Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (629)

Search Parameters:
Keywords = amino acid replacement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 450 KiB  
Article
Four Organic Protein Source Alternatives to Fish Meal for Pacific White Shrimp (Penaeus vannamei) Feeding
by Yosu Candela-Maldonado, Imane Megder, Eslam Tefal, David S. Peñaranda, Silvia Martínez-Llorens, Ana Tomás-Vidal, Miguel Jover-Cerdá and Ignacio Jauralde
Fishes 2025, 10(8), 384; https://doi.org/10.3390/fishes10080384 - 5 Aug 2025
Viewed by 39
Abstract
The use of eco-organic ingredients as a source of protein in aquaculture diets needs important attention due to the growing demand for organic seafood products. The present study evaluated the effects of fish meal substitution by different organic ingredients on the growth, body [...] Read more.
The use of eco-organic ingredients as a source of protein in aquaculture diets needs important attention due to the growing demand for organic seafood products. The present study evaluated the effects of fish meal substitution by different organic ingredients on the growth, body composition, retention efficiency, enzyme activity, and nutrient digestibility of white shrimp Penaeus vannamei. The four dietary formulations tested were formulated with organic ingredients and the fish meal was replaced by the following organic protein meals: Iberian pig viscera meal (PIG), trout by-product meal (TRO), insect meal (FLY), and organic vegetable meal (WHT), in addition to a control diet (CON) that included 15% fish meal. A growth trial was carried out for 83 days, raising 1 g shrimp to commercial size (20 g). Shrimp were stocked at 167 shrimp/m3 (15 individuals per 90 L tank). The results showed that the growth obtained by shrimp fed with TRO (19.27 g) and PIG (19.35 g) were similar in weight gain to the control diet (20.76 g), while FLY (16.04 g) and WHT (16.73 g) meals resulted in a significant lower final weight. The FLY diet showed significantly lower protein digestibility (68.89%) compared to the CON, PIG, TRO, and WHT diets, and significantly higher trypsin activity (0.17 mU/g) compared to shrimp fed with the PIG, TRO, and WHT diets. Shrimp fed with WHT have a significantly lower body weight percentage of protein (19.69%) than shrimp fed with the WHT and TRO diets, and some significant differences in dietary aminoacidic levels affecting amino acid body composition. These results indicate that Iberian pig viscera and trout by-product meal can successfully replace fish meal in Pacific white shrimp aquaculture. Full article
(This article belongs to the Special Issue Advances in Aquaculture Feed Additives)
Show Figures

Figure 1

18 pages, 2892 KiB  
Review
Roles of Type 10 17β-Hydroxysteroid Dehydrogenase in Health and Disease
by Xue-Ying He, Janusz Frackowiak and Song-Yu Yang
J. Pers. Med. 2025, 15(8), 346; https://doi.org/10.3390/jpm15080346 - 1 Aug 2025
Viewed by 177
Abstract
Type 10 17β-hydroxysteroid dehydrogenase (17β-HSD10) is the HSD17B10 gene product. It plays an appreciable part in the carcinogenesis and pathogenesis of neurodegeneration, such as Alzheimer’s disease and infantile neurodegeneration. This mitochondrial, homo-tetrameric protein is a central hub in various metabolic pathways, e.g., branched-chain [...] Read more.
Type 10 17β-hydroxysteroid dehydrogenase (17β-HSD10) is the HSD17B10 gene product. It plays an appreciable part in the carcinogenesis and pathogenesis of neurodegeneration, such as Alzheimer’s disease and infantile neurodegeneration. This mitochondrial, homo-tetrameric protein is a central hub in various metabolic pathways, e.g., branched-chain amino acid degradation and neurosteroid metabolism. It can bind to other proteins carrying out diverse physiological functions, e.g., tRNA maturation. It has also previously been proposed to be an Aβ-binding alcohol dehydrogenase (ABAD) or endoplasmic reticulum-associated Aβ-binding protein (ERAB), although those reports are controversial due to data analyses. For example, the reported km value of some substrate of ABAD/ERAB was five times higher than its natural solubility in the assay employed to measure km. Regarding any reported “one-site competitive inhibition” of ABAD/ERAB by Aβ, the ki value estimations were likely impacted by non-physiological concentrations of 2-octanol at high concentrations of vehicle DMSO and, therefore, are likely artefactual. Certain data associated with ABAD/ERAB were found not reproducible, and multiple experimental approaches were undertaken under non-physiological conditions. In contrast, 17β-HSD10 studies prompted a conclusion that Aβ inhibited 17β-HSD10 activity, thus harming brain cells, replacing a prior supposition that “ABAD” mediates Aβ neurotoxicity. Furthermore, it is critical to find answers to the question as to why elevated levels of 17β-HSD10, in addition to Aβ and phosphorylated Tau, are present in the brains of AD patients and mouse AD models. Addressing this question will likely prompt better approaches to develop treatments for Alzheimer’s disease. Full article
Show Figures

Figure 1

19 pages, 2173 KiB  
Article
The Effect of Slow-Release Fertilizer on the Growth of Garlic Sprouts and the Soil Environment
by Chunxiao Han, Zhizhi Zhang, Renlong Liu, Changyuan Tao and Xing Fan
Appl. Sci. 2025, 15(15), 8216; https://doi.org/10.3390/app15158216 - 24 Jul 2025
Viewed by 357
Abstract
To address the issue of excessive chemical fertilizer use in agricultural production, this study conducted a pot experiment with four treatments: CK (no fertilization), T1 (the application of potassium magnesium sulfate fertilizer), T2 (the application of slow-release fertilizer equal to T1), and T3 [...] Read more.
To address the issue of excessive chemical fertilizer use in agricultural production, this study conducted a pot experiment with four treatments: CK (no fertilization), T1 (the application of potassium magnesium sulfate fertilizer), T2 (the application of slow-release fertilizer equal to T1), and T3 (the application of slow-release fertilizer with the same fertility as T1). The effects of these treatments on garlic seedling yield, growth quality, chlorophyll content, photosynthetic characteristics, and the soil environment were investigated to evaluate the feasibility of replacing conventional fertilizers with slow-release formulations. The results showed that compared with CK, all three fertilized treatments (T1, T2, and T3) significantly increased the plant heights and stem diameters of the garlic sprouts (p < 0.05). Plant height increased by 14.85%, 17.81%, and 27.75%, while stem diameter increased by 9.36%, 8.83%, and 13.96%, respectively. Additionally, the chlorophyll content increased by 4.34%, 7.22%, and 8.05% across T1, T2, and T3, respectively. Among the treatments, T3 exhibited the best overall growth performance. Compared with those in the CK group, the contents of soluble sugars, soluble proteins, free amino acids, vitamin C, and allicin increased by 64.74%, 112.17%, 126.82%, 36.15%, and 45.43%, respectively. Furthermore, soil organic matter, available potassium, magnesium, and phosphorus increased by 109.02%, 886.25%, 91.65%, and 103.14%, respectively. The principal component analysis indicated that soil pH and exchangeable magnesium were representative indicators reflecting the differences in the soil’s chemical properties under different fertilization treatments. Compared with the CK group, the metal contents in the T1 group slightly increased, while those in T2 and T3 generally decreased, suggesting that the application of slow-release fertilizer exerts a certain remediation effect on soils contaminated with heavy metals. This may be attributed to the chemical precipitation and ion exchange capacities of phosphogypsum, as well as the high adsorption and cation exchange capacity of bentonite, which help reduce the leaching of soil metal ions. In summary, slow-release fertilizers not only promote garlic sprout growth but also enhance soil quality by regulating its chemical properties. Full article
(This article belongs to the Section Ecology Science and Engineering)
Show Figures

Figure 1

14 pages, 2669 KiB  
Article
Glutamic Acid at Position 343 in PB2 Contributes to the Virulence of H1N1 Swine Influenza Virus in Mice
by Yanwen Wang, Qiu Zhong, Fei Meng, Zhang Cheng, Yijie Zhang, Zuchen Song, Yali Zhang, Zijian Feng, Yujia Zhai, Yan Chen, Chuanling Qiao and Huanliang Yang
Viruses 2025, 17(7), 1018; https://doi.org/10.3390/v17071018 - 20 Jul 2025
Viewed by 419
Abstract
The H1N1 swine influenza viruses CQ91 and CQ445, isolated from pigs in China, exhibited distinct virulence in mice despite sharing similar genomic constellations. CQ91 demonstrated higher pathogenicity (MLD50: 5.4 log10 EID50) and replication efficiency in mice compared to [...] Read more.
The H1N1 swine influenza viruses CQ91 and CQ445, isolated from pigs in China, exhibited distinct virulence in mice despite sharing similar genomic constellations. CQ91 demonstrated higher pathogenicity (MLD50: 5.4 log10 EID50) and replication efficiency in mice compared to CQ445 (MLD50: 6.6 log10 EID50). Through reverse genetics, we found that the attenuation of CQ445 was due to a single substitution of glutamic acid (E) with lysine (K) at position 343 in the PB2 protein. Introducing the CQ445-PB2 (343K) into CQ91 significantly reduced viral replication and pathogenicity in mice, while replacing CQ445-PB2 with CQ91-PB2 (343E) restored virulence. In vitro studies showed that the K343E mutation impaired viral replication in MDCK and A549 cells and reduced polymerase activity in minigenome assays. Mechanistically, the amino acid at position 343 in the PB2 affects the transcription stage of the viral replication process. Structural modeling indicated that the charge reversal caused by E343K altered local electrostatic interactions without major conformational changes. Phylogenetic analysis revealed that PB2-343E is highly conserved (>99.9%) in human and swine H1/H3 influenza viruses, suggesting that PB2-343E confers an adaptive advantage. This study identifies PB2-343E as a critical determinant of influenza virus pathogenicity in mammals, highlighting its role in host adaptation. Full article
(This article belongs to the Section General Virology)
Show Figures

Figure 1

14 pages, 3277 KiB  
Article
The Role of Non-Catalytic Region in Determining the Difference in Efficiency Between Two Cellobiohydrolases Revealed Through a Genetic Approach
by Xinyuan Yan, Pankajkumar Ramdas Waghmare, Xiaoli Meng, Jianhui Zhang, Shaoming Ding, Yu Lei, Jun Yue and Guodong Liu
J. Fungi 2025, 11(7), 536; https://doi.org/10.3390/jof11070536 - 18 Jul 2025
Viewed by 366
Abstract
The cellulose-binding domain and inter-domain linker play crucial roles in the degradation of crystalline cellulose by cellulases. Although significant differences exist in the degradation efficiency of cellobiohydrolase I (CBH I) derived from different fungal sources, the relationship between this efficiency diversity and variations [...] Read more.
The cellulose-binding domain and inter-domain linker play crucial roles in the degradation of crystalline cellulose by cellulases. Although significant differences exist in the degradation efficiency of cellobiohydrolase I (CBH I) derived from different fungal sources, the relationship between this efficiency diversity and variations in the non-catalytic region remains poorly understood. In this study, we found significant differences in the length and amino acid composition of the linker region of CBH I derived from Sordariomycetes and Eurotiomycetes. By replacing the non-catalytic region of Penicillium oxalicum CBH I with the corresponding segment from Trichoderma reesei, the cellulose conversion efficiency of the extracellular enzyme system doubled under the same protein dosage, and the adsorption of CBH I onto cellulose was improved. While replacing only the cellulose-binding domain improved the degradation efficiency of the enzyme system, additional replacement of the linker region resulted in greater enhancement. Improved degradation efficiency due to non-catalytic region replacement was observed under various conditions, including higher cellulose substrate concentration, reduced cellulose crystallinity, use of pretreated straw as a substrate, and degradation at physiological temperature. These findings provide novel insights into the molecular mechanisms underlying crystalline cellulose degradation by filamentous fungi. Full article
(This article belongs to the Special Issue Innovative Applications and Biomanufacturing of Fungi)
Show Figures

Figure 1

17 pages, 489 KiB  
Article
Protease Enzyme Supplementation in Weaning Piglets Fed Reduced Crude Protein Diets: Effects on Gut Health Integrity and Performance Response
by Nathana Rudio Furlani, Stephane Alverina Briguente Da Motta, Bruno Teixeira Ramos, Wender Vieira Fernandes, Maria Rogervânia Silva de Farias, Rony Riveros, Tarciso Tizziani and Melissa Izabel Hannas
Animals 2025, 15(14), 2109; https://doi.org/10.3390/ani15142109 - 17 Jul 2025
Viewed by 424
Abstract
Two trials evaluated the effects of dietary protease inclusion in weaned piglets fed diets with or without crude protein (CP) reduction, focusing on performance, intestinal health, and amino acid digestibility. In Trial I, 270 piglets (21–63 days) received six treatments: control (PC), PC [...] Read more.
Two trials evaluated the effects of dietary protease inclusion in weaned piglets fed diets with or without crude protein (CP) reduction, focusing on performance, intestinal health, and amino acid digestibility. In Trial I, 270 piglets (21–63 days) received six treatments: control (PC), PC with 100 g/ton protease A (PC+A), CP reduced by 1.0% (NC1) or 1.5% (NC1.5), NC1.5 with 50 g/ton protease A (NC1.5+A), and NC1.5 with 50 g/ton protease B (NC1.5+B). PC+A improved weight gain, feed intake, and feed conversion compared with NC1.5+A. The incidence of diarrhea was reduced in animals fed protease-supplemented diets (PC+A, NC1.5+A and NC1.5+B). PC had greater ileal villus height than NC1.5+B, and PC+A showed a higher jejunal villus-to-crypt ratio than reduced CP groups. NC1.5+B increased jejunal expression of IL-6, TNF-α, and haptoglobin. In Trial II, 12 ileal-cannulated piglets received diets with or without protease A. Protease improved the standardized ileal digestibility (SID) of methionine+cysteine and tryptophan but reduced the SID of glycine and proline. While protease supplementation can improve some amino acids (Met+Cys and Thr) protein digestibility, our findings suggest it cannot fully replace careful amino acid balancing in CP-reduced diets. However, protease-supplemented diets were associated with improved intestinal morphometry and a reduced incidence of diarrhea. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

21 pages, 579 KiB  
Article
Evaluation of Seaweed Meal and Konjac Glucomannan Mixture as Feed Ingredients in Largemouth Bass Micropterus salmoides
by Yan-Bo Cheng, Dan Wu, Liang Gao, Shun Rong, Guo-Huan Xu and Xu-Fang Liang
Fishes 2025, 10(7), 345; https://doi.org/10.3390/fishes10070345 - 11 Jul 2025
Viewed by 337
Abstract
To address the negative effects of high-starch diets on largemouth bass (LMB), this study evaluated the feasibility of using a Gracilaria lemaneiformis-konjac glucomannan mixture (GKM, 2:1) as a substitute for strong flour (SF). Four iso-nitrogenous and iso-lipid diets were formulated: a control [...] Read more.
To address the negative effects of high-starch diets on largemouth bass (LMB), this study evaluated the feasibility of using a Gracilaria lemaneiformis-konjac glucomannan mixture (GKM, 2:1) as a substitute for strong flour (SF). Four iso-nitrogenous and iso-lipid diets were formulated: a control (15% SF; GK00) and three other diets replacing 33.3% (GK05), 66.7% (GK10), or 100% (GK15) of SF with GKM. Each diet was randomly administered to triplicate tanks of fish (10.49 ± 0.232 g) for a 10-week feeding trial. Results showed that the GKM inclusion groups significantly improved the fish survival and feed intake. Fish in GK05 and GK10 groups exhibited significantly higher final body weight, weight gain, and specific growth rate than the GK00 group, while GK15 showed no significant increase in these metrics. There was no impairment in protein, lipid, phosphorus, and energy retention efficiency in the GK05 and GK10 groups compared to those of the GK00 group. Apparent digestibility for feed dry matter, protein, lipid, phosphorus, and the 16 amino acids was not decreased in the GK05 and GK10 groups relative to the GK00 group. In addition, this study revealed reduced phosphorus waste per kilogram of weight gain in GK05 and GK10. In conclusion, these findings position GKM as a sustainable alternative to SF in feed for LMB. Full article
Show Figures

Figure 1

34 pages, 1227 KiB  
Review
Understanding Renal Tubular Function: Key Mechanisms, Clinical Relevance, and Comprehensive Urine Assessment
by Mario Alamilla-Sanchez, Miguel Angel Alcalá Salgado, Victor Manuel Ulloa Galván, Valeria Yanez Salguero, Martín Benjamin Yamá Estrella, Enrique Fleuvier Morales López, Nicte Alaide Ramos García, Martín Omar Carbajal Zárate, Jorge David Salazar Hurtado, Daniel Alberto Delgado Pineda, Leticia López González and Julio Manuel Flores Garnica
Pathophysiology 2025, 32(3), 33; https://doi.org/10.3390/pathophysiology32030033 - 3 Jul 2025
Viewed by 1948
Abstract
Renal function refers to the combined actions of the glomerulus and tubular system to achieve homeostasis in bodily fluids. While the glomerulus is essential in the first step of urine formation through a coordinated filtration mechanism, the tubular system carries out active mechanisms [...] Read more.
Renal function refers to the combined actions of the glomerulus and tubular system to achieve homeostasis in bodily fluids. While the glomerulus is essential in the first step of urine formation through a coordinated filtration mechanism, the tubular system carries out active mechanisms of secretion and reabsorption of solutes and proteins using specific transporters in the epithelial cells. The assessment of renal function usually focuses on glomerular function, so the tubular function is often underestimated as a fundamental part of daily clinical practice. Therefore, it is essential to properly understand the tubular physiological mechanisms and their clinical association with prevalent human pathologies. This review discusses the primary solutes handled by the kidneys, including glucose, amino acids, sodium, potassium, calcium, phosphate, citrate, magnesium and uric acid. Additionally, it emphasizes the significance of physicochemical characteristics of urine, such as pH and osmolarity. The use of a concise methodology for the comprehensive assessment of urine should be strengthened in the basic training of nephrologists when dealing with problems such as water and electrolyte balance disorders, acid-base disorders, and harmful effects of commonly used drugs such as chemotherapy, antibiotics, or diuretics to avoid isolated replacement of the solute without carrying out comprehensive approaches, which can lead to potentially severe complications. Full article
Show Figures

Figure 1

22 pages, 1853 KiB  
Article
Fermentation Characteristics, Nutrient Content, and Microbial Population of Silphium perfoliatum L. Silage Produced with Different Lactic Acid Bacteria Additives
by Yitong Jin, Bao Yuan, Fuhou Li, Jiarui Du, Meng Yu, Hongyu Tang, Lixia Zhang and Peng Wang
Animals 2025, 15(13), 1955; https://doi.org/10.3390/ani15131955 - 2 Jul 2025
Viewed by 383
Abstract
The aim of this study was to explore the effects of different lactic acid bacteria additives (Lactiplantibacillus plantarum or Lentilactobacillus buchneri) on the fermentation quality, chemical composition, in vitro digestibility, bacterial community structure, and predictive function of S. perfoliatum silage feed. [...] Read more.
The aim of this study was to explore the effects of different lactic acid bacteria additives (Lactiplantibacillus plantarum or Lentilactobacillus buchneri) on the fermentation quality, chemical composition, in vitro digestibility, bacterial community structure, and predictive function of S. perfoliatum silage feed. Fresh S. perfoliatum was wilted overnight, then its moisture content was adjusted between 65 and 70%. The experiment was performed in three groups as follows: (1) the control group (CK group), which lacked a Lactobacillus preparation; (2) the Lactiplantibacillus plantarum (L. plantarum) group (LP group), which was inoculated with L. plantarum at 5 × 106 cfu/g FW; and (3) the Lentilactobacillus buchneri (L. buchneri) group (LB group), which was inoculated with L. buchneri at 5 × 106 cfu/g FW. The results showed that L. plantarum significantly reduced pH and increased lactic acid (LA) content in S. perfoliatum silage compared with the control. L. buchneri, on the other hand, excelled in reducing ammonia nitrogen (NH3-N) content and significantly increased acetic acid (AA) content. At 60 days of fermentation, the CP content was significantly higher (p < 0.05) in the LP and LB groups than in the CK group (19.29 vs. 15.53 and 15.87). At 60 days of fermentation, the ivCPD was significantly higher (p < 0.05) in the LB group than in the CK and LP groups (57.80 vs. 54.77 and 55.77). The 60-day silage process completely altered the bacterial community of S. perfoliatum silage. In the fresh samples, the dominant genera were Weissella_A and Pantoea_A. Weissella_A and Pantoea_A were gradually replaced by Lentilactobacillus and Lactiplantibacillus after S. perfoliatum ensiling. After 45 days of fermentation, L. buchneri became the dominant strain in CK, LP and LB groups. Inoculation with L. plantarum altered the succession of the bacterial community from 7 to 15 days of fermentation of S. perfoliatum. In contrast, inoculation with L. buchneri affected the succession of the bacterial community from 30 to 60 days of S. perfoliatum fermentation. In S. perfoliatum silage aged 7 to 60 days, the amino acid metabolic pathway in the LB group remained upregulated. The experimental results revealed that inoculation with L. buchneri had a stronger effect on S. perfoliatum silage than inoculation with L. plantarum. Thus, L. buchneri should be selected as an additive for S. perfoliatum silage fermentation in practical production. Full article
(This article belongs to the Special Issue Impacts of Silage-Based Forages on Ruminant Health and Welfare)
Show Figures

Figure 1

21 pages, 1025 KiB  
Review
Amino Acid Metabolism in Liver Mitochondria: From Homeostasis to Disease
by Ranya Erdal, Kıvanç Birsoy and Gokhan Unlu
Metabolites 2025, 15(7), 446; https://doi.org/10.3390/metabo15070446 - 2 Jul 2025
Viewed by 782
Abstract
Hepatic mitochondria play critical roles in sustaining systemic nutrient balance, nitrogen detoxification, and cellular bioenergetics. These functions depend on tightly regulated mitochondrial processes, including amino acid catabolism, ammonia clearance via the urea cycle, and transport through specialized solute carriers. Genetic disruptions in these [...] Read more.
Hepatic mitochondria play critical roles in sustaining systemic nutrient balance, nitrogen detoxification, and cellular bioenergetics. These functions depend on tightly regulated mitochondrial processes, including amino acid catabolism, ammonia clearance via the urea cycle, and transport through specialized solute carriers. Genetic disruptions in these pathways underlie a range of inborn errors of metabolism, often resulting in systemic toxicity and neurological dysfunction. Here, we review the physiological functions of hepatic mitochondrial amino acid metabolism, with a focus on subcellular compartmentalization, disease mechanisms, and therapeutic strategies. We discuss how emerging genetic and metabolic interventions—including dietary modulation, cofactor replacement, and gene therapy—are reshaping treatment of liver-based metabolic disorders. Understanding these pathways offers mechanistic insights into metabolic homeostasis and reveals actionable vulnerabilities in metabolic disease and cancer. Full article
Show Figures

Figure 1

20 pages, 581 KiB  
Review
Mapping Disorders with Neurological Features Through Mitochondrial Impairment Pathways: Insights from Genetic Evidence
by Anna Makridou, Evangelie Sintou, Sofia Chatzianagnosti, Iasonas Dermitzakis, Sofia Gargani, Maria Eleni Manthou and Paschalis Theotokis
Curr. Issues Mol. Biol. 2025, 47(7), 504; https://doi.org/10.3390/cimb47070504 - 1 Jul 2025
Viewed by 628
Abstract
Mitochondrial dysfunction is a key driver of neurological disorders due to the brain’s high energy demands and reliance on mitochondrial homeostasis. Despite advances in genetic characterization, the heterogeneity of mitochondrial diseases complicates diagnosis and treatment. Mitochondrial dysfunction spans a broad clinical spectrum, from [...] Read more.
Mitochondrial dysfunction is a key driver of neurological disorders due to the brain’s high energy demands and reliance on mitochondrial homeostasis. Despite advances in genetic characterization, the heterogeneity of mitochondrial diseases complicates diagnosis and treatment. Mitochondrial dysfunction spans a broad clinical spectrum, from early-onset encephalopathies to adult neurodegeneration, with phenotypic and genetic variability necessitating integrated models of mitochondrial neuropathology. Mutations in nuclear or mitochondrial DNA disrupt energy production, induce oxidative stress, impair mitophagy and biogenesis, and lead to neuronal degeneration and apoptosis. This narrative review provides a structured synthesis of current knowledge by classifying mitochondrial-related neurological disorders according to disrupted biochemical pathways, in order to clarify links between genetic mutations, metabolic impairments, and clinical phenotypes. More specifically, a pathway-oriented framework was adopted that organizes disorders based on the primary mitochondrial processes affected: oxidative phosphorylation (OXPHOS), pyruvate metabolism, fatty acid β-oxidation, amino acid metabolism, phospholipid remodeling, multi-system interactions, and neurodegeneration with brain iron accumulation. Genetic, clinical and molecular data were analyzed to elucidate shared and distinct pathophysiological features. A comprehensive table synthesizes genetic causes, inheritance patterns, and neurological manifestations across disorders. This approach offers a conceptual framework that connects molecular findings to clinical practice, supporting more precise diagnostic strategies and the development of targeted therapies. Advances in whole-exome sequencing, pharmacogenomic profiling, mitochondrial gene editing, metabolic reprogramming, and replacement therapy—promise individualized therapeutic approaches, although hurdles including heteroplasmy, tissue specificity, and delivery challenges must be overcome. Ongoing molecular research is essential for translating these advances into improved patient care and quality of life. Full article
(This article belongs to the Special Issue Latest Review Papers in Molecular Biology 2025)
Show Figures

Figure 1

15 pages, 1104 KiB  
Article
Polysaccharide Supplements from Millettia speciosa Champ. ex Benth Enhance Growth and Meat Quality in Wenchang Chickens
by Yu-Hang Liu, Jie Liu, Xin Feng, Quan-Wei Liu, Rui-Ping Sun, Wei Wu, Kun Ouyang, Jing-Li Yuan, Yan Zhang, Xiu-Ping Wang, Gui-Ping Zhao and Li-Min Wei
Biology 2025, 14(7), 755; https://doi.org/10.3390/biology14070755 - 24 Jun 2025
Viewed by 408
Abstract
The polysaccharide of Millettia speciosa Champ. ex Benth (MSCP) has antioxidant properties, but its impact on chicken growth and development is not yet known. This study used chlortetracycline as a control to assess MCSP as a feed antibiotic substitute and its effects on [...] Read more.
The polysaccharide of Millettia speciosa Champ. ex Benth (MSCP) has antioxidant properties, but its impact on chicken growth and development is not yet known. This study used chlortetracycline as a control to assess MCSP as a feed antibiotic substitute and its effects on Wenchang chicken production, slaughter performance, and meat quality. A total of 576 healthy 80-day-old Wenchang chickens were randomly allocated to six experimental groups. The control group (Control) received a basal diet, while the antibiotic group (CTC) was supplemented with 2 g/kg chlortetracycline (CTC). Four additional experimental groups were administered varying doses of MSCP: 400 mg/kg (MSCP400), 800 mg/kg (MSCP800), 1600 mg/kg (MSCP1600), and 3200 mg/kg (MSCP3200), respectively. The study discovered that incorporating MSCP and CTC into chicken diets significantly boosted the final body weight and average daily feed intake compared to the control group (p < 0.01), with MSCP notably enhancing average daily weight gain. With the addition of 800 mg/kg MSCP, chicken growth performance is comparable to that achieved with antibiotics in feed. However, it did not impact slaughtering performance (p > 0.05). In addition, MSCP significantly raised the pH after 24 h (p < 0.05) and decreased the yellowness (p < 0.01) of breast muscle. MSCP increased the essential amino acids (EAA) proportion in breast muscle (p < 0.05), EAA to nonessential amino acids (NEAA) ratio (p < 0.05), and diversity of fatty acids while decreasing C20:0 and increasing C18:2N6 and C22:1N9 content. Moreover, MSCP significantly reduced muscle fiber size (p < 0.01), increased fiber density (p < 0.01), boosted MYOD1 expression (p < 0.05), and decreased MSTN expression in breast muscle (p < 0.01). Overall, our study showed that supplementing the diet with MSCP, particularly at a dose of 800 mg/kg, enhanced growth, meat quality, muscle morphology, amino acid content, fatty acid composition, and gene expression related to muscle development in breast muscle. The results indicate that MSCP is a feed additive with the potential to replace antibiotics and improve meat quality, showing promising application potential. Full article
Show Figures

Figure 1

15 pages, 2035 KiB  
Article
Effect of Tricholoma matsutake Powder and Colored Rice Flour on Baking Quality and Volatile Aroma Compound of Cookie
by Yuyue Qin, Shu Wang, Haiyan Chen, Yongliang Zhuang, Qiuming Liu, Shanshan Xiao and Charles Brennan
Foods 2025, 14(13), 2182; https://doi.org/10.3390/foods14132182 - 22 Jun 2025
Viewed by 354
Abstract
In recent years, the consumers’ demand for healthy foods has been increased. To address the dietary related diseases, the food products enriched with mushroom or colored rice were promoted. The effects of Tricholoma matsutake powder and colored rice flour on baking quality and [...] Read more.
In recent years, the consumers’ demand for healthy foods has been increased. To address the dietary related diseases, the food products enriched with mushroom or colored rice were promoted. The effects of Tricholoma matsutake powder and colored rice flour on baking quality and volatile aroma compound of cookies were investigated. Texture analyzer, and electronic nose (e-nose) were used to analyze the physicochemical, structural, and digestibility properties and volatile aroma compound of cookie. With the content of Tricholoma matsutake powder and colored rice flour increased, the hardness and free amino acid content increased. Cookie in terms of weaker network structure, relatively crispy cookie texture, and better in vitro digestion activity was obtained with appropriate amount replacement. The cookie sample contained with 5% Tricholoma matsutake and 20% red rice exhibited acceptable hardness and lowest starch hydrolysis rate. The volatile aroma compounds were also affected by the wheat flour substitution. The results indicated that Tricholoma matsutake powder and colored rice flour substitution improved the baking quality of cookie. Full article
Show Figures

Figure 1

26 pages, 6474 KiB  
Article
The Effects of Pretreated and Fermented Corn Stalks on Growth Performance, Nutrient Digestion, Intestinal Structure and Function, and Immune Function in New Zealand Rabbits
by Xuying Jia, Yaohao Dun, Guoqi Xiang, Shuai Wang, Heng Zhang, Wen Zhou, Yingjun Li and Yunxiang Liang
Animals 2025, 15(12), 1737; https://doi.org/10.3390/ani15121737 - 12 Jun 2025
Viewed by 1151
Abstract
This study investigates the efficacy of fermented corn straw as a viable corn substitute in rabbit diets, evaluating its impact on growth performance, intestinal health, cecal microbiota, and metabolite profiles to determine its potential for addressing corn shortages in animal husbandry. Over 35 [...] Read more.
This study investigates the efficacy of fermented corn straw as a viable corn substitute in rabbit diets, evaluating its impact on growth performance, intestinal health, cecal microbiota, and metabolite profiles to determine its potential for addressing corn shortages in animal husbandry. Over 35 days, 120 New Zealand rabbits were assigned to four treatments: (i) 12% corn (C100), (ii) 6% corn + 6% fermented straw (FS50), (iii) 12% fermented straw (FS100), and (iv) 6% corn + 6% dry straw (DS50). Fermented straw enhanced the rabbits’ average daily feed intake (ADI) and average daily gain (ADG) and elevated cecal cellulase activity. It also downregulated TLR4 in the jejunum mucosa, upregulated MUC2 in the ileum mucosa, strengthened the intestinal barrier, and reduced the diarrhea index and incidence in weaned rabbits. Specific microbial families influenced amino acid and phospholipid concentrations, altering the cecal metabolic environment. In summary, replacing corn with fermented corn straw in rabbit diets significantly boosts ADG and ADI, potentially lowers the feed-to-gain ratio, and enhances cecal microbiota and metabolite profiles without compromising growth performance. Full article
Show Figures

Figure 1

16 pages, 276 KiB  
Article
Fish Meal Replacement with a Combination of Meat Meal and Chicken Byproduct Meal on Growth Performance, Feed Utilization, Biochemical Parameters and Muscle Composition of Juvenile Red Seabream (Pagrus major)
by Buddhi E. Gunathilaka, Seong-Mok Jeong, Byung-Hwa Min, Jinho Bae, Sang-Woo Hur, Sang-Guan You and Sang-Min Lee
Animals 2025, 15(11), 1581; https://doi.org/10.3390/ani15111581 - 28 May 2025
Viewed by 419
Abstract
A combination of meat meal (MM) and chicken byproduct meal (CBM) were evaluated as fish meal (FM) replacers in the diets of juvenile red seabream (Pagrus major). The control diet was formulated with 60% FM (CON). Four other diets were designed [...] Read more.
A combination of meat meal (MM) and chicken byproduct meal (CBM) were evaluated as fish meal (FM) replacers in the diets of juvenile red seabream (Pagrus major). The control diet was formulated with 60% FM (CON). Four other diets were designed by reducing the FM levels to 45, 30, 15, and 0% by adding 14, 28, 42, and 56% MM and CBM in a 1:1 ratio to compensate for the reduced protein level (designated as MC14, MC28, MC42, and MC56, respectively). Red seabream (averaging 4.57 g) were distributed among 15 fiberglass tanks (40 fish/tank) and assigned to one of three replicates of the diet. After an eight-week long feeding trial, the growth performance of the fish fed the CON, MC14, and MC28 diets were comparable with the control group, and were significantly higher than the MC42 and MC56 groups. Feed utilization was significantly higher in the MC28 group compared to the other groups. The lowest growth and feed utilization were observed in the MC56 group. Serum lysozyme and SOD activities were significantly reduced when the dietary FM level decreased. Plasma total cholesterol levels were significantly reduced when the FM level was decreased in the diets, exhibiting a significant linear trend. The CON group exhibited a significantly higher cholesterol level compared to the MC42 and MC56 groups. The muscle amino acid profile was not significantly affected. The muscle myristic acid (14:0) was significantly decreased, while the palmitic acid (16:0) level increased with the increase of MM and CBM in the diets. Therefore, the results indicate that the combination of MM and CBM can be used to replace 50% of the FM from the red seabream diets without negative influences compared to a diet containing 60% FM. Full article
(This article belongs to the Special Issue Alternative Protein Sources for Animal Feeds)
Back to TopTop