Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (299)

Search Parameters:
Keywords = alveolar/lung macrophages

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2363 KiB  
Article
MCC950 Alleviates Fat Embolism-Induced Acute Respiratory Distress Syndrome Through Dual Modulation of NLRP3 Inflammasome and ERK Pathways
by Chin-Kuo Lin, Zheng-Wei Chen, Yu-Hao Lin, Cheng-Ta Yang, Chung-Sheng Shi, Chieh-Mo Lin, Tzu Hsiung Huang, Justin Ching Hsien Lu, Kwok-Tung Lu and Yi-Ling Yang
Int. J. Mol. Sci. 2025, 26(15), 7571; https://doi.org/10.3390/ijms26157571 - 5 Aug 2025
Abstract
Fat embolism is a critical medical emergency often resulting from long bone fractures or amputations, leading to acute respiratory distress syndrome (ARDS). The NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome, a key regulator of innate immunity, is activated by reactive oxygen species and [...] Read more.
Fat embolism is a critical medical emergency often resulting from long bone fractures or amputations, leading to acute respiratory distress syndrome (ARDS). The NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome, a key regulator of innate immunity, is activated by reactive oxygen species and tissue damage, contributing to inflammatory responses. This study examines the role of NLRP3 in fat embolism-induced ARDS and evaluates the therapeutic potential of MCC950, a selective NLRP3 antagonist. Fat embolism was induced by fatty micelle injection into the tail vein of Sprague Dawley rats. Pulmonary injury was assessed through lung weight gain as an edema indicator, NLRP3 expression via Western blot, and IL-1β levels using ELISA. Histological damage and macrophage infiltration were evaluated with hematoxylin and eosin staining. Fat embolism significantly increased pulmonary NLRP3 expression, lipid peroxidation, IL-1β release, and macrophage infiltration within four hours, accompanied by severe pulmonary edema. NLRP3 was localized in type I alveolar cells, co-localizing with aquaporin 5. Administration of MCC950 significantly reduced inflammatory responses, lipid peroxidation, pulmonary edema, and histological damage, while attenuating MAPK cascade phosphorylation of ERK and Raf. These findings suggest that NLRP3 plays a critical role in fat embolism-induced acute respiratory distress syndrome, and its inhibition by MCC950 may offer a promising therapeutic approach. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

8 pages, 9195 KiB  
Case Report
Fatal Case of Viral Pneumonia Associated with Metapneumovirus Infection in a Patient with a Burdened Medical History
by Parandzem Khachatryan, Naira Karalyan, Hasmik Petunts, Sona Hakobyan, Hranush Avagyan, Zarine Ter-Pogossyan and Zaven Karalyan
Microorganisms 2025, 13(8), 1790; https://doi.org/10.3390/microorganisms13081790 - 31 Jul 2025
Viewed by 207
Abstract
Background: Human metapneumovirus (hMPV) is a respiratory pathogen that causes illness ranging from mild upper respiratory tract infections to severe pneumonia, particularly in individuals with comorbidities. Fatal cases of hMPV-induced hemorrhagic pneumonia are rare and likely under-reported. Diagnosis is often delayed due to [...] Read more.
Background: Human metapneumovirus (hMPV) is a respiratory pathogen that causes illness ranging from mild upper respiratory tract infections to severe pneumonia, particularly in individuals with comorbidities. Fatal cases of hMPV-induced hemorrhagic pneumonia are rare and likely under-reported. Diagnosis is often delayed due to overlapping symptoms with other respiratory viruses and the rapid progression of the disease. Case presentation: We report the case of a 55-year-old man with a complex medical history, including liver cirrhosis and diabetes mellitus, who developed acute viral pneumonia. Initial symptoms appeared three days before a sudden clinical deterioration marked by shortness of breath, hemoptysis, and respiratory failure. A nasopharyngeal swab taken on the third day of illness tested positive for hMPV by qRT-PCR. The patient died the following day. Postmortem molecular testing confirmed hMPV in lung tissue and alveolar contents. Autopsy revealed bilateral hemorrhagic pneumonia with regional lymphadenopathy. Histopathological examination showed alveolar hemorrhage, multinucleated cells, neutrophilic infiltration, activated autophagy in macrophages, and numerous cytoplasmic eosinophilic viral inclusions. Conclusions: This is the first documented case of fatal hMPV pneumonia in Armenia. It highlights the potential severity of hMPV in adults with chronic health conditions and emphasizes the need for timely molecular diagnostics. Postmortem identification of characteristic viral inclusions may serve as a cost-effective histopathological marker of hMPV-associated lung pathology. Full article
(This article belongs to the Section Virology)
Show Figures

Figure 1

26 pages, 6652 KiB  
Article
Platelet-Rich Plasma (PRP) Mitigates Silver Nanoparticle (AgNP)-Induced Pulmonary Fibrosis via iNOS/CD68/CASP3/TWIST1 Regulation: An Experimental Study and Bioinformatics Analysis
by Shaimaa R. Abdelmohsen, Ranya M. Abdelgalil, Asmaa M. Elmaghraby, Amira M. Negm, Reham Hammad, Eleni K. Efthimiadou, Sara Seriah, Hekmat M. El Magdoub, Hemat Elariny, Islam Farrag, Nahla El Shenawy, Doaa Abdelrahaman, Hussain Almalki, Ahmed A. Askar, Marwa M. El-Mosely, Fatma El Zahraa Abd El Hakam and Nadia M. Hamdy
Int. J. Mol. Sci. 2025, 26(14), 6782; https://doi.org/10.3390/ijms26146782 - 15 Jul 2025
Viewed by 408
Abstract
Platelet-rich plasma (PRP) has become an increasingly valuable biologic approach for personalized regenerative medicine because of its potent anti-inflammatory/healing effects. It is thought to be an excellent source of growth factors that can promote tissue healing and lessen fibrosis. Although this treatment has [...] Read more.
Platelet-rich plasma (PRP) has become an increasingly valuable biologic approach for personalized regenerative medicine because of its potent anti-inflammatory/healing effects. It is thought to be an excellent source of growth factors that can promote tissue healing and lessen fibrosis. Although this treatment has demonstrated effectiveness in numerous disease areas, its impact on pulmonary fibrosis (PF) caused by silver nanoparticles (AgNPs) via its antiapoptotic effects remains to be explored. AgNPs were synthesized biologically by Bacillus megaterium ATCC 55000. AgNP characterization was carried out via UV–Vis spectroscopy, X-ray diffraction (XRD), dynamic light scattering (DLS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) imaging to reveal monodispersed spheres with a mean diameter of 45.17 nm. A total of 48 male Wistar rats divided into six groups, with 8 rats per group, were used in the current study on the basis of sample size and power. The groups used were the PRP donor, control, AgNP, AgNP + PRP, AgNP + dexamethasone (Dexa) rat groups, and a recovery group. Body weights, hydroxyproline (HP) levels, and CASP3 and TWIST1 gene expression levels were assessed. H&E and Sirius Red staining were performed. Immunohistochemical studies for inducible nitric oxide synthase (iNOS) and cluster of differentiation 68 (CD68) with histomorphometry were conducted. A significant reduction in body weight (BWt) was noted in the AgNP group compared with the AgNP + PRP group (p < 0.001). HP, CASP3, and TWIST1 expression levels were significantly increased by AgNPs but decreased upon PRP (p < 0.001) treatment. Compared with those in the control group, the adverse effects of AgNPs included PF, lung alveolar collapse, thickening of the interalveolar septa, widespread lymphocytic infiltration, increased alveolar macrophage CD68 expression, and iNOS positivity in the cells lining the alveoli. This work revealed that PRP treatment markedly improved the histopathological and immunohistochemical findings observed in the AgNP group in a manner comparable to that of the Dexa. In conclusion, these results demonstrated the therapeutic potential of PRP in a PF rat model induced via AgNPs. This study revealed that PRP treatment significantly improved the histopathological and immunohistochemical alterations observed in the AgNP-induced group, with effects comparable to those of the Dexa. In conclusion, these findings highlight the therapeutic potential of PRP in a rat model of AgNP-induced PF. Full article
(This article belongs to the Special Issue New Advances in Cancer Genomics)
Show Figures

Figure 1

13 pages, 7485 KiB  
Article
Saroglitazar Ameliorates Pulmonary Fibrosis Progression in Mice by Suppressing NF-κB Activation and Attenuating Macrophage M1 Polarization
by Yawen Zhang, Jiaquan Lin, Xiaodong Han and Xiang Chen
Medicina 2025, 61(7), 1157; https://doi.org/10.3390/medicina61071157 - 26 Jun 2025
Viewed by 355
Abstract
Background and Objectives: Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal interstitial lung disease with limited therapeutic options. Current therapies (pirfenidone, nintedanib) exhibit modest efficacy and significant side effects, underscoring the need for novel strategies targeting early pathogenic drivers. Saroglitazar (SGZ), [...] Read more.
Background and Objectives: Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal interstitial lung disease with limited therapeutic options. Current therapies (pirfenidone, nintedanib) exhibit modest efficacy and significant side effects, underscoring the need for novel strategies targeting early pathogenic drivers. Saroglitazar (SGZ), a dual PPARα/γ agonist with anti-inflammatory properties approved for diabetic dyslipidemia, has not been explored for IPF. We aimed to investigate SGZ’s therapeutic potential in pulmonary fibrosis and elucidate its mechanisms of action. Materials and Methods: Using a bleomycin (BLM)-induced murine pulmonary fibrosis model, we administered SGZ therapeutically. A histopathological assessment (H&E, Masson’s trichrome, collagen I immunofluorescence), Western blotting, and qRT-PCR analyzed the fibrosis progression and inflammatory markers. Flow cytometry evaluated the macrophage polarization. In vitro studies used RAW264.7 macrophages stimulated with BLM/LPS and MRC-5 fibroblast co-cultures. The NF-κB/NLRP3 pathway activation was assessed through protein and gene expression. Results: SGZ significantly attenuated BLM-induced histopathological hallmarks, including alveolar wall thickening, collagen deposition, and inflammatory infiltration. Fibrotic markers (OPN, α-SMA) and pro-inflammatory cytokines (IL-1β, TNF-α, IL-6) were downregulated in the SGZ-treated mice. Mechanistically, SGZ suppressed the M1 macrophage polarization (reduced CD86+ populations) and inhibited the NF-κB/NLRP3 pathway activation in the alveolar macrophages. In the RAW264.7 cells, SGZ decreased the NLRP3 inflammasome components (ASC, cleaved IL-1β) and cytokine secretion. Co-cultures demonstrated that the SGZ-treated macrophage supernatants suppressed the fibroblast activation (α-SMA, collagen I) in MRC-5 cells. Conclusions: SGZ attenuates pulmonary fibrosis by suppressing macrophage-driven inflammation via NF-κB/NLRP3 inhibition and disrupting the macrophage–fibroblast crosstalk. These findings nominate SGZ as a promising candidate for preclinical optimization and future clinical evaluation in IPF. Full article
(This article belongs to the Special Issue Pulmonary Fibrosis: Current Understanding and Future Directions)
Show Figures

Figure 1

23 pages, 2440 KiB  
Article
LRP1 Shedding in Ricin-Induced Lung Injury: A Cell-Specific Response to Toxin Exposure
by Anita Sapoznikov, Yentl Evgy, Moshe Aftalion and Reut Falach
Int. J. Mol. Sci. 2025, 26(12), 5448; https://doi.org/10.3390/ijms26125448 - 6 Jun 2025
Viewed by 469
Abstract
Ricin is a highly potent toxin that causes severe lung injury upon inhalation by initiating a complex cascade of cellular responses that ultimately leads to cell death. The low-density lipoprotein receptor-related protein 1 (LRP1) is a multifunctional receptor involved in various physiological processes, [...] Read more.
Ricin is a highly potent toxin that causes severe lung injury upon inhalation by initiating a complex cascade of cellular responses that ultimately leads to cell death. The low-density lipoprotein receptor-related protein 1 (LRP1) is a multifunctional receptor involved in various physiological processes, including ricin-mediated toxicity. This study explores the role of LRP1 shedding in the development of ricin-induced lung injury. Analysis of bronchoalveolar lavage fluid (BALF) from ricin-intoxicated mice and swine showed a significant increase in soluble LRP1 (sLRP1) levels, whereas serum LRP1 levels remained largely unchanged, suggesting the lungs are the primary source of sLRP1 release. In vitro assays demonstrated the formation of ricin-sLRP1 complexes, indicating that sLRP1 in BALF retained ricin-binding capability. Flow cytometric analysis of lung cells revealed a reduction in both the percentage and total number of LRP1-expressing cells following ricin exposure. Further investigation of specific lung cell populations showed that alveolar epithelial type II (AT-II) cells, despite experiencing significant injury, exhibited minimal LRP1 shedding. No shedding of LRP1 occurred in neutrophils. In contrast, fibroblasts, which were resistant to ricin-induced cell death, exhibited increased shedding of LRP1 and a corresponding decrease in membrane-bound LRP1 expression. This shedding of the LRP1 ectodomain was mediated by metalloproteinases. Immunohistochemical staining further confirmed decreased LRP1 expression in fibroblasts from ricin-exposed mice. Macrophages also showed substantial LRP1 shedding, despite undergoing significant depletion. These findings highlight the complex cell-specific nature of LRP1 shedding in response to ricin intoxication and suggests the potential role of LRP1 in modulation of cellular susceptibility and resistance to ricin-induced lung injury. Full article
Show Figures

Figure 1

22 pages, 1321 KiB  
Article
Assessment of Innovative Dry Powders for Inhalation of a Synergistic Combination Against Mycobacterium tuberculosis in Infected Macrophages and Mice
by Faustine Ravon, Emilie Berns, Isaline Lambert, Céline Rens, Pierre-Yves Adnet, Mehdi Kiass, Véronique Megalizzi, Cédric Delporte, Alain Baulard, Vanessa Mathys, Samira Boarbi, Nathalie Wauthoz and Véronique Fontaine
Pharmaceutics 2025, 17(6), 705; https://doi.org/10.3390/pharmaceutics17060705 - 27 May 2025
Viewed by 564
Abstract
Background/Objectives: In vitro, vancomycin (VAN) and tetrahydrolipstatin (THL) together have been shown to synergistically inhibit Mycobacterium tuberculosis (Mtb), the world’s most infectious killer. The poor oral bioavailability of VAN and THL and predominant tropism of Mtb infection to the lungs and alveolar macrophages [...] Read more.
Background/Objectives: In vitro, vancomycin (VAN) and tetrahydrolipstatin (THL) together have been shown to synergistically inhibit Mycobacterium tuberculosis (Mtb), the world’s most infectious killer. The poor oral bioavailability of VAN and THL and predominant tropism of Mtb infection to the lungs and alveolar macrophages make pulmonary administration highly attractive. This study aimed to develop and assess the efficacy of dry powders for inhalation of VAN microparticles embedded with THL. Methods: The dry powders produced by spray-drying, with or without hydrogenated castor oil (HCO), were characterized for their physicochemical properties among others by HPLC-DAD. The fast-screening impactor was used to determine powder aerodynamic properties, and VAN and THL releases were established from the paddle over disk method. Biological activities were assessed in a new M. bovis-infected macrophage model and in Mtb-infected mice. Results and Discussion: The addition of 25% HCO enables co-deposition (fine particle dose) at the desired weight ratio and co-releasing of VAN and THL in aqueous media. Microparticles with 0% to 50% HCO drastically reduced cytoplasmic Mycobacterium bovis survival (99.9% to 62.5%, respectively), with higher efficacy at low HCO concentration. Consequently, VAN/THL with or without 25% HCO was evaluated in Mtb-infected mice. Although no decrease in Mtb lung burden was observed after two weeks of administration, the endotracheal administration of VAN 500 mg/kg and THL 50 mg/kg with 25% HCO administrated three times during five days concomitantly with daily oral rifampicin (10 mg/kg) demonstrated 2-fold bacterial burden reduction compared to the group treated with RIF alone. Conclusions: HCO was crucial for obtaining a fine particle dose at the synergistic weight ratio (VAN/THL 10:1) and for releasing both drugs in aqueous media. With oral administration of the first-line rifampicin, the dry powder VAN/THL/25% HCO was able to exert a potential anti-tubercular effect in vivo in Mtb-infected mice after five days. Full article
(This article belongs to the Special Issue Inhaled Treatment of Respiratory Infections, 2nd Edition)
Show Figures

Figure 1

16 pages, 10251 KiB  
Article
Specific Position of the Pulmonary Hilar Node in Cancer Immunity: Immunohistochemical and Morphometrical Study Using Lung Regional Nodes Obtained from Non-Small Cell Cancer Patients Without Metastasis
by Masaya Aoki, Go Kamimura, Aya Harada-Takeda, Toshiyuki Nagata, Gen Murakami and Kazuhiro Ueda
Lymphatics 2025, 3(2), 13; https://doi.org/10.3390/lymphatics3020013 - 21 May 2025
Viewed by 411
Abstract
Background: Nodal dendritic cells (DCs) and CD169-positive macrophages, possibly monocyte-derived, cross-present cancer antigens earlier in the proximal node than in the distal node. Methods: We performed immunohistochemical and morphometric analyses to show differences in the distributions of DC-SIGN-, CD68-, and CD169-positive cells in [...] Read more.
Background: Nodal dendritic cells (DCs) and CD169-positive macrophages, possibly monocyte-derived, cross-present cancer antigens earlier in the proximal node than in the distal node. Methods: We performed immunohistochemical and morphometric analyses to show differences in the distributions of DC-SIGN-, CD68-, and CD169-positive cells in the paratracheal, subcarinal, and hilar nodes from 25 non-small cell lung cancer patients without metastasis. Results: CD169-positive and DC-SIGN-positive cells were colocalized in the subcapsular and paracortical sinuses, whereas CD68-positive, self-renewal alveolar macrophages were present in the medullary sinus. This complementary distribution was more evident in nodes other than hilar nodes. In hilar nodes, the proportion of CD68-positive macrophages usually exceeds 50%. Notably, the proportion of the overlapped cluster between CD169-positive cells and DC-SIGN-positive cells, which likely corresponds to the cross-presentation activity, was almost the same between the hilar and “next-upstream” node (i.e., the paratracheal node for the upper lobe and the subcarinal node for the lower lobe). Monocyte-derived cells occupied a significantly larger area in the hilar nodes of patients with upper lobe cancer than in patients with lower lobe cancer (p = 0.002–0.009). Conclusion: The specific site occupying the lung hilum with collateral vessels seemed to determine the hilar node composite cells. Full article
Show Figures

Figure 1

22 pages, 2632 KiB  
Article
Glutamine Administration Attenuates Poly(I:C)-Induced Lung Injury by Reducing Neutrophil Infiltration and Activating the TLR-3 Antiviral Pathway
by Li-Han Su, Wen-Chiuan Tsai, Hitoshi Shirakawa, Yu-Ling Tsai, Sung-Ling Yeh and Chiu-Li Yeh
Nutrients 2025, 17(10), 1700; https://doi.org/10.3390/nu17101700 - 16 May 2025
Viewed by 592
Abstract
Objectives: In this study, we investigated the effects of intravenous glutamine (GLN) administration on the Toll-like receptor 3 (TLR3) antiviral pathway and leukocyte migration in mice with poly(I:C)-induced acute lung injury (ALI). Methods: There were four groups in this study: the [...] Read more.
Objectives: In this study, we investigated the effects of intravenous glutamine (GLN) administration on the Toll-like receptor 3 (TLR3) antiviral pathway and leukocyte migration in mice with poly(I:C)-induced acute lung injury (ALI). Methods: There were four groups in this study: the NC group, mice without an intratracheal injection; the SH group, mice intratracheally injected with endotoxin-free saline; the PS group, intratracheally instilled with 3 mg poly(I:C)/kg body weight (BW), followed by an intravenous (IV) injection of saline; and the PG group, intratracheally injected with poly(I:C) followed by the IV administration of 0.75 g GLN/kg BW. Mice in the SH, PS, and PG groups were sacrificed at 4, 12, and 24 h after intratracheal instillation. Results: The results showed that poly(I:C) stimulation decreased the plasma GLN concentration and increased inflammatory cytokine levels. In bronchoalveolar lavage fluid, concentrations of interferon λ3 and percentages of macrophages and M1 macrophages decreased, while neutrophils increased along with significantly elevated myeloperoxidase activity in lung tissues. The gene expressions of molecules related to leukocyte migration increased, whereas tight/adherens junction expressions in endothelial and epithelial cells were reduced. GLN supplementation upregulated the mRNA and/or protein expressions of TLR3 antiviral pathway-related factors and tight/adherens junctions while reducing inflammatory cytokines and the expressions of leukocyte migration molecules. Histological results also showed that lung injury was attenuated. Conclusions: These findings indicated that intravenous GLN administration after poly(I:C) instillation restored plasma GLN levels and alleviated ALI by activating the TLR3 antiviral pathway, suppressing leukocyte migration and neutrophil infiltration, mitigating inflammation, and improving the integrity of the alveolar–capillary barrier. Full article
(This article belongs to the Special Issue Diet, Nutrition and Lung Health)
Show Figures

Graphical abstract

20 pages, 13618 KiB  
Article
Naringenin Targets PI3K p85alpha to Suppress PI3K/AKT Signaling Pathway and Ameliorate Disordered MMP-9 Secretion in Cigarette Smoke Extract-Induced Alveolar Macrophages In Vitro
by Weiyang Fan, Ziyan Xu, Mengli Zhong, Xiao Wu, Pan Chen, Zhen Chen, Weiwei Su, Hao Wu and Peibo Li
Cells 2025, 14(10), 678; https://doi.org/10.3390/cells14100678 - 8 May 2025
Viewed by 776
Abstract
Background: Naringenin has demonstrated potential therapeutic effects against cigarette smoke-induced lung injury; however, its underlying mechanisms of regulating matrix metalloproteinase-9 (MMP-9) in alveolar macrophages remain unclear. Methods: The regulatory mechanisms of naringenin in cigarette smoke extract (CSE)-induced alveolar macrophages were investigated using proteomics, [...] Read more.
Background: Naringenin has demonstrated potential therapeutic effects against cigarette smoke-induced lung injury; however, its underlying mechanisms of regulating matrix metalloproteinase-9 (MMP-9) in alveolar macrophages remain unclear. Methods: The regulatory mechanisms of naringenin in cigarette smoke extract (CSE)-induced alveolar macrophages were investigated using proteomics, and then, naringenin’s targets were further validated by Western blot, molecular docking, molecular dynamics (MD) simulations, cellular thermal shift assay (CETSA), and enzyme activity assay. Results: The proteomics revealed that the PI3K/AKT signaling pathway might play a crucial role in naringenin’s inhibition of MMP-9. Western blot analysis confirmed that naringenin significantly inhibited CSE-upregulated PI3K/AKT signaling pathway and reduced MMP-9 expression in MH-S cells. Notably, the PI3K activator 740Y-P reversed naringenin’s effects on MMP-9. Additionally, molecular docking, MD simulations, and CETSA identified PI3K p85alpha as the potential binding site for naringenin, and naringenin markedly inhibited CSE-induced PI3K activity. In in vitro experiments, naringenin inhibiting MMP-9 secretion in alveolar macrophages contributed to alleviating elastin and E-cadherin damage in alveolar epithelial cells. Furthermore, naringenin effectively suppressed CSE-induced MMP-9 secretion in primary mouse alveolar macrophages and human THP-1-differentiated macrophages. Conclusions: Our findings revealed that naringenin, a potential candidate for treating smoking-induced lung injury, directly targeted PI3K p85alpha, inhibiting PI3K activity and MMP-9 expression in CSE-induced alveolar macrophages via suppressing the PI3K/AKT signaling pathway. Full article
(This article belongs to the Section Cell Motility and Adhesion)
Show Figures

Figure 1

31 pages, 1825 KiB  
Review
Epigenetic Control of Alveolar Macrophages: Impact on Lung Health and Disease
by Nirmal Parajuli, Kalpana Subedi, Xzaviar Kaymar Solone, Aimin Jiang, Li Zhou and Qing-Sheng Mi
Cells 2025, 14(9), 640; https://doi.org/10.3390/cells14090640 - 25 Apr 2025
Viewed by 1539
Abstract
Alveolar macrophages (AMs) are immune cells located in the alveoli—the tiny air sacs in the lungs where gas exchange occurs. Their functions are regulated by various epigenetic mechanisms, which are essential for both healthy lung function and disease development. In the lung’s microenvironment, [...] Read more.
Alveolar macrophages (AMs) are immune cells located in the alveoli—the tiny air sacs in the lungs where gas exchange occurs. Their functions are regulated by various epigenetic mechanisms, which are essential for both healthy lung function and disease development. In the lung’s microenvironment, AMs play critical roles in immune surveillance, pathogen clearance, and tissue repair. This review examines how epigenetic regulation influences AM functions and their involvement in lung diseases. Key mechanisms, such as DNA methylation, histone modifications, and non-coding RNAs, regulate gene expression in response to environmental signals. In healthy lungs, these modifications enable AMs to quickly respond to inhaled threats. However, when these processes malfunction, they could contribute to diseases such as pulmonary fibrosis, COPD, and pulmonary hypertension. By exploring how epigenetic changes affect AM polarization, plasticity, and immune responses, we can gain deeper insights into their role in lung diseases and open new avenues for treating and preventing respiratory conditions. Ultimately, understanding the epigenetic mechanisms within AMs enhances our knowledge of lung immunology and offers potential for innovative interventions to restore lung health and prevent respiratory diseases. Full article
Show Figures

Figure 1

20 pages, 16668 KiB  
Article
Inflammatory Responses to Zn/Cu-Containing Welding Fume in Human Alveolar Epithelial and Macrophage Cell Lines, with MIP-1β/CCL4 as a Much More Sensitive Macrophage Activation Marker than IL-8 and TNF-α
by Jan Steffens, Katharina Kuth, Thomas Kraus, Wolfgang Dott, Sabrina Michael and Ralf Baumann
Int. J. Mol. Sci. 2025, 26(8), 3843; https://doi.org/10.3390/ijms26083843 - 18 Apr 2025
Viewed by 504
Abstract
Zinc (Zn)- and copper (Cu)-containing welding fumes elevate inflammatory markers (CRP, TNF-α, IL-6, IL-8) in healthy individuals and welders. Zn- and Cu-containing nanoparticles are toxic to human macrophages. Therefore, ZnO exposure limits are under discussion. In this study, the effects of Zn/Cu-containing welding [...] Read more.
Zinc (Zn)- and copper (Cu)-containing welding fumes elevate inflammatory markers (CRP, TNF-α, IL-6, IL-8) in healthy individuals and welders. Zn- and Cu-containing nanoparticles are toxic to human macrophages. Therefore, ZnO exposure limits are under discussion. In this study, the effects of Zn/Cu-containing welding fume suspensions on A549 alveolar epithelial cells (exposure concentrations: 0.01/0.1/1/10/100 µg/mL) and THP-1 macrophages (additionally 0.001 µg/mL) were investigated over a period of 48 h. Effects on apoptosis, cytotoxicity, genotoxicity, superoxide dismutase (SOD) activity, and cytokine levels (IL-6, IL-8, MIP-1β/CCL4, TNF-α) were evaluated. Welding fume exposure increased SOD activity, and it increased Annexin-V binding and cytotoxicity effects starting at 10 µg/mL in A549 cells and particularly in THP-1 macrophages. A549 cells showed increased IL-6 at 10 and 100 µg/mL, and significant IL-8 release occurred at 10 µg/mL for A549 and 0.1 µg/mL for macrophages. Exposed macrophages released TNF-α at 1 µg/mL after 24 and 48 h and MIP-1β/CCL4 at 0.01 µg/mL after 6 h and at 0.001 µg/mL after 48 h. No genotoxic effects were detected. MIP-1β/CCL4 is a sensitive new biomarker for human macrophages exposed to Zn/Cu-containing welding fumes. The findings suggest that Zn/Cu particles affect lung cells already at doses below current occupational thresholds. Full article
(This article belongs to the Special Issue Macrophages in Human Diseases and Their Treatment)
Show Figures

Figure 1

14 pages, 1928 KiB  
Article
Diagnostic Utility of Bronchoalveolar Lavage Flow Cytometric Leukocyte Profiling in Interstitial Lung Disease and Infection
by Erika M. Novoa-Bolivar, José A. Ros, Sonia Pérez-Fernández, José A. Campillo, Ruth López-Hernández, Rosana González-López, Inmaculada Ruiz-Lorente, Almudena Otálora-Alcaraz, Cristina Ortuño-Hernández, Lourdes Gimeno, Diana Ceballos-Francisco, Manuel Muro, Elena Solana-Martínez, Pablo Martínez-Camblor and Alfredo Minguela
Biomolecules 2025, 15(4), 597; https://doi.org/10.3390/biom15040597 - 17 Apr 2025
Viewed by 984
Abstract
Interstitial lung diseases (ILD) represent a diverse group of disorders that primarily affect the pulmonary interstitium and, less commonly, involve the alveolar and vascular epithelium. Overlapping clinical, radiological and histopathological features make proper classification difficult, requiring multiple complementary methodologies, including flow cytometry of [...] Read more.
Interstitial lung diseases (ILD) represent a diverse group of disorders that primarily affect the pulmonary interstitium and, less commonly, involve the alveolar and vascular epithelium. Overlapping clinical, radiological and histopathological features make proper classification difficult, requiring multiple complementary methodologies, including flow cytometry of bronchoalveolar lavages (BAL). This retrospective study analyzed BAL flow cytometry data from 1074 real-life patients, quantifying alveolar macrophages, CD4/CD8 lymphocytes, neutrophils, eosinophils, and CD1a+ Langerhans cells, with the aim of evaluating its diagnostic utility in ILD and pulmonary infection. Clustering and logistic regression analyses identified seven distinct leukocyte profiles: lymphocytic (associated with hypersensitivity pneumonitis, cryptogenic organizing pneumonia, and lymphocytic interstitial pneumonia), sarcoidosis, macrophagic (including nonspecific interstitial pneumonia, desquamative interstitial pneumonitis, pneumoconiosis, and unclassifiable ILD), neutrophilic (including usual interstitial pneumonia, respiratory bronchiolitis ILD, and acute interstitial pneumonia), infectious diseases, eosinophilic ILD, and Langerhans cell histiocytosis. The estimated leukocyte profiles were associated with different overall survival (OS) outcomes. Neutrophilic profiles, both infectious and non-infectious, correlated with poorer OS, particularly in patients without pulmonary fibrosis. Furthermore, corticosteroids and other immunosuppressive therapies did not show significant OS differences across leukocyte profiles. Although the gold standard in BAL cytology continues to be cytopathology, these results support BAL flow cytometry as a rapid and reliable complementary tool to aid in the classification of interstitial lung diseases based on immune cell profiles, providing valuable predictive information and contributing to personalized therapeutic approaches. Full article
(This article belongs to the Special Issue Immune-Related Biomarkers: 2nd Edition)
Show Figures

Figure 1

19 pages, 5115 KiB  
Article
Sex-Specific Anti-Inflammatory Effects of a Ketogenic Diet in a Mouse Model of Allergic Airway Inflammation
by Carolyn D. Ekpruke, Omar Borges-Sosa, Christiane A. Hassel, Dustin Rousselle, Lyidia Dinwiddie, Maksat Babayev, Ahmed Bakare and Patricia Silveyra
Int. J. Mol. Sci. 2025, 26(7), 3046; https://doi.org/10.3390/ijms26073046 - 26 Mar 2025
Viewed by 887
Abstract
Asthma, a chronic inflammatory airway disease, leads to airflow obstruction and exhibits sex differences in prevalence and severity. Immunomodulatory diets, such as the ketogenic diet (high fat, low carbohydrate, moderate protein), may offer complementary benefits in managing airway inflammation. While anti-inflammatory effects of [...] Read more.
Asthma, a chronic inflammatory airway disease, leads to airflow obstruction and exhibits sex differences in prevalence and severity. Immunomodulatory diets, such as the ketogenic diet (high fat, low carbohydrate, moderate protein), may offer complementary benefits in managing airway inflammation. While anti-inflammatory effects of ketogenic diets are documented in cardiovascular diseases, their impact on asthma, especially regarding sex-specific differences, remains unexplored. Few studies on diet and asthma have considered sex as a biological factor. To test the hypothesis that a ketogenic diet affects airway inflammation in a sex-specific manner, we used a mouse allergic airway inflammation model. Male and female C57BL/6J mice (3–4 weeks old, n = 5–6/group) were fed a ketogenic diet or normal chow for 12 weeks. From weeks 7 to 12, mice were challenged intranasally with house dust mite allergens (HDM) 5 days/week to induce airway inflammation. Lung tissue was analyzed 72 h post-exposure using flow cytometry to assess immune cell populations, and data were analyzed with two-way ANOVA. The ketogenic diet increased body weight in allergen-exposed mice, with a greater effect in males than females (p = 0.0512). Significant sex–diet interactions were noted for alveolar macrophages, CD103+, CD11B+, and plasmacytoid dendritic cells (p < 0.05). Eosinophil reductions were observed in males but not females on the ketogenic diet. The diet also increased NKT cells and decreased NK cells in males but not females (p < 0.001). These findings highlight sex-specific effects of ketogenic diets on lung immune responses, with stronger impacts in males. Full article
(This article belongs to the Special Issue Molecular Research in Asthma and Allergy)
Show Figures

Figure 1

15 pages, 2285 KiB  
Article
Impaired SERPIN–Protease Balance in the Peripheral Lungs of Stable COPD Patients
by Antonino Di Stefano, Francesco Nucera, Umberto Rosani, Paola Brun, Isabella Gnemmi, Mauro Maniscalco, Silvestro Ennio D’Anna, Andrea Leonardi, Vitina Carriero, Francesca Bertolini, Josè Freni, Antonio Ieni, Sebastiano Gangemi, Paolo Ruggeri and Fabio Luigi Massimo Ricciardolo
Int. J. Mol. Sci. 2025, 26(7), 2832; https://doi.org/10.3390/ijms26072832 - 21 Mar 2025
Cited by 1 | Viewed by 667
Abstract
The protease–antiprotease balance is involved in many biological processes, including blood coagulation, tissue remodeling, inflammation and immune responses. The aim of this study is to determine the balance between SERPINs and some related proteases in the lungs of stable COPD patients. In this [...] Read more.
The protease–antiprotease balance is involved in many biological processes, including blood coagulation, tissue remodeling, inflammation and immune responses. The aim of this study is to determine the balance between SERPINs and some related proteases in the lungs of stable COPD patients. In this cross-sectional study, the expression and localization of human SERPINs (anti-proteases) and some related proteases were measured in the lung parenchyma of mild-moderate COPD (MCOPD, n = 13) patients, control smokers (CS, n = 14) and control nonsmokers (CNS, n = 12) using transcriptome analysis, immunohistochemistry, and ELISA tests. Peripheral lung transcriptomic data showed increased mRNA levels of tissue plasminogen activator (tPA), cathepsin-L and caspase-1 as well as increased SERPINs A6, B3, B5, B11, B13 in the COPD group compared to the CNS group. At the protein level, IHC analysis showed that tPA and cathepsin-L increased in the bronchiolar epithelium and alveolar septa of the CS and COPD groups compared to the CNS group, as well as SERPINB5 and B13 in the alveolar macrophages and alveolar septa of the CS and COPD groups compared to the CNS group. SERPINA6 was shown to be decreased in the bronchiolar epithelium, bronchiolar lamina propria, and alveolar septa of the CS and COPD groups compared to the CNS group and was positively correlated with lung function. SERPINB3 was decreased in the alveolar septa of the CS group compared to the CNS group. The ELISA tests showed that in the total lung extracts, decreased levels of SERPINA6 and increased caspase-1 were shown in the COPD group compared to the CNS or both control groups, respectively. These data show an imbalance, at the protein level, of SERPINs and some related proteases in the lungs of the CS and stable COPD groups. These alterations may play a role in damaging the lung parenchyma of susceptible COPD patients. Full article
Show Figures

Figure 1

20 pages, 3704 KiB  
Article
Exploring the Contribution of TLR7 to Sex-Based Disparities in Respiratory Syncytial Virus (RSV)-Induced Inflammation and Immunity
by Mark A. Miles, Thomas D. Huttmann, Stella Liong, Felicia Liong, John J. O’Leary, Doug A. Brooks and Stavros Selemidis
Viruses 2025, 17(3), 428; https://doi.org/10.3390/v17030428 - 16 Mar 2025
Cited by 2 | Viewed by 1889
Abstract
TLR7 plays a key role in recognizing viral RNA to initiate an immune response. Sex-based differences in the severity of RSV respiratory infections have been noted, and this may be related to higher expression of X-linked toll-like receptor 7 (TLR7) in female immune [...] Read more.
TLR7 plays a key role in recognizing viral RNA to initiate an immune response. Sex-based differences in the severity of RSV respiratory infections have been noted, and this may be related to higher expression of X-linked toll-like receptor 7 (TLR7) in female immune cells. Indeed, TLR7 has been shown to influence sex differences in responses to other respiratory viruses; however, its role in RSV infection remains underexplored. We infected adult C57Bl/6 or TLR7 knockout mice with RSV and compared the specific lung immune responses between different sexes. Gene expression analysis revealed that infected female mice had elevated levels of type I and II interferons, proinflammatory cytokines, chemokines, and viral transcripts in their lungs compared to males. Additionally, females exhibited increased numbers of macrophages and higher antibody responses in the airways. Deletion of TLR7 diminished the sex differences in certain cytokine and antibody responses. Furthermore, ex vivo infection of male alveolar macrophages with RSV resulted in greater production of proinflammatory cytokines and viral transcripts than in female macrophages, suggesting inherent sex differences in macrophage responses. These findings provide new insights into the mechanisms underlying sex differences in RSV pathophysiology and suggest that TLR7 contributes to an enhanced inflammatory response in females. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

Back to TopTop