Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = amido black 10B

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2816 KiB  
Article
Adsorption of Amido Black 10B by Zinc Ferrite and Titanium Dioxide
by Jinlin Yang, Xingnan Huo, Hanxin Xiao, Zongyu Li, Hengjun Li and Shaojian Ma
Processes 2023, 11(7), 2173; https://doi.org/10.3390/pr11072173 - 20 Jul 2023
Cited by 3 | Viewed by 1224
Abstract
This study focuses on the comprehensive recycling and utilization of zinc ferrite, a by-product of wet zinc refining, for the treatment of azo dye wastewater. It explores the adsorption performance of various materials on Amido Black 10B and analyzes the factors that influence [...] Read more.
This study focuses on the comprehensive recycling and utilization of zinc ferrite, a by-product of wet zinc refining, for the treatment of azo dye wastewater. It explores the adsorption performance of various materials on Amido Black 10B and analyzes the factors that influence the adsorption process. Zinc ferrite derived from the by-products of wet zinc refining, zinc ferrite synthesized via calcination, and titanium dioxide prepared using the sol–gel method are utilized as adsorbents, specifically targeting Amido Black 10B. By adjusting factors such as calcination temperature, mixing ratio, initial pH, adsorbent dosage, adsorption time, initial concentration, and reaction temperature, the effects on the adsorption of Amido Black 10B are studied. Additionally, the performance of composite materials consisting of different crystalline forms of titanium dioxide and purified zinc ferrite is examined. Furthermore, the adsorption process of Amido Black 10B by purified zinc ferrite/titanium dioxide is analyzed in terms of kinetics and thermodynamics. The results show that titanium dioxide and purified zinc ferrite, prepared at temperatures of 300 °C to 550 °C, achieve over 90% removal efficiency when co-adsorbing Amido Black 10B. The best performance is observed at a ratio of 4:6 for purified zinc ferrite to titanium dioxide, with removal efficiency exceeding 80%. The second-order kinetic model fits the adsorption data well, and higher initial solution concentrations lead to decreased adsorption rates. The adsorption process of purified zinc ferrite/titanium dioxide on Amido Black 10B is spontaneous, exothermic, and reduces system disorder. Higher temperatures negatively impact the adsorption process. Full article
(This article belongs to the Special Issue Process Analysis and Simulation in Extractive Metallurgy)
Show Figures

Figure 1

17 pages, 3503 KiB  
Article
Study on Adsorption and Photocatalytic Properties of Zinc Ferrite
by Jinlin Yang, Xingnan Huo, Zongyu Li, Hengjun Li, Teng Wang and Shaojian Ma
Processes 2023, 11(6), 1607; https://doi.org/10.3390/pr11061607 - 24 May 2023
Cited by 5 | Viewed by 1943
Abstract
In this study, methyl orange, methylene blue, and amido black 10B were removed as target dyes using purified, synthetic, and purchased zinc ferrite as adsorbents and photocatalysts. The highest removal rates of amido black 10B by these adsorbents ranged from 81.62% to 88.33%. [...] Read more.
In this study, methyl orange, methylene blue, and amido black 10B were removed as target dyes using purified, synthetic, and purchased zinc ferrite as adsorbents and photocatalysts. The highest removal rates of amido black 10B by these adsorbents ranged from 81.62% to 88.33%. The removal rate of methyl orange was approximately 1%, and the removal rate of methylene blue was approximately 2%. Hence, an investigation was conducted to elucidate the factors that influence the removal efficacy of purified zinc ferrite on amido black 10B. Titanium dioxide prepared at different calcination temperatures was unsuccessful in removing amido black 10B, but the physical mixing of titanium dioxide prepared at suitable calcination temperatures with purified zinc ferrite had a positive effect on amido black 10B removal. Since zinc ferrite could not be used as an adsorbent to remove methyl orange and methylene blue, the photocatalytic degradation properties of zinc ferrite and its influencing factors were studied. The optimal conditions for the photocatalytic degradation of methylene blue and methyl orange by zinc ferrite are as follows: a zinc ferrite catalyst dosage of 0.15 g, an initial solution concentration of 20 mg/L, and a pH of 6.0. The dosage of the zinc ferrite/titanium dioxide composite catalyst is 0.15 g, the initial solution concentration is 20 mg/L, and the pH is 6.5. Full article
(This article belongs to the Special Issue Process Analysis and Simulation in Extractive Metallurgy)
Show Figures

Figure 1

23 pages, 7694 KiB  
Article
Preparation of Eco-Friendly Chelating Resins and Their Applications for Water Treatment
by Nicoleta Mirela Marin, Georgiana Dolete, Ludmila Motelica, Roxana Trusca, Ovidiu Cristian Oprea and Anton Ficai
Polymers 2023, 15(10), 2251; https://doi.org/10.3390/polym15102251 - 10 May 2023
Cited by 9 | Viewed by 3432
Abstract
In the present study, two chelating resins were prepared and used for simultaneous adsorption of toxic metal ions, i.e., Cr3+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, [...] Read more.
In the present study, two chelating resins were prepared and used for simultaneous adsorption of toxic metal ions, i.e., Cr3+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Pb2+ (MX+). In the first step, chelating resins were prepared starting with styrene-divinylbenzene resin, a strong basic anion exchanger Amberlite IRA 402(Cl) with two chelating agents, i.e., tartrazine (TAR) and amido black 10B (AB 10B). Key parameters such as contact time, pH, initial concentration, and stability were evaluated for the obtained chelating resins (IRA 402/TAR and IRA 402/AB 10B). The obtained chelating resins show excellent stability in 2M HCl, 2M NaOH, and also in ethanol (EtOH) medium. The stability of the chelating resins decreased when the combined mixture (2M HCl:EtOH = 2:1) was added. The above-mentioned aspect was more evident for IRA 402/TAR compared to IRA 402/AB 10B. Taking into account the higher stability of the IRA 402/TAR and IRA 402/AB 10B resins, in a second step, adsorption studies were carried out on complex acid effluents polluted with MX+. The adsorption of MX+ from an acidic aqueous medium on the chelating resins was evaluated using the ICP-MS method. The following affinity series under competitive analysis for IRA 402/TAR was obtained: Fe3+(44 µg/g) > Ni2+(39.8 µg/g) > Cd2+(34 µg/g) > Cr3+(33.2 µg/g) > Pb2+(32.7 µg/g) > Cu2+ (32.5 µg/g) > Mn2+(31 µg/g) > Co2+(29 µg/g) > Zn2+ (27.5 µg/g). While for IRA 402/AB 10B, the following behavior was observed: Fe3+(58 µg/g) > Ni2+(43.5 µg/g) > Cd2+(43 µg/g) > Cu2+(38 µg/g) > Cr3+(35 µg/g) > Pb2+(34.5 µg/g) > Co2+(32.8 µg/g) > Mn2+(33 µg/g) > Zn2+(32 µg/g), consistent with the decreasing affinity of MX+ for chelate resin. The chelating resins were characterized using TG, FTIR, and SEM analysis. The obtained results showed that the chelating resins prepared have promising potential for wastewater treatment in the context of the circular economy approach. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

17 pages, 4573 KiB  
Article
Novel Ternary Heterogeneous Reduction Graphene Oxide (RGO)/BiOCl/TiO2 Nanocomposites for Enhanced Adsorption and Visible-Light Induced Photocatalytic Activity toward Organic Contaminants
by Zhanxin Jing, Xiangyi Dai, Xueying Xian, Qiongshan Zhang, Huojiao Zhong and Yong Li
Materials 2020, 13(11), 2529; https://doi.org/10.3390/ma13112529 - 2 Jun 2020
Cited by 15 | Viewed by 3239
Abstract
Herein, we describe a simple and cost-effective design for the fabrication of a novel ternary RGO/BiOCl/TiO2 nanocomposites through a simple hydrothermal process. The prepared nanocomposites were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), X-ray [...] Read more.
Herein, we describe a simple and cost-effective design for the fabrication of a novel ternary RGO/BiOCl/TiO2 nanocomposites through a simple hydrothermal process. The prepared nanocomposites were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), X-ray diffraction (XRD), UV–vis diffuse reflectance spectroscopy (UV–vis DRS) and N2 adsorption–desorption analysis. Organic contaminants—such as methylene blue (MB), methyl orange (MO), rhodamine B (RhB) and amido black-10B (AB-10B)—were employed as the target pollutants to evaluate the adsorption capacity and photocatalytic activity of RGO/BiOCl/TiO2 nanocomposites. From experimental data, it was also found that the amount of TiO2 impressed the photocatalytic performance, and the nanocomposites with 10% of TiO2 showed the best photocatalytic activity. The improved photocatalytic performance may be mainly due to the narrow band gap, and the charge separation and migration of RGO. Moreover, good recyclability was obtained from RGO/BiOCl/TiO2 nanocomposites, and scavenger tests indicated that photogenerated holes were the main active species in the reaction system. Therefore, the prepared RGO/BiOCl/TiO2 nanocomposites have broad applications foreground in pollutants purification. Full article
Show Figures

