Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,034)

Search Parameters:
Keywords = aminotransferases

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1663 KiB  
Article
Effect of Sodium Sulfate Treatment on the Modulation of Aliphatic Glucosinolates in Eruca sativa Mill Organs at Flowering Stage
by Eleonora Pagnotta, Laura Righetti, Gabriele Micheletti, Carla Boga, Annamaria Massafra, Luisa Ugolini, Lorena Malaguti, Roberto Matteo, Federica Nicoletti, Roberto Colombo, Agostino Fricano and Laura Bassolino
Appl. Sci. 2025, 15(15), 8757; https://doi.org/10.3390/app15158757 (registering DOI) - 7 Aug 2025
Abstract
Glucosinolates are secondary metabolites of the Brassicales, playing a role in plant protection and as health-promoting compounds. Here, Na2SO4 was used to modulate the aliphatic glucosinolate content in different organs of Eruca sativa Mill. In flowers, which accumulate the highest [...] Read more.
Glucosinolates are secondary metabolites of the Brassicales, playing a role in plant protection and as health-promoting compounds. Here, Na2SO4 was used to modulate the aliphatic glucosinolate content in different organs of Eruca sativa Mill. In flowers, which accumulate the highest amount of glucosinolates, Na2SO4 increased the concentration of glucoraphanin, in roots of glucoerucin and in apical leaves it doubled the amount of dimeric 4-mercaptobutyl glucosinolate. The biosynthetic gene Branched-Chain Aminotransferase 4 was also induced in roots at the highest salt concentration, while in leaves all tested genes biosynthetic genes were downregulated or unaffected. Cytochromes P450 83A1 monooxygenase was downregulated at the highest salt concentration in all organs. Overall, E. sativa is a reliable source of glucosinolates, which can be modulated with Na2SO4. Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Figure 1

24 pages, 3032 KiB  
Article
Conjugation of Pea Peptides and D-Xylose via Maillard Glycosylation and Its Functionality to Antagonize Alcohol-Induced Liver Injury in Zebrafish
by Guanlong Li, Xiaolan Liu, Siyu Diao and Xiqun Zheng
Nutrients 2025, 17(15), 2570; https://doi.org/10.3390/nu17152570 - 7 Aug 2025
Abstract
Background: In this study, the preparation of pea glycopeptides based on the Maillard glycosylation pathway (PPH-M) and its antagonistic mechanism against alcoholic liver injury in zebrafish were studied. Results: The results showed that the conjugation of D-xylose significantly improved the antioxidant activity of [...] Read more.
Background: In this study, the preparation of pea glycopeptides based on the Maillard glycosylation pathway (PPH-M) and its antagonistic mechanism against alcoholic liver injury in zebrafish were studied. Results: The results showed that the conjugation of D-xylose significantly improved the antioxidant activity of pea protein hydrolysates (PPHs). The structural characterization indicated that PPH was successfully covalent binding to D-xylose, which was mainly manifested as a stretching vibration change in Fourier transform infrared spectroscopy (FTIR) and molecular size increase. Scanning electron microscopy (SEM) and zeta potential also confirmed the covalently bound of the two. In addition, a model of alcohol-induced liver injury in zebrafish was established. Through the intervention of different doses of PPH-M, it was found that the intervention of PPH-M could significantly increase superoxide dismutase (SOD) activity, reduce malondialdehyde (MDA) content, aspartate aminotransferase (AST), and alanine aminotransferase (ALT) activity, and significantly improve alcohol-induced liver injury in zebrafish. The protective effect of PPH-M was also confirmed by liver pathology and fluorescence microscopy. Finally, reverse transcription-polymerase chain reaction (qRT-PCR) results indicated that PPH-M could significantly regulate the expression level of antioxidant-related mRNA. PPH-M could also regulate the expression of the Keap1/Nrf2 signaling pathway and up-regulated glutathione synthesis signaling pathway to antagonize alcohol-induced liver injury in zebrafish. Conclusion: This study revealed the mechanism of PPH-M antagonized alcoholic liver injury and laid a theoretical foundation for its development as functional foods. Full article
(This article belongs to the Section Proteins and Amino Acids)
Show Figures

Figure 1

16 pages, 540 KiB  
Article
Comparison of Dietary Inorganic and Small-Peptide Chelating Trace Minerals on Growth Performance, Immunity, Meat Quality, and Environmental Release in Litopenaeus vannamei
by Jingshen Chen, Nan Liu, Shumeng Wang, Hailong Wang, Kun Ouyang, Yuxuan Wang, Junyi Luo, Jiajie Sun, Qianyun Xi, Yuping Sun, Yongguo Si, Yongliang Zhang and Ting Chen
Animals 2025, 15(15), 2297; https://doi.org/10.3390/ani15152297 - 6 Aug 2025
Abstract
The present study evaluated the effect of adding 0% (control), 30%, 40% and 50% SPMs (small-peptide chelating trace minerals) to replace ITMs (inorganic trace minerals) in the diets of Litopenaeus vannamei; 720 shrimp were randomly assigned to four treatments (six replicates per [...] Read more.
The present study evaluated the effect of adding 0% (control), 30%, 40% and 50% SPMs (small-peptide chelating trace minerals) to replace ITMs (inorganic trace minerals) in the diets of Litopenaeus vannamei; 720 shrimp were randomly assigned to four treatments (six replicates per group, 30 shrimp per replicate) in a 42-day feeding trial. There were no significant differences (p > 0.05) among the control, 40% SPM and 50% SPM groups in terms of the survival rate, weight gain rate, specific growth rate, hepatosomatic index, condition factor, feed intake, feed conversion ratio, or protein efficiency ratio; however, protein efficiency ratio was reduced in the 30% SPM group (p < 0.05). Glucose, triglyceride, and aspartate aminotransferase levels in the hemolymph of the 30% SPM group were significantly increased (p < 0.05), while the glucose and aspartate aminotransferase levels were also significantly increased in the 40% SPM group (p < 0.05). In the 50% SPM group, the glucose and triglyceride levels were also significantly increased (p < 0.05). Hepatopancreatic alkaline phosphatase activity was elevated at 40% SPM, and alkaline phosphatase, acid phosphatase, glutathione peroxidase, and total antioxidant capacity activities were significantly increased in the 50% SPM group (p < 0.05). The moisture content and drip loss were reduced in both the 40% and 50% SPM groups (p < 0.05). Therefore, replacing 40–50% ITMs with SPMs can maintain growth performance while enhancing physiological functions. In conclusion, the results of this study demonstrate that the incorporation of 30–50% SPMs into one’s diet constitutes a viable alternative to 100% ITMs. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

19 pages, 656 KiB  
Article
The Effect of Nutritional Education on Nutritional Status and Quality of Life in Patients with Liver Cirrhosis
by Seymanur Tinkilic, Perim Fatma Turker, Can Selim Yilmaz, Meral Akdogan Kayhan, Derya Ari and Dilara Turan Gökce
Healthcare 2025, 13(15), 1905; https://doi.org/10.3390/healthcare13151905 - 5 Aug 2025
Viewed by 26
Abstract
Objectives: This study aimed to evaluate the effect of nutritional education on nutritional knowledge, nutritional status, and quality of life in patients with liver cirrhosis. Methods: Thirty patients participated. At baseline, assessments were conducted to collect data on demographics, physical activity, anthropometric and [...] Read more.
Objectives: This study aimed to evaluate the effect of nutritional education on nutritional knowledge, nutritional status, and quality of life in patients with liver cirrhosis. Methods: Thirty patients participated. At baseline, assessments were conducted to collect data on demographics, physical activity, anthropometric and biochemical measures, dietary habits, 24 h food intake, nutritional status, quality of life, and nutritional knowledge. Participants received a 30 min face-to-face nutritional education session by a registered dietitian, repeated after one month. A follow-up phone call was conducted one month later to reinforce the education. Final evaluations were completed one month after the call. Results: A significant upward trend was detected in nutritional knowledge scores after the intervention period (from 7.4 ± 2.76 to 9.2 ± 3.45). The physical component of quality of life improved, while the mental component showed a slight decline. Dietary changes included reduced energy and protein intake among females and increased protein intake in males. In both genders, fat intake increased and carbohydrate intake decreased. Biochemical improvements were observed, including significant reductions in gamma-glutamyl transferase, aspartate aminotransferase, alanine aminotransferase, and triglycerides in females and alanine aminotransferase and gamma-glutamyl transferase in males. Conclusions: Structured nutritional education may improve nutritional knowledge, dietary behavior, and biochemical markers in cirrhosis patients. Longer follow-up durations may further enhance these improvements. Full article
Show Figures

