Relaxation phenomena of polyoxymethylene obtained from solid-state polymerization. J. Polym. Sci. A 1965, 3, 4173–4179. [Google Scholar] [CrossRef]
- Lomovskoj, V.A.; Abaturova, N.A.; Barteneva, A.G.; Galushko, T.B.; Lomovskaja, N.J.; Sakov, D.M.; Saunin, E.I.; Khlebnikova, O.A. Metering Converter 2015. Available online: https://yandex.ru/patents/doc/RU2568963C1_20151120 (accessed on 10 July 2024).
- Lomovskoy, V.A. The device for researching of local dissipative processes in solid materials of various chemical origin, composition and structure. Nauchnoe Priborostr. 2019, 29, 033–046. [Google Scholar] [CrossRef]
- Mascon POM 27. Available online: https://rusplast.com/catalog/poliatsetal/19823/ (accessed on 3 March 2024).
- When Should Parts Be Post Annealed (Stress Relief) after Machining? Available online: https://www.boedeker.com/Technical-Resources/Technical-Library/Plastic-Annealing-Guidelines (accessed on 3 March 2024).
- Bartenev, G.M.; Zelenev, Y.M. Physics and Mechanics Of Polymers: Textbook for Colleges; Higher School: Moscow, Russia, 1983. (In Russian) [Google Scholar]
- Kestelman, V.N. Physical Methods for Modifying Polymer Materials; Chemistry: Moscow, Russia, 1980. (In Russian) [Google Scholar]
- Zelenev, Y.V. Influence of heat treatment on electrical fluctuations of polymer systems. VMS. Ser. A 1987, 29, 807–811. (In Russian) [Google Scholar]
- Lomovskoy, V.A.; Chugunov, Y.V.; Shatokhina, S.A. methodology for the study of internal friction in the mode of free damped oscillatory process (part 1). Nauchnoe Priborostr. [Sci. Instrum.] 2023, 33, 60–71. [Google Scholar]
- Lomovskoy, V.A.; Shatokhina, S.A.; Simonov-Emel’yanov, I.D. phenomenological description of the “structure–property” relation for epoxy oligomer hardeners on the basis of internal friction spectra. Colloid J. 2024, 86, 418–430. [Google Scholar] [CrossRef]
- Blanter, M.S.; Golovin, I.S.; Neuhäuser, H.; Sinning, H.-R. Introduction to internal friction: Terms and definitions. In Internal Friction in Metallic Materials; Springer: Berlin/Heidelberg, Germany, 2007; Volume 90, pp. 1–10. ISBN 978-3-540-68757-3. [Google Scholar]
- Liu, Y.; Zhang, X.; Gao, Q.; Huang, H.; Liu, Y.; Min, M.; Wang, L. Structure and Properties of polyoxymethylene/silver/maleic anhydride-grafted polyolefin elastomer ternary nanocomposites. Polymers 2021, 13, 1954. [Google Scholar] [CrossRef]
- Bershtein, V.A.; Egorova, L.M.; Egorov, V.M.; Peschanskaya, N.N.; Yakushev, P.N.; Keating, M.Y.; Flexman, E.A.; Kassal, R.J.; Schodt, K.P. Segmental dynamics in poly(oxymethylene) as studied via combined differential scanning calorimetry/creep rate spectroscopy approach. Thermochim. Acta 2002, 391, 227–243. [Google Scholar] [CrossRef]
- Jaffe, M.; Wunderlich, B. Melting of polyoxymethylene. Kolloid-Z. Z. Polym. 1967, 216–217, 203–216. [Google Scholar] [CrossRef]
- Wunderlich, B. Macromolecular Physics, Volume 3—Crystal Melting; Academic Press: New York, NY, USA, 1980. [Google Scholar]
- Sitnikova, V.E. Methods of Thermal Analysis. Workshop; Sitnikova, V.E., Ponomareva, A.A., Uspenskaya, M.V., Eds.; ITMO University: St. Petersburg, Russia, 2021; p. 152. (In Russian) [Google Scholar]
- Gao, X.; Qu, C.; Zhang, Q.; Peng, Y.; Fu, Q. Brittle-ductile transition and toughening mechanism in POM/TPU/CaCO3 ternary composites. Macromol. Mater. Eng. 2004, 289, 41–48. [Google Scholar] [CrossRef]
- Siengchin, S.; Karger-Kocsis, J.; Psarras, G.C.; Thomann, R. Polyoxymethylene/polyurethane/alumina ternary composites: Structure, mechanical, thermal and dielectric properties. J. Appl. Polym. Sci. 2008, 110, 1613–1623. [Google Scholar] [CrossRef]
- Jebawi, K.A.; Sixou, B.; Séguéla, R.; Vigier, G.; Chervin, C. Hot Compaction of polyoxymethylene, part 1: Processing and mechanical evaluation. J. Appl. Polym. Sci. 2006, 102, 1274–1284. [Google Scholar] [CrossRef]
- ISO 29988-1:2019; Plastics-Polyoxymethylene (POM) Moulding and Extrusion Materials. ISO: Geneva, Switzerland, 2019. Available online: https://www.iso.org/standard/77532.html (accessed on 23 March 2024).
- Postnikov, V.S.; Tavadze, F.N.; Gordienko, L.K. (Eds.) Internal Friction in Metals and Alloys; Springer US: Boston, MA, USA, 1967; ISBN 978-1-4899-4727-7. [Google Scholar]
- Wunderlich, B. Macromolecular Physics. Volume 2: Crystal Nucleation, Growth, Annealing; Academic Press: New York, NY, USA, 1976. [Google Scholar]
Characteristic | POM-H | POM-C |
---|---|---|
Melting point, °C | 172–184 | 160–175 |
Processing temperature, °C | 194–244 | 172–205 |
Elastic modulus, MPa | 4623 | 3105 |
Tensile strength, MPa | 70 | 61 |
Elongation at break, % | 25 | 40–75 |
Glass transition temperature (Tg), °C | −85 | −60 |
Density, g/cm3 | 1.41 | 1.34 |
Properties | Values | Unit of Measure |
---|---|---|
Physical properties | ||
Density | 1410 | kg/cm3 |
Melt flow index | 27 | g/10 min |
Volumetric melt flow index | 25 | cm3/10 min |
Mechanical properties | ||
Tensile modulus (1 mm/min) | 2700 | MPa |
Tensile stress, 50 mm/min | 65 | MPa |
Flexural modulus, 23 °C | 2550 | MPa |
Charpy V-notch impact energy, 23 °C | 5 | kJ/m2 |
Melting point *, 20 °C/min | 169 | °C |
Thermal deformation temperature, 1.8 MPa | 95 | °C |
Degree of crystallinity * | 53 | % |
Average molecular weight, Mw * | 6.5 × 104 | - |
Specimen | Tm, °C | ΔHf, J/g | , % |
---|---|---|---|
Original | 169 | 173.91 | 53.35 |
Annealed | 170 | 167.59 | 51.41 |
Specimen | Tmax (K) | Tmax (°C) | , kJ/mol | |||
---|---|---|---|---|---|---|
Peak I | ||||||
original | 193.9 | −79 | 0.14 | 6.04 | 41.6 | 0.026 |
annealed | 190.9 | −82 | 0.13 | 5.62 | 41.1 | 0.028 |
Peak II | ||||||
original | 211.2 | −62 | 0.20 | 5.11 | 45.6 | 0.031 |
annealed | 213.2 | −60 | 0.20 | 4.63 | 46.2 | 0.034 |
Peak III | ||||||
original | 295.2 | −22 | 0.05 | 4.22 | 64.3 | 0.038 |
annealed | 295.0 | −21 | 0.06 | 3.88 | 64.4 | 0.041 |
Peak IV | ||||||
original | 379.8 | 107 | 0.19 | 2.25 | 84.7 | 0.071 |
annealed | 385.0 | 112 | 0.19 | 2.08 | 86.1 | 0.077 |
Peak V | ||||||
original | 417.8 | 145 | 0.12 | 1.66 | 94.2 | 0.096 |
annealed | 421.0 | 148 | 0.12 | 1.55 | 95.2 | 0.103 |
Specimen | Tmax (°C) | The Range of Frequency Variation, Hz. | Shear Modulus Defect ΔG | ΔT(°C) | |||
---|---|---|---|---|---|---|---|
Peak (I + II) | |||||||
original | −123 | −39 | 7.65 | 4.14 | 0.71 | 44 | 0.16 |
annealed | −133 | −38 | 7.23 | 4.00 | 0.69 | 52 | 0.40 |
Peak (IV + V) | |||||||
original | 30 | 168 | 3.54 | 1.23 | 0.88 | 94 | 1.78 |
annealed | 27 | 172 | 3.42 | 1.14 | 0.89 | 86 | 2.06 |
Specimen | T, (°C) | ΔT, (°C) | ||||
---|---|---|---|---|---|---|
Peak (I + II) | ||||||
original | −123 | −39 | 7.65 | 4.14 | 44 | 0.16 |
annealed | −133 | −38 | 7.23 | 4.00 | 52 | 0.40 |
Peak (IV + V) | ||||||
original | 30 | 168 | 3.54 | 1.23 | 94 | 1.78 |
annealed | 27 | 172 | 3.42 | 1.14 | 86 | 2.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lomovskoy, V.A.; Shatokhina, S.A.; Alekhina, R.A.; Lomovskaya, N.Y. Temperature Areas of Local Inelasticity in Polyoxymethylene. Polymers 2024, 16, 3582. https://doi.org/10.3390/polym16243582
Lomovskoy VA, Shatokhina SA, Alekhina RA, Lomovskaya NY. Temperature Areas of Local Inelasticity in Polyoxymethylene. Polymers. 2024; 16(24):3582. https://doi.org/10.3390/polym16243582
Chicago/Turabian StyleLomovskoy, Viktor A., Svetlana A. Shatokhina, Raisa A. Alekhina, and Nadezhda Yu. Lomovskaya. 2024. "Temperature Areas of Local Inelasticity in Polyoxymethylene" Polymers 16, no. 24: 3582. https://doi.org/10.3390/polym16243582
APA StyleLomovskoy, V. A., Shatokhina, S. A., Alekhina, R. A., & Lomovskaya, N. Y. (2024). Temperature Areas of Local Inelasticity in Polyoxymethylene. Polymers, 16(24), 3582. https://doi.org/10.3390/polym16243582