Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (129)

Search Parameters:
Keywords = aluminum coagulant

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2768 KB  
Article
Random Forest Model for Optimizing Coagulant Doses in Drinking Water Treatment: Application at the Miguel de la Cuba Ibarra Plant
by Ronny Ivan Gonzales Medina, Juan Adriel Carlos Mendoza, Eduardo José Zuñiga Goyzueta, Rosa María Morán-Silva and Javier Linkolk López-Gonzales
Environments 2026, 13(1), 17; https://doi.org/10.3390/environments13010017 - 30 Dec 2025
Viewed by 316
Abstract
Optimizing coagulant dosages in Drinking Water Treatment Plants (DWTPs) is critical for reducing operational costs, minimizing chemical waste, mitigating environmental impacts, and ensuring consistent water quality, particularly in resource-constrained settings where conventional jar tests are labor-intensive and poorly suited to real-time demands. This [...] Read more.
Optimizing coagulant dosages in Drinking Water Treatment Plants (DWTPs) is critical for reducing operational costs, minimizing chemical waste, mitigating environmental impacts, and ensuring consistent water quality, particularly in resource-constrained settings where conventional jar tests are labor-intensive and poorly suited to real-time demands. This study develops and validates a Random Forest (RF) machine learning model to predict optimal dosages of aluminum sulfate, polyaluminum chloride, and a polymer flocculant at the Miguel de la Cuba Ibarra DWTP in Peru, addressing the need for an efficient, real-time decision support system. Using a historical dataset of 2556 jar tests, a univariate RF model was developed to predict settled water turbidity, tailored to the plant’s typical operational range. The model demonstrated robust predictive performance, achieving a coefficient of determination (R2) of 0.92 during training and 0.76 during validation with unseen data, alongside a Root Mean Square Error (RMSE) of 0.11 NTU and a Mean Absolute Percentage Error (MAPE) of 0.11 in the training phase. Integrated into a digital platform, the model generates real-time NTU ppm dosing curves, providing a practical and responsive tool to enhance operational efficiency for DWTP operators. This work offers a scalable, data-driven solution to improve water treatment processes in resource-limited contexts. Full article
Show Figures

Figure 1

14 pages, 1350 KB  
Article
Investigating the Potential of Coagulants to Improve Microplastics Removal in Wastewater and Tap Water
by Claudio Casella, Daniel Sol, Adriana Laca and Mario Díaz
Microplastics 2025, 4(4), 89; https://doi.org/10.3390/microplastics4040089 - 12 Nov 2025
Viewed by 2837
Abstract
This study investigates the impact of using coagulants on the removal of microplastics (MPs) from wastewater and tap water. Before the settling step, coagulants commonly used in water treatment (FeCl3 or Al2(SO4)3) were added at different [...] Read more.
This study investigates the impact of using coagulants on the removal of microplastics (MPs) from wastewater and tap water. Before the settling step, coagulants commonly used in water treatment (FeCl3 or Al2(SO4)3) were added at different concentrations to samples taken from an activated sludge reactor and tap water. MPs initially contained in the water samples were chemically and physically characterized, resulting in most of them being fibres smaller than 500 μm, in both media. The use of coagulants improved MPs removal, and the best results were obtained with the aluminum salt, which allowed removal efficiencies of 43% and 62% for tap water and wastewater, respectively. These results demonstrated the potential of coagulants to improve the removal of MPs in treated waters and wastewaters. However, the necessary concentration of the assayed coagulants was quite high, highlighting the interest in investigating their combination with coagulant aids, such as organic polyelectrolytes, which might allow for reduced doses. Full article
Show Figures