Figure 1

14 pages, 279 KiB  
Article
FIB-4 Score as a Predictor of Eligibility for Elastography Exam in Patients with Polycystic Ovary Syndrome
by Maciej Migacz, Dagmara Pluta, Kamil Barański, Anna Kujszczyk, Marta Kochanowicz and Michał Holecki
Biomedicines 2025, 13(8), 1878; https://doi.org/10.3390/biomedicines13081878 - 1 Aug 2025
Viewed by 309
Abstract
Background/objectives: Polycystic ovary syndrome (PCOS) and metabolic dysfunction-associated steatotic liver disease (MASLD) are common co-morbidities in women of reproductive age. PCOS is highly heterogeneous and is, therefore, divided into four phenotypes. MASLD leads to numerous systemic complications. Studies to date have shown an [...] Read more.
Background/objectives: Polycystic ovary syndrome (PCOS) and metabolic dysfunction-associated steatotic liver disease (MASLD) are common co-morbidities in women of reproductive age. PCOS is highly heterogeneous and is, therefore, divided into four phenotypes. MASLD leads to numerous systemic complications. Studies to date have shown an association between PCOS and MASLD. This study was designed to compare the FIB-4 score (based on age, alanine aminotransferase, aspartate aminotransferase and platelet count) and the results of shear wave elastography in assessing the risk of developing MASLD by patients with PCOS divided by phenotypes. Methods: The study enrolled 242 women age 18–35 years with PCOS diagnosed according to Rotterdam criteria, hospitalized at the Department of Gynaecological Endocrinology of the University Clinical Centre in Katowice. The study subjects were assigned to phenotypes A to D. Clinical and biochemical assessments were performed (including androgens and metabolic parameters), and the FIB-4 index was calculated. Liver fibrosis was evaluated by shear wave elastography. To balance the group sizes of phenotypes, oversampling with replacement was applied (PROC SURVEYSELECT, SAS), increasing the number of observations for phenotypes B, C, and D fivefold. Statistical analyses were performed based on data distribution (Shapiro–Wilk test), using ANOVA or the Kruskal–Wallis test with Dunn’s correction. Statistical significance was set at p < 0.05. Results: The FIB-4 score was the highest in phenotype B patients (0.50 ± 0.15), and the lowest in phenotypes A and C (0.42 ± 0.14). The highest rate of positive elastography findings was recorded in phenotype A patients (34.7%) and the lowest in phenotype C group (13.5%). Significant differences between the phenotypes were also found in terms of androgen levels, insulin, HOMA-IR, and the lipid profile. Among patients with positive elastography, the highest FIB-4 scores were recorded in phenotype C group (0.44 ± 0.06), but the differences between the phenotypes were not statistically significant. Conclusions: The FIB-4 score was the highest in phenotype B patients and differed significantly from phenotypes A, C and D. In the elastography exam, the fibrosis index was statistically significantly higher in phenotype A compared to other phenotypes. No correlation was detected between the FIB-4 index and positive elastography. The findings suggest that the FIB-4 index may be used for MASLD screening, but its usefulness as a predictor of eligibility for elastography requires more research. Full article
20 pages, 6929 KiB  
Article
Protective Effects of Sodium Copper Chlorophyllin and/or Ascorbic Acid Against Barium Chloride-Induced Oxidative Stress in Mouse Brain and Liver
by Salma Benayad, Basma Es-Sai, Yassir Laaziouez, Soufiane Rabbaa, Hicham Wahnou, Habiba Bouchab, Hicham El Attar, Bouchra Benabdelkhalek, Loubna Amahdar, Oualid Abboussi, Raphaël Emmanuel Duval, Riad El Kebbaj and Youness Limami
Molecules 2025, 30(15), 3231; https://doi.org/10.3390/molecules30153231 - 1 Aug 2025
Viewed by 186
Abstract
Barium chloride (BaCl2), a known environmental pollutant, induces organ-specific oxidative stress through disruption of redox homeostasis. This study evaluated the protective effects and safety profile of sodium copper chlorophyllin (SCC) and ascorbic acid (ASC) against BaCl2-induced oxidative damage in [...] Read more.
Barium chloride (BaCl2), a known environmental pollutant, induces organ-specific oxidative stress through disruption of redox homeostasis. This study evaluated the protective effects and safety profile of sodium copper chlorophyllin (SCC) and ascorbic acid (ASC) against BaCl2-induced oxidative damage in the liver and brain of mice using a two-phase experimental protocol. Animals received either SCC (40 mg/kg), ASC (160 mg/kg), or their combination for 14 days prior to BaCl2 exposure (150 mg/L in drinking water for 7 days), allowing evaluation of both preventive and therapeutic effects. Toxicological and behavioral assessments confirmed the absence of systemic toxicity or neurobehavioral alterations following supplementation. Body weight, liver and kidney indices, and biochemical markers (Aspartate Aminotransferase (ASAT), Alanine Aminotransferase (ALAT), creatinine) remained within physiological ranges, and no anxiogenic or locomotor effects were observed. In the brain, BaCl2 exposure significantly increased SOD (+49%), CAT (+66%), GPx (+24%), and GSH (+26%) compared to controls, reflecting a robust compensatory antioxidant response. Although lipid peroxidation (MDA) showed a non-significant increase, SCC, ASC, and their combination reduced MDA levels by 42%, 37%, and 55%, respectively. These treatments normalized antioxidant enzyme activities and GSH, indicating an effective neuroprotective effect. In contrast, the liver exhibited a different oxidative profile. BaCl2 exposure increased MDA levels by 80% and GSH by 34%, with no activation of SOD, CAT, or GPx. Histological analysis revealed extensive hepatocellular necrosis, vacuolization, and inflammatory infiltration. SCC significantly reduced hepatic MDA by 39% and preserved tissue architecture, while ASC alone or combined with SCC exacerbated inflammation and depleted hepatic GSH by 71% and 78%, respectively, relative to BaCl2-exposed controls. Collectively, these results highlight a differential, organ-specific response to BaCl2-induced oxidative stress and the therapeutic potential of SCC and ASC. SCC emerged as a safer and more effective agent, particularly in hepatic protection, while both antioxidants demonstrated neuroprotective effects when used individually or in combination. Full article
Show Figures

Graphical abstract

12 pages, 257 KiB  
Article
Evaluating the Diagnostic Potential of the FIB-4 Index for Cystic Fibrosis-Associated Liver Disease in Adults: A Comparison with Transient Elastography
by Stephen Armstrong, Kingston Rajiah, Aaron Courtenay, Nermeen Ali and Ahmed Abuelhana
J. Clin. Med. 2025, 14(15), 5404; https://doi.org/10.3390/jcm14155404 (registering DOI) - 31 Jul 2025
Viewed by 238
Abstract
Background/Objectives: Cystic fibrosis-associated liver disease (CFLD) is a significant complication in individuals with cystic fibrosis (CF), contributing to morbidity and mortality, with no universally accepted, reliable, non-invasive diagnostic tool for early detection. Current diagnostic methods, including liver biopsy and imaging, remain resource-intensive [...] Read more.
Background/Objectives: Cystic fibrosis-associated liver disease (CFLD) is a significant complication in individuals with cystic fibrosis (CF), contributing to morbidity and mortality, with no universally accepted, reliable, non-invasive diagnostic tool for early detection. Current diagnostic methods, including liver biopsy and imaging, remain resource-intensive and invasive. Non-invasive biomarkers like the Fibrosis-4 (FIB-4) index have shown promise in diagnosing liver fibrosis in various chronic liver diseases. This study explores the potential of the FIB-4 index to predict CFLD in an adult CF population and assesses its correlation with transient elastography (TE) as a potential diagnostic tool. The aim of this study is to evaluate the diagnostic performance of the FIB-4 index for CFLD in adults with CF and investigate its relationship with TE-based liver stiffness measurements (LSM). Methods: The study was conducted in a regional cystic fibrosis unit, including 261 adult CF patients. FIB-4 scores were calculated using an online tool (mdcalc.com) based on patient age, aspartate aminotransferase (AST), alanine aminotransferase (ALT), and platelet count. In parallel, 29 patients underwent liver stiffness measurement using TE (Fibroscan®). Statistical analyses included non-parametric tests for group comparisons and Pearson’s correlation to assess the relationship between FIB-4 scores and TE results. Results: The mean FIB-4 score in patients diagnosed with CFLD was higher (0.99 ± 0.83) compared to those without CFLD (0.64 ± 0.38), although the difference was not statistically significant (p > 0.05). TE results for CFLD patients (5.9 kPa) also did not show a significant difference compared to non-CFLD patients (4.2 ± 1.6 kPa, p > 0.05). However, a positive correlation (r = 0.401, p = 0.031) was found between FIB-4 scores and TE-based LSM, suggesting a potential complementary diagnostic role. Conclusions: The FIB-4 index, while not sufficient as a standalone diagnostic tool for CFLD in adults with CF, demonstrates potential when used in conjunction with other diagnostic methods like TE. This study introduces a novel approach for integrating non-invasive diagnostic markers in CF care, offering a pathway for future clinical practice. The combination of FIB-4 and TE could serve as an accessible, cost-effective alternative to invasive diagnostic techniques, improving early diagnosis and management of CFLD in the CF population. Additionally, future research should explore the integration of these tools with emerging biomarkers and clinical features to refine diagnostic algorithms for CFLD, potentially reducing reliance on liver biopsies and improving patient outcomes. Full article
(This article belongs to the Section Intensive Care)
19 pages, 4753 KiB  
Article
Biosynthesized Gold Nanoparticles from Eruca sativa Mill. Leaf Extract Exhibit In Vivo Biocompatibility, Antimicrobial, and Antioxidant Activities
by Abdullah Muhsin Hazbar, Abdulkadir Mohammed Noori Jassim, Mustafa Taha Mohammed and Younis Baqi
Antibiotics 2025, 14(8), 776; https://doi.org/10.3390/antibiotics14080776 - 31 Jul 2025
Viewed by 262
Abstract
Background/Objectives: Antimicrobial resistance (AMR) is a health related threat world-wide. Biosynthesized gold nanoparticles (AuNPs) using plant extracts have been reported to exhibit certain biological activity. This study aimed to biosynthesize AuNPs using an aqueous extract of Eruca sativa leaves and to evaluate their [...] Read more.
Background/Objectives: Antimicrobial resistance (AMR) is a health related threat world-wide. Biosynthesized gold nanoparticles (AuNPs) using plant extracts have been reported to exhibit certain biological activity. This study aimed to biosynthesize AuNPs using an aqueous extract of Eruca sativa leaves and to evaluate their biocompatibility, antimicrobial activity, and antioxidant properties. Methods: AuNPs were biosynthesized using an aqueous extract of Eruca sativa leaves. Their biocompatibility was evaluated through hemolytic activity and assessments of hepatic and renal functions in rats. AuNPs were biologically evaluated as antimicrobial and antioxidant agents. Results: The AuNPs exhibited particle sizes of 27.78 nm (XRD) and 69.41 nm (AFM). Hemolysis assays on red blood cells revealed negligible hemolytic activity (<1%). Hepatic enzyme levels, including alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) were studied. ALT, AST, and ALP levels showed no significant changes compared to the negative control. However, LDH levels were elevated at higher concentration (52.8 µg/mL), while the lower concentration (26.4 µg/mL) appeared to be safer. Renal biomarkers, urea and creatinine, showed no significant changes at either concentration, indicating minimal nephrotoxicity. The antimicrobial activity of AuNPs, plant extract, and gold salt was tested against five microorganisms: two Gram-positive bacteria (Staphylococcus aureus, Streptococcus pneumoniae), two Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa), and a fungal strain (Candida albicans). The AuNPs exhibited minimum inhibition concentrations (MICs) of 13.2 µg/mL against S. aureus and S. pneumoniae, 26.4 µg/mL against E. coli and C. albicans, and 39.6 µg/mL against P. aeruginosa, suggesting selectivity towards Gram-positive bacteria. Furthermore, the AuNPs demonstrated strong antioxidant activity, surpassing that of vitamin C. Conclusions: The biosynthesized AuNPs exhibited promising biocompatibility, selective antimicrobial properties, and potent antioxidant activity, supporting their potential application in combating the AMR. Full article
Show Figures

Figure 1

17 pages, 458 KiB  
Article
Effects of Chestnut Tannin Extract on Enteric Methane Emissions, Blood Metabolites and Lactation Performance in Mid-Lactation Cows
by Radiša Prodanović, Dušan Bošnjaković, Ana Djordjevic, Predrag Simeunović, Sveta Arsić, Aleksandra Mitrović, Ljubomir Jovanović, Ivan Vujanac, Danijela Kirovski and Sreten Nedić
Animals 2025, 15(15), 2238; https://doi.org/10.3390/ani15152238 - 30 Jul 2025
Viewed by 153
Abstract
Dietary tannin supplementation represents a potential strategy to modulate rumen fermentation and enhance lactation performance in dairy cows, though responses remain inconsistent. A 21-day feeding trial was conducted to evaluate the effect of chestnut tannin (CNT) extract on the enteric methane emissions (EME), [...] Read more.
Dietary tannin supplementation represents a potential strategy to modulate rumen fermentation and enhance lactation performance in dairy cows, though responses remain inconsistent. A 21-day feeding trial was conducted to evaluate the effect of chestnut tannin (CNT) extract on the enteric methane emissions (EME), blood metabolites, and milk production traits in mid-lactation dairy cows. Thirty-six Holstein cows were allocated to three homogeneous treatment groups: control (CNT0, 0 g/d CNT), CNT40 (40 g/d CNT), and CNT80 (80 g/d CNT). Measurements of EME, dry matter intake (DMI), milk yield (MY), and blood and milk parameters were carried out pre- and post-21-day supplementation period. Compared with the no-additive group, the CNT extract reduced methane production, methane yield, and methane intensity in CNT40 and CNT80 (p < 0.001). CNT40 and CNT80 cows exhibited lower blood urea nitrogen (p = 0.019 and p = 0.002) and elevated serum insulin (p = 0.003 and p < 0.001) and growth hormone concentrations (p = 0.046 and p = 0.034), coinciding with reduced aspartate aminotransferase (p = 0.016 and p = 0.045), and lactate dehydrogenase (p = 0.011 and p = 0.008) activities compared to control. However, CNT80 had higher circulating NEFA and BHBA than CNT0 (p = 0.003 and p = 0.004) and CNT40 (p = 0.035 and p = 0.019). The blood glucose, albumin, and total bilirubin concentrations were not affected. MY and fat- and protein-corrected milk (FPCM), MY/DMI, and FPCM/DMI were higher in both CNT40 (p = 0.004, p = 0.003, p = 0.014, p = 0.010) and CNT80 (p = 0.002, p = 0.003, p = 0.008, p = 0.013) cows compared with controls. Feeding CNT80 resulted in higher protein content (p = 0.015) but lower fat percentage in milk (p = 0.004) compared to CNT0. Milk urea nitrogen and somatic cell counts were significantly lower in both CNT40 (p < 0.001, p = 0.009) and CNT80 (p < 0.001 for both) compared to CNT0, while milk lactose did not differ between treatments. These findings demonstrate that chestnut tannin extract effectively mitigates EME while enhancing lactation performance in mid-lactation dairy cows. Full article
(This article belongs to the Special Issue Advances in Nutrition and Feeding Strategies for Dairy Cows)
Show Figures

Figure 1

10 pages, 318 KiB  
Article
In-Line Monitoring of Milk Lactose for Evaluating Metabolic and Physiological Status in Early-Lactation Dairy Cows
by Akvilė Girdauskaitė, Samanta Arlauskaitė, Arūnas Rutkauskas, Karina Džermeikaitė, Justina Krištolaitytė, Mindaugas Televičius, Dovilė Malašauskienė, Lina Anskienė, Sigitas Japertas and Ramūnas Antanaitis
Life 2025, 15(8), 1204; https://doi.org/10.3390/life15081204 - 28 Jul 2025
Viewed by 278
Abstract
Milk lactose concentration has been proposed as a noninvasive indicator of metabolic health in dairy cows, particularly during early lactation when metabolic demands are elevated. This study aimed to investigate the relationship between milk lactose levels and physiological, biochemical, and behavioral parameters in [...] Read more.
Milk lactose concentration has been proposed as a noninvasive indicator of metabolic health in dairy cows, particularly during early lactation when metabolic demands are elevated. This study aimed to investigate the relationship between milk lactose levels and physiological, biochemical, and behavioral parameters in early-lactation Holstein cows. Twenty-eight clinically healthy cows were divided into two groups: Group 1 (milk lactose < 4.70%, n = 14) and Group 2 (milk lactose ≥ 4.70%, n = 14). Both groups were monitored over a 21-day period using the Brolis HerdLine in-line milk analyzer (Brolis Sensor Technology, Vilnius, Lithuania) and SmaXtec intraruminal boluses (SmaXtec Animal Care Technology®, Graz, Austria). Parameters including milk yield, milk composition (lactose, fat, protein, and fat-to-protein ratio), blood biomarkers, and behavior were recorded. Cows with higher milk lactose concentrations (≥4.70%) produced significantly more milk (+12.76%) and showed increased water intake (+15.44%), as well as elevated levels of urea (+21.63%), alanine aminotransferase (ALT) (+22.96%), glucose (+4.75%), magnesium (+8.25%), and iron (+13.41%) compared to cows with lower lactose concentrations (<4.70%). A moderate positive correlation was found between milk lactose and urea levels (r = 0.429, p < 0.01), and low but significant correlations were observed with other indicators. These findings support the use of milk lactose concentration as a practical biomarker for assessing metabolic and physiological status in dairy cows, and highlight the value of integrating real-time monitoring technologies in precision livestock management. Full article
(This article belongs to the Special Issue Innovations in Dairy Cattle Health and Nutrition Management)
Show Figures

Figure 1

25 pages, 3545 KiB  
Article
Combined Effects of PFAS, Social, and Behavioral Factors on Liver Health
by Akua Marfo and Emmanuel Obeng-Gyasi
Med. Sci. 2025, 13(3), 99; https://doi.org/10.3390/medsci13030099 - 28 Jul 2025
Viewed by 292
Abstract
Background: Environmental exposures, such as per- and polyfluoroalkyl substances (PFAS), in conjunction with social and behavioral factors, can significantly impact liver health. This research investigates the combined effects of PFAS (perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), alcohol consumption, smoking, income, and education [...] Read more.
Background: Environmental exposures, such as per- and polyfluoroalkyl substances (PFAS), in conjunction with social and behavioral factors, can significantly impact liver health. This research investigates the combined effects of PFAS (perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), alcohol consumption, smoking, income, and education on liver function among the U.S. population, utilizing data from the 2017–2018 National Health and Nutrition Examination Survey (NHANES). Methods: PFAS concentrations in blood samples were analyzed using online solid-phase extraction combined with liquid chromatography–tandem mass spectrometry (LC-MS/MS), a highly sensitive and specific method for detecting levels of PFAS. Liver function was evaluated using biomarkers such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), gamma-glutamyltransferase (GGT), total bilirubin, and the fatty liver index (FLI). Descriptive statistics and multivariable linear regression analyses were employed to assess the associations between exposures and liver outcomes. Bayesian Kernel Machine Regression (BKMR) was utilized to explore the nonlinear and interactive effects of these exposures. To determine the relative influence of each factor on liver health, Posterior Inclusion Probabilities (PIPs) were calculated. Results: Linear regression analyses indicated that income and education were inversely associated with several liver injury biomarkers, while alcohol use and smoking demonstrated stronger and more consistent associations. Bayesian Kernel Machine Regression (BKMR) further highlighted alcohol and smoking as the most influential predictors, particularly for GGT and total bilirubin, with posterior inclusion probabilities (PIPs) close to 1.0. In contrast, PFAS showed weaker associations. Regression coefficients were small and largely non-significant, and PIPs were comparatively lower across most liver outcomes. Notably, education had a higher PIP for ALT and GGT than PFAS, suggesting a more protective role in liver health. People with higher education levels tend to live healthier lifestyles, have better access to healthcare, and are generally more aware of health risks. These factors can all help reduce the risk of liver problems. Overall mixture effects demonstrated nonlinear trends, including U-shaped relationships for ALT and GGT, and inverse associations for AST, FLI, and ALP. Conclusion: These findings underscore the importance of considering both environmental and social–behavioral determinants in liver health. While PFAS exposures remain a long-term concern, modifiable lifestyle and structural factors, particularly alcohol, smoking, income, and education, exert more immediate and pronounced effects on hepatic biomarkers in the general population. Full article
Show Figures

Figure 1

18 pages, 1599 KiB  
Article
SGLT2 Inhibitors in MASLD (Metabolic Dysfunction-Associated Steatotic Liver Disease) Associated with Sustained Hepatic Benefits, Besides the Cardiometabolic
by Mohamad Suki, Ashraf Imam, Johnny Amer, Yael Milgrom, Muhammad Massarwa, Wadi Hazou, Yariv Tiram, Ofer Perzon, Yousra Sharif, Joseph Sackran, Revital Alon, Nachum Lourie, Anat Hershko Klement, Safa Shibli, Tamer Safadi, Itamar Raz, Abed Khalaileh and Rifaat Safadi
Pharmaceuticals 2025, 18(8), 1118; https://doi.org/10.3390/ph18081118 - 26 Jul 2025
Viewed by 612
Abstract
Background and Aims: Sodium-glucose cotransporter-2 (SGLT2) inhibitors have shown promise in metabolic dysfunction-associated steatotic liver disease (MASLD). This large real-world study aimed to evaluate the effects of SGLT2 inhibitors on MASLD patients’ clinical outcomes and liver-related complications over extended follow-up. Patients and [...] Read more.
Background and Aims: Sodium-glucose cotransporter-2 (SGLT2) inhibitors have shown promise in metabolic dysfunction-associated steatotic liver disease (MASLD). This large real-world study aimed to evaluate the effects of SGLT2 inhibitors on MASLD patients’ clinical outcomes and liver-related complications over extended follow-up. Patients and Method: Data were sourced from TriNetX, a global health research platform with de-identified electronic medical records spanning 135 million patients across 112 healthcare organizations worldwide. We included MASLD adults diagnosed according to ICD9/10 criteria. Following propensity score matching based on 34 variables (demographics, comorbidities, laboratory tests and medication history), SGLT2 inhibitor-treated (n = 19,922) patients were compared with non-SGLT2 inhibitor (n = 19,922) cases. Exclusion criteria included baseline improved alanine aminotransferase (ALT) and alkaline phosphatase (ALP) levels > 4 upper normal limit (UNL), baseline advanced liver disease, liver transplant and cancer, past anticoagulation and non-MASLD etiologies. Assessed outcomes included survival, biochemical, hematologic, AFP, metabolic and cardiovascular parameters, progression to advanced liver disease (ALD), synthetic function, and metabolic markers over 1, 5, and 10 years. Results: Following matching, both cohorts were well-balanced across baseline characteristics. After one year, the SGLT2 inhibitor group demonstrated significantly reduced BMI (33.2 ± 6.2 vs. 34.1 ± 6.5 kg/m2, p < 0.001), improved ALT (40.3 ± 31.5 vs. 48.3 ± 41.2 U/L, p < 0.001), and better glycemic control (HbA1c 7.35 ± 1.51% vs. 7.93 ± 1.72%, p < 0.001). The SGLT2 inhibitor group showed higher 10-year survival rates (95.00% vs. 88.69%, p < 0.001), fewer cardiovascular events (10.19% vs. 11.80%, p < 0.001), and markedly reduced progression to advanced liver disease (6.90% vs. 14.15%, p < 0.001). These benefits were consistent across clinical, laboratory, and medication-defined ALD categories. Notably, rates of hepatic decompensation events were significantly lower with SGLT2 inhibitor therapy. Conclusions: In this large real-world cohort, SGLT2 inhibitor use in MASLD patients was associated with significantly improved long-term survival, cardiovascular, and liver-related outcomes over 10 years of follow-up. These benefits likely result from combined metabolic improvements, anti-inflammatory effects, and direct hepatoprotective mechanisms. SGLT2 inhibitors represent a promising therapeutic strategy for improving outcomes in MASLD. Full article
Show Figures

Figure 1

23 pages, 36719 KiB  
Article
The Impact of Hybrid Bionanomaterials Based on Gold Nanoparticles on Liver Injury in an Experimental Model of Thioacetamide-Induced Hepatopathy
by Mara Filip, Simona Valeria Clichici, Mara Muntean, Luminița David, Bianca Moldovan, Vlad Alexandru Toma, Cezar Login and Şoimița Mihaela Suciu
Biomolecules 2025, 15(8), 1068; https://doi.org/10.3390/biom15081068 - 24 Jul 2025
Viewed by 265
Abstract
The present study aimed to evaluate the therapeutic benefits of a hybrid material based on gold nanoparticles and natural extracts on an experimental model of thioacetamide-induced (TAA) liver injury in rats. The nanomaterials were synthesized using a green method, with Cornus sanguinea L. [...] Read more.
The present study aimed to evaluate the therapeutic benefits of a hybrid material based on gold nanoparticles and natural extracts on an experimental model of thioacetamide-induced (TAA) liver injury in rats. The nanomaterials were synthesized using a green method, with Cornus sanguinea L. extract as a reducing and capping agent (NPCS), and were then mixed with Vaccinium myrtillus L. (VL) extract in order to achieve a final mixture with enhanced properties (NPCS-VL). NPCSs were characterized using UV–vis spectrophotometry and transmission electron microscopy (TEM), which demonstrated the formation of spherical, stable gold nanoparticles with an average diameter of 20 nm. NPCS-VL’s hepatoprotective effects were evaluated through an analysis of oxidative stress, inflammation, hepatic cytolysis, histology assays, and TEM in comparison to silymarin on an animal model of thioacetamide (TAA)-induced toxic hepatitis. TAA administration determined hepatotoxicity, as it triggered redox imbalance, increased proinflammatory cytokine levels and alanine aminotransferase (ALAT) activity, and induced morphological and ultrastructural changes characteristic of liver fibrosis. In rats treated with NPCS-VL, all these pathological processes were attenuated, suggesting a potential antifibrotic effect of this hybrid bionanomaterial. Full article
Show Figures

Figure 1

13 pages, 395 KiB  
Article
Stress and Energy Mobilization Responses of Climbing Perch Anabas testudineus During Terrestrial Locomotion
by Efim D. Pavlov, Tran Duc Dien and Ekaterina V. Ganzha
Stresses 2025, 5(3), 45; https://doi.org/10.3390/stresses5030045 - 23 Jul 2025
Viewed by 248
Abstract
The climbing perch, Anabas testudineus, is one of the most widely distributed freshwater amphibious fishes in South and Southeast Asia, exhibiting terrestrial movements. Our experimental study aimed to investigate endocrinological and biochemical changes in the blood of climbing perch associated with their [...] Read more.
The climbing perch, Anabas testudineus, is one of the most widely distributed freshwater amphibious fishes in South and Southeast Asia, exhibiting terrestrial movements. Our experimental study aimed to investigate endocrinological and biochemical changes in the blood of climbing perch associated with their terrestrial movements. To achieve this, the fish were divided into two groups: one group was exposed to aquatic conditions for twenty minutes, while the other group was subjected to terrestrial conditions for the same duration through rapid water level decrease. In terrestrial conditions, the fish predominantly exhibit movements on land, whereas in aquatic environments, they primarily remain immobile or swim. Elevated levels of stress-induced cortisol and glucose after short-term exposure indicate a high-stress response involving both neuroendocrine and metabolic mechanisms. Changes in the activity of aspartate aminotransferase and increased concentrations of triglycerides in the blood serum suggest energy mobilization through aerobic metabolic pathways. Extreme environmental changes did not affect thyroid axis function, including deiodination, thereby maintaining essential physiological activities under new conditions. Additionally, the anaerobic metabolic pathway appears to be minimally utilized at the onset of terrestrial movement, as no significant changes in lactate dehydrogenase concentrations were observed. Overall, the terrestrial movements of the climbing perch are likely predominantly forced and associated with high stress. Full article
(This article belongs to the Section Animal and Human Stresses)
Show Figures

Figure 1

20 pages, 2494 KiB  
Article
Effect of Environmental Exposure to Zearalenone on the Metabolic Profile of Patients with Sigmoid Colorectal Cancer or Colorectal Cancer on the Day of Hospital Admission
by Sylwia Lisieska-Żołnierczyk, Magdalena Gajęcka, Łukasz Zielonka, Katarzyna E. Przybyłowicz and Maciej T. Gajęcki
Int. J. Mol. Sci. 2025, 26(14), 6967; https://doi.org/10.3390/ijms26146967 - 20 Jul 2025
Viewed by 332
Abstract
Colorectal cancer is one of the most commonly diagnosed types of cancer and constitutes the second most frequent cancer in women (W) and the third most frequent cancer in men (M). The aim of the study was to determine if environmental exposure to [...] Read more.
Colorectal cancer is one of the most commonly diagnosed types of cancer and constitutes the second most frequent cancer in women (W) and the third most frequent cancer in men (M). The aim of the study was to determine if environmental exposure to zearalenone (ZEN) (a mycoestrogen) affects the metabolic profile of patients diagnosed with sigmoid colorectal cancer (SCC) and colorectal cancer (CRC) (division based on their location) at hospital admission. Male and female patients who were diagnosed with SCC or CRC and whose blood samples tested positive or negative for ZEN participated in a year-long study. Seventeen patients with symptoms of SCC and CRC, in whom ZEN and its metabolites were not detected in peripheral blood, constituted the patients without ZEN (PWZ) group. The experimental groups comprised a total of 16 patients who were diagnosed with SCC or CRC and tested positive for ZEN but negative for ZEN metabolites. Patients exposed to ZEN were characterized by increased levels of liver enzymes (alanine aminotransferase (ALT) from 5.8 to 18.1 IU/L; aspartate aminotransferase (AST) from 2.8 to 10.7 IU/L) and decrease in the value of the De Ritis ratio (below 1.0), different gamma glutamyl transpeptidase and AST activity, lower albumin (from 0.24 g/dL in M to 0.67 g/dL in W) and total protein levels (from 0.75 to 1.76 g/dL), a decrease in total cholesterol (from 21.6 to 40.3 mg/dL) and triglyceride levels (from 7.8 to 37.2 mg/dL), and lower activity of lipase C (from 28.72 to 64.75 IU/L). The metabolic profile of M and W patients diagnosed with SCC and CRC and exposed to ZEN revealed intensified biotransformation processes in the liver, liver damage, and a predominance of catabolic processes. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Graphical abstract

Back to TopTop