Graphical abstract

12 pages, 2726 KiB  
Article
Angle-Sensitive Photonic Crystals for Simultaneous Detection and Photocatalytic Degradation of Hazardous Diazo Compounds
by Kenichi Maeno, Bhargav R. Patel, Tatsuro Endo and Kagan Kerman
Micromachines 2020, 11(1), 93; https://doi.org/10.3390/mi11010093 - 15 Jan 2020
Cited by 11 | Viewed by 3525
Abstract
Congo Red (CR) and Amido Black 10B (AB-10B) are anionic diazo dyes, which are metabolized to produce a bioaccumulative and persistent carcinogen, benzidine. In this regard, an angle sensitive sensor composed of photonic crystal supported photocatalyst was fabricated for the simultaneous detection and [...] Read more.
Congo Red (CR) and Amido Black 10B (AB-10B) are anionic diazo dyes, which are metabolized to produce a bioaccumulative and persistent carcinogen, benzidine. In this regard, an angle sensitive sensor composed of photonic crystal supported photocatalyst was fabricated for the simultaneous detection and photocatalytic degradation of diazo dyes from aqueous solutions. Reflectance spectroscopy was used in the detection of CR and AB-10B, which was based on the emergence of the incident angle dependent reflection peaks from the TiO2 coated two-dimensional photonic crystal (2D-PhC) surfaces and their subsequent quenching due to the presence of dye molecules whose absorbance peak intensity overlapped the reflection peak intensity of TiO2 at the respective angle. Interestingly, ultraviolet (UV) mediated photocatalytic degradation of CR and AB-10B was achieved using the same TiO2 coated 2D-PhC surfaces. 2D-PhC underneath the TiO2 layer was able to confine and localize the light on the TiO2 coated 2D-PhC surface, which enhanced the light absorption by dye molecules on the TiO2 surface and the photocatalytic efficiency in the degradation of CR and AB-10B. Finally, this proof-of-concept study demonstrated the fabrication of copolymer film based photonic crystal supported photocatalytic device, which can be used for developing miniaturized sensors competent in on-field detection and degradation of pollutants. Full article
(This article belongs to the Section C:Chemistry)
Show Figures

Graphical abstract

14 pages, 2834 KiB  
Article
Identification and Characterization of New Laccase Biocatalysts from Pseudomonas Species Suitable for Degradation of Synthetic Textile Dyes
by Mina Mandic, Lidija Djokic, Efstratios Nikolaivits, Radivoje Prodanovic, Kevin O’Connor, Sanja Jeremic, Evangelos Topakas and Jasmina Nikodinovic-Runic
Catalysts 2019, 9(7), 629; https://doi.org/10.3390/catal9070629 - 23 Jul 2019
Cited by 57 | Viewed by 8542
Abstract
Laccases are multicopper-oxidases with variety of biotechnological applications. While predominantly used, fungal laccases have limitations such as narrow pH and temperature range and their production via heterologous protein expression is more complex due to posttranslational modifications. In comparison, bacterial enzymes, including laccases, usually [...] Read more.
Laccases are multicopper-oxidases with variety of biotechnological applications. While predominantly used, fungal laccases have limitations such as narrow pH and temperature range and their production via heterologous protein expression is more complex due to posttranslational modifications. In comparison, bacterial enzymes, including laccases, usually possess higher thermal and pH stability, and are more suitable for expression and genetic manipulations in bacterial expression hosts. Therefore, the aim of this study was to identify, recombinantly express, and characterize novel laccases from Pseudomonas spp. A combination of approaches including DNA sequence analysis, N-terminal protein sequencing, and genome sequencing data analysis for laccase amplification, cloning, and overexpression have been used. Four active recombinant laccases were obtained, one each from P. putida KT2440 and P. putida CA-3, and two from P. putida F6. The new laccases exhibited broad temperature and pH range and high thermal stability, as well as the potential to degrade selection of synthetic textile dyes. The best performing laccase was CopA from P. putida F6 which degraded five out of seven tested dyes, including Amido Black 10B, Brom Cresol Purple, Evans Blue, Reactive Black 5, and Remazol Brilliant Blue. This work highlighted species of Pseudomonas genus as still being good sources of biocatalytically relevant enzymes. Full article
(This article belongs to the Special Issue Environmental Biocatalysis: From Remediation to Waste Valorization)
Show Figures

Figure 1

11 pages, 5751 KiB  
Article
Bentonite Modified by Allylamine Polymer for Adsorption of Amido Black 10B
by Wenjuan Guo, Tingcheng Xia, Meishan Pei, Yankai Du and Luyan Wang
Polymers 2019, 11(3), 502; https://doi.org/10.3390/polym11030502 - 15 Mar 2019
Cited by 22 | Viewed by 3785
Abstract
The main object of this work is to remove Amido black 10B using a new type of bentonite-based adsorbent with cationic groups by the modification of polyallyl amines between the interlayers of bentonite. Fourier transform infrared, X-ray diffraction, thermogravimetric analysis, and scanning electron [...] Read more.
The main object of this work is to remove Amido black 10B using a new type of bentonite-based adsorbent with cationic groups by the modification of polyallyl amines between the interlayers of bentonite. Fourier transform infrared, X-ray diffraction, thermogravimetric analysis, and scanning electron microscopy were used to characterize the functionalized bentonite. A series of batch adsorption experiments were performed. The maximum adsorption amount was 144.08 mg g−1 when the pH was 2 and the contact time was 120 min. In addition, the equilibrium isotherm data were analyzed using Langmuir and Freundlich isotherm models, while only the Langmuir model could provide a high correlation. Therefore, this study provided a new functionalized bentonite as a low-cost adsorbent for dye removal from water. Full article
(This article belongs to the Special Issue Polymer Adsorption at Interfaces)
Show Figures

Graphical abstract

14 pages, 1905 KiB  
Article
Preparation and Characterization of Chitosan-Coated Poly(l-Lactic Acid) Fibers and Their Braided Rope
by Tetsuya Furuike, Hideaki Nagahama, Thitirat Chaochai and Hiroshi Tamura
Fibers 2015, 3(4), 380-393; https://doi.org/10.3390/fib3040380 - 1 Oct 2015
Cited by 11 | Viewed by 7383
Abstract
Novel chitosan (CS)-coated poly(l-lactic acid) (PLA) fibers (CS–PLA) were prepared by reaction of an alkali and CS under heat treatment without a chemical binder. These treatments induced hydrolysis on the PLA surface, formation of ionic bonds between the carboxyl groups of the PLA [...] Read more.
Novel chitosan (CS)-coated poly(l-lactic acid) (PLA) fibers (CS–PLA) were prepared by reaction of an alkali and CS under heat treatment without a chemical binder. These treatments induced hydrolysis on the PLA surface, formation of ionic bonds between the carboxyl groups of the PLA surface and the amino groups of CS, and dehydration between the carboxyls and amines. The prepared fibers were characterized by scanning electron microscopy and mechanical strength tests. The presence of CS on the fiber surface was observed by the visual test of CS–PLA with amido black 10B and confirmed by the amine ratio obtained by X-ray photoelectron spectroscopy. The coating thickness of CS on the surface of the PLA fibers was approximately 28 nm, as determined from calculations based on the results of Kjeldahl nitrogen analysis and elemental analysis. The degradation properties of CS–PLA were also investigated. These properties were apparently enhanced by hydrophilicity resulting from the CS-coating treatment. Furthermore, braided ropes prepared using CS–PLA became tight with increasing number of core ropes. Results indicate that the objective tensile strength and flexibility of the braided rope could be controlled by adjusting the number of core fibers. Full article
Show Figures

Figure 1

Back to TopTop