Graphical abstract

18 pages, 2742 KB  
Article
Chemical and Bio-Based Coagulation Coupled with Adsorption: Advancing Leachate Treatment Chemistry
by Maroua Almi, Nadia Chekir, Leila Merabti, Djilali Tassalit, Naima Sahraoui, Soumeya Bouchareb, Khadidja Benkraouche, Wissam Yanina and Seif El Islam Lebouachera
Appl. Sci. 2025, 15(22), 11948; https://doi.org/10.3390/app152211948 - 10 Nov 2025
Viewed by 787
Abstract
Leachate from the Magtaa Kheira landfill exhibits complex physicochemical characteristics that restrict the efficacy of single-treatment processes. This study assessed a sustainable two-stage treatment strategy combining coagulation–flocculation and adsorption. During the initial stage of the study, both aluminum sulfate (AS) and a bio-based [...] Read more.
Leachate from the Magtaa Kheira landfill exhibits complex physicochemical characteristics that restrict the efficacy of single-treatment processes. This study assessed a sustainable two-stage treatment strategy combining coagulation–flocculation and adsorption. During the initial stage of the study, both aluminum sulfate (AS) and a bio-based coagulant derived from Moringa oleifera seeds (MOS) were evaluated for their effectiveness in the pretreatment of leachate. Box–Behnken Design combined with Response Surface Methodology was used to optimize the coagulation process using aluminum sulfate (AS). The highest removal efficiencies were 91% for turbidity and 85% for chemical oxygen demand (COD) removal, achieved at an AS concentration of 1.44 g·L−1 and an initial pH of 8. In parallel, the performance of MOS extract was investigated as an eco-friendly alternative to AS. An FTIR analysis revealed the presence of protein-associated hydroxyl (3288 cm−1) and carboxyl and amine groups (1647 cm−1), which are integral to destabilization via hydrogen bonding, while SEM confirmed a surface morphology conducive to effective floc formation. MOS demonstrated comparable turbidity removal to AS, significantly reducing both sludge generation and chemical consumption. Following the coagulation stage, treated leachates were passed through a granular activated carbon (GAC) column, enhancing overall COD removal to over 94% to reach acceptable discharge and reuse levels. The coagulation–adsorption sequence, incorporating both chemical and bio-based coagulants, provides an efficient and sustainable approach for the treatment of complex leachate, addressing both performance and environmental considerations. Full article
(This article belongs to the Special Issue Water Pollution and Wastewater Treatment Chemistry)
Show Figures

Figure 1

21 pages, 4515 KB  
Article
Performance Evaluation of Hybrid and Conventional Coagulants for the Removal of Sunset Yellow and Methylene Violet Dyes from Wastewater
by Eftychia Kalli, Konstantinos N. Maroulas, Anna A. Thysiadou, George Z. Kyzas and Athanasia K. Tolkou
Processes 2025, 13(11), 3430; https://doi.org/10.3390/pr13113430 - 25 Oct 2025
Viewed by 657
Abstract
Textile industries release dyes into wastewater, and when present above certain levels, these dyes pose serious risks because of their high toxicity. This study investigates the removal of Sunset Yellow (SY) and Methylene Violet (MV) dyes from wastewater using chitosan (CS) and polysilicate [...] Read more.
Textile industries release dyes into wastewater, and when present above certain levels, these dyes pose serious risks because of their high toxicity. This study investigates the removal of Sunset Yellow (SY) and Methylene Violet (MV) dyes from wastewater using chitosan (CS) and polysilicate acid (pSi) in the structure of aluminum-based coagulants, resulting in hybrid formulations (CS@Al, Al/pSi, and CS@Al/pSi). Among the various treatment methods that have been applied for the removal of dyes, the coagulation/flocculation process was chosen in the present study, as it is a cheap and effective method. Coagulation performance was optimized for pH, coagulant dosage, temperature and mixing time. The Al/pSi coagulant achieved nearly complete SY removal (98.8%) at 25 mg/L dosage and pH 3.0. MV removal in single-dye solutions was limited, with Al/pSi achieving only 26.6% removal at pH 3.0. However, in mixed-dye systems (SY/MV), synergistic interactions increased MV removal up to 94.4% and SY removal to 100%. Hybrid CS@Al/pSi showed lower SY removal (36.4%) for SY at 50 mg/L but provided stable floc formation, particularly in mixtures of anionic and cationic dyes. Application to real textile wastewater confirmed the high efficiency of the optimized coagulants, particularly with Al/pSi20,A and AlCl3, indicating their potential for industrial wastewater treatment. SEM, EDS, XRD, and FTIR analyses revealed structural consolidation, increased surface area, and successful dye adsorption, explaining the high removal efficiency. Full article
(This article belongs to the Special Issue Sediment Contamination and Metal Removal from Wastewater)
Show Figures

Figure 1

26 pages, 652 KB  
Review
Coagulation–Sedimentation in Water and Wastewater Treatment: Removal of Pesticides, Pharmaceuticals, PFAS, Microplastics, and Natural Organic Matter
by Ewelina Łukasiewicz
Water 2025, 17(21), 3048; https://doi.org/10.3390/w17213048 - 24 Oct 2025
Cited by 2 | Viewed by 5501
Abstract
Coagulation–sedimentation remains a widely used process in drinking and wastewater treatment, yet its performance for emerging contaminants requires further evaluation. This review summarizes recent advances in conventional and novel coagulant systems for the removal of pesticides, pharmaceuticals, per- and polyfluoroalkyl substances (PFAS), natural [...] Read more.
Coagulation–sedimentation remains a widely used process in drinking and wastewater treatment, yet its performance for emerging contaminants requires further evaluation. This review summarizes recent advances in conventional and novel coagulant systems for the removal of pesticides, pharmaceuticals, per- and polyfluoroalkyl substances (PFAS), natural organic matter (NOM), and micro- and nanoplastics (MNPs). The efficiency of conventional aluminum- and iron-based coagulants typically ranges from 30–90% for NOM and pesticides, 10–60% for pharmaceuticals, <20% for PFAS, and up to 95% for microplastics. Modified and hybrid materials, including titanium-based and bio-derived coagulants, demonstrate superior performance through combined mechanisms of charge neutralization, adsorption, and complexation. The zeta potential of particles was identified as a key factor in optimizing MNP removal. The ability of iron and titanium to form complexes with organic ligands significantly influences the removal of organic pollutants and metal–organic interactions in water matrices. While most research remains at the laboratory scale, promising developments in hybrid and electrocoagulation systems indicate potential for field-scale application. The review highlights that coagulation is best applied as a pretreatment step in integrated systems, enhancing subsequent adsorption, oxidation, or membrane processes. Future studies should focus on large-scale validation, energy efficiency, and the recovery of metal oxides (e.g., TiO2) from residual sludge to improve sustainability. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

38 pages, 1493 KB  
Review
From Mineral Salts to Smart Hybrids: Coagulation–Flocculation at the Nexus of Water, Energy, and Resources—A Critical Review
by Faiçal El Ouadrhiri, Ebraheem Abdu Musad Saleh and Amal Lahkimi
Processes 2025, 13(11), 3405; https://doi.org/10.3390/pr13113405 - 23 Oct 2025
Cited by 1 | Viewed by 2761
Abstract
Coagulation–flocculation, historically reliant on simple inorganic salts, has evolved into a technically sophisticated process that is central to the removal of turbidity, suspended solids, organic matter, and an expanding array of micropollutants from complex wastewaters. This review synthesizes six decades of research, charting [...] Read more.
Coagulation–flocculation, historically reliant on simple inorganic salts, has evolved into a technically sophisticated process that is central to the removal of turbidity, suspended solids, organic matter, and an expanding array of micropollutants from complex wastewaters. This review synthesizes six decades of research, charting the transition from classical aluminum and iron salts to high-performance polymeric, biosourced, and hybrid coagulants, and examines their comparative efficiency across multiple performance indicators—turbidity removal (>95%), COD/BOD reduction (up to 90%), and heavy metal abatement (>90%). Emphasis is placed on recent innovations, including magnetic composites, bio–mineral hybrids, and functionalized nanostructures, which integrate multiple mechanisms—charge neutralization, sweep flocculation, polymer bridging, and targeted adsorption—within a single formulation. Beyond performance, the review highlights persistent scientific gaps: incomplete understanding of molecular-scale interactions between coagulants and emerging contaminants such as microplastics, per- and polyfluoroalkyl substances (PFAS), and engineered nanoparticles; limited real-time analysis of flocculation kinetics and floc structural evolution; and the absence of predictive, mechanistically grounded models linking influent chemistry, coagulant properties, and operational parameters. Addressing these knowledge gaps is essential for transitioning from empirical dosing strategies to fully optimized, data-driven control. The integration of advanced coagulation into modular treatment trains, coupled with IoT-enabled sensors, zeta potential monitoring, and AI-based control algorithms, offers the potential to create “Coagulation 4.0” systems—adaptive, efficient, and embedded within circular economy frameworks. In this paradigm, treatment objectives extend beyond regulatory compliance to include resource recovery from coagulation sludge (nutrients, rare metals, construction materials) and substantial reductions in chemical and energy footprints. By uniting advances in material science, process engineering, and real-time control, coagulation–flocculation can retain its central role in water treatment while redefining its contribution to sustainability. In the systems envisioned here, every floc becomes both a vehicle for contaminant removal and a functional carrier in the broader water–energy–resource nexus. Full article
Show Figures

Figure 1

17 pages, 3336 KB  
Article
Surface Water Treatment with Carica papaya-Based Coagulants: A Natural and Sustainable Solution
by Guillermo Díaz-Martínez, Ricardo Navarro-Amador, José Luis Sánchez-Salas and Deborah Xanat Flores-Cervantes
Limnol. Rev. 2025, 25(4), 47; https://doi.org/10.3390/limnolrev25040047 - 4 Oct 2025
Viewed by 1227
Abstract
Access to clean water remains a global challenge, particularly in areas where populations rely on surface water. These water sources must be treated. Coagulation with chemicals causes environmental problems and adverse effects on human health. Natural coagulants obtained from papaya (Carica papaya [...] Read more.
Access to clean water remains a global challenge, particularly in areas where populations rely on surface water. These water sources must be treated. Coagulation with chemicals causes environmental problems and adverse effects on human health. Natural coagulants obtained from papaya (Carica papaya) waste are presented as an alternative that is safe for human health, non-polluting, and biodegradable. The effectiveness of these natural coagulants is compared to that of aluminum sulfate using jar tests and synthetic and natural surface water, with statistical tools to model treatment processes. All coagulants have competitive results, reaching turbidity remotion levels above 90%. However, in equivalent tested ranges, natural coagulants require lower dosages and perform better with high initial water turbidity due to their polymeric bridging mechanisms and adsorption processes through the action of their functional groups, as detected by FTIR analysis. Additional testing with contaminated water from the Valsequillo dam confirms the use of these coagulants to treat water, with papaya seed coagulant yielding the best results and requiring lower doses, making it a competitive alternative. It can be concluded that papaya-based coagulants obtained from waste can be used as an eco-friendly alternative to aluminum sulfate in physicochemical treatments to purify surface water for human consumption. Full article
Show Figures

Figure 1

18 pages, 2624 KB  
Article
Comparative Assessment of Different Electrode Combinations for Phosphate Removal from Onsite Wastewater via Electrocoagulation
by Arif Reza, Xiumei Jian, Fanjian Zeng and Xinwei Mao
Water 2025, 17(18), 2764; https://doi.org/10.3390/w17182764 - 18 Sep 2025
Viewed by 1022
Abstract
Phosphorus (P) discharge from onsite wastewater treatment systems (OWTSs) poses a significant threat to water quality, contributing to eutrophication in nutrient-sensitive aquatic environments. In treated effluents, P predominantly exists as orthophosphate (PO43−), a highly bioavailable and reactive form that requires [...] Read more.
Phosphorus (P) discharge from onsite wastewater treatment systems (OWTSs) poses a significant threat to water quality, contributing to eutrophication in nutrient-sensitive aquatic environments. In treated effluents, P predominantly exists as orthophosphate (PO43−), a highly bioavailable and reactive form that requires targeted removal. This study evaluates the performance of electrocoagulation (EC) as a polishing step for PO43− removal from OWTS effluents using 12 anode/cathode combinations comprising aluminum (Al), iron (Fe), magnesium (Mg), and stainless steel (SS). Key operational parameters, including treatment time, mixing speed, current density, pH, and initial PO43− concentration, were systematically investigated when synthetic denitrified effluent (20 mg P/L) was treated. Based on the performance, the four most effective electrode combinations (Al/Al, Al/Mg, Fe/Al, and Mg/Mg), along with a commercial benchmark (Fe/Fe), were further tested under extended hydraulic retention times (up to 48 h) in both synthetic and real (denitrified) wastewater. To date, none of the studies have systematically evaluated all possible anode/cathode combinations involving multiple electrode materials under uniform operational conditions. The Al/Al and Mg/Mg EC systems achieved rapid and high PO43− removal efficiencies (>95%), while Mg-based systems demonstrated sustained performance over prolonged treatment durations, especially in real wastewater. Bimetallic pairs such as Al/Mg and Fe/Al exhibited synergistic effects through enhanced coagulant generation and pH stabilization. The results indicated that PO43− removal efficiency was strongly influenced by electrode material selection, hydrodynamic conditions, and wastewater compositions, underscoring the need to design EC systems based on site-specific water quality conditions in OWTSs. Full article
(This article belongs to the Special Issue Application of Electrochemical Technologies in Wastewater Treatment)
Show Figures

Figure 1

19 pages, 3553 KB  
Article
Electrochemical Coagulant Generation via Aluminum-Based Electrocoagulation for Sustainable Greywater Treatment and Reuse: Optimization Through Response Surface Methodology and Kinetic Modelling
by Benan Yazıcı Karabulut
Molecules 2025, 30(18), 3779; https://doi.org/10.3390/molecules30183779 - 17 Sep 2025
Cited by 1 | Viewed by 1533
Abstract
This study investigates the operational performance and optimization of a real greywater treatment system utilizing aluminum (Al)-based electrocoagulation (EC). The EC process was systematically evaluated and optimized through Response Surface Methodology (RSM) using the Box–Behnken Design (BBD), focusing on three critical parameters: pH, [...] Read more.
This study investigates the operational performance and optimization of a real greywater treatment system utilizing aluminum (Al)-based electrocoagulation (EC). The EC process was systematically evaluated and optimized through Response Surface Methodology (RSM) using the Box–Behnken Design (BBD), focusing on three critical parameters: pH, current density, and electrolysis time. Greywater samples collected from domestic sources were characterized by key physicochemical parameters including pH, COD, TSS, turbidity-ty, and electrical conductivity. The electrochemical treatment was conducted using a batch reactor equipped with Al electrodes in a monopolar configuration. Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS), X-ray Diffraction (XRD), and Fourier-Transform Infrared Spectroscopy (FTIR) were employed to characterize both the electrodes and the generated sludge. Results revealed a maximum COD removal efficiency of 86.34% under optimized conditions, with current density being the most influential factor, followed by its significant interaction with pH. The developed quadratic model exhibited high predictive accuracy (R2 = 0.96) and revealed significant nonlinear and interaction effects among the parameters. Sludge characterization confirmed the presence of amorphous aluminum hydroxide and oxyhydroxide phases, indicating effective coagulant generation and pollutant capture. The treated greywater met physicochemical criteria for non-potable reuse, such as agricultural irrigation, supporting resource recovery objectives. These findings demonstrate that EC is a low-waste, chemically efficient, and scalable process for decentralized wastewater treatment, aligning with the goals of sustainable chemical engineering. Full article
Show Figures

Graphical abstract

19 pages, 5166 KB  
Article
Investigation of a Volcanic Rock-Derived Coagulant for Water Purification: A Study of Its Preparation Process
by Lei Zhou, Zhangrui Yang, Xiaoyong Liu, Xiaoben Yang, Xuewen Wu, Yong Zhou and Guocheng Zhu
Water 2025, 17(15), 2279; https://doi.org/10.3390/w17152279 - 31 Jul 2025
Viewed by 980
Abstract
Volcanic rock is a natural mineral material which has garnered interest for its potential application in water treatment due to its unique physicochemical properties. In this study, we prepared a polysilicate aluminum chloride (PSAC) coagulant using volcanic rock which exhibited good coagulation–flocculation performance. [...] Read more.
Volcanic rock is a natural mineral material which has garnered interest for its potential application in water treatment due to its unique physicochemical properties. In this study, we prepared a polysilicate aluminum chloride (PSAC) coagulant using volcanic rock which exhibited good coagulation–flocculation performance. Further investigation into the influence of synthetic parameters, such as calcination temperature, reaction time, and alkali types, on the structure and performance of a volcanic rock-derived coagulant was conducted. Techniques including Scanning Electron Microscopy, Energy-Dispersive Spectroscopy, Fourier-Transform Infrared Spectroscopy, and X-Ray Diffraction were utilized to characterize it. Also, a ferron-complexation timed spectrophotometric method was used to study the distribution of aluminum species in the coagulant. Results indicated that the volcanic rock that was treated with acidic and alkaline solutions had the potential to form PSAC with Al-OH, Al-O-Si, Fe-OH, and Fe-O-Si bonds, which influenced the coagulation–flocculation efficiency. An acid leaching temperature of 90 °C, 8 mL of 2 mol/L NaOH, a reaction time of 0.5 h, and a reaction temperature of 60 °C were conducive to the preparation. A higher temperature could result in a higher proportion of Alb species, and, at 100 °C, the Ala, Alc, and Alb were 29%, 24%, and 47%, respectively, achieving a residual turbidity lower than 1 NTU at an appropriate dosage, as well as a reduction of over 0.1 to 0.018 in the level of UV254. The findings of this study provide a feasible method to prepare a flocculant using volcanic rock. Further application is expected to yield good results in wastewater/water treatment. Full article
Show Figures

Figure 1

19 pages, 5287 KB  
Article
Removal of Anionic and Cationic Dyes from Wastewater by Tetravalent Tin-Based Novel Coagulants
by Athanasia K. Tolkou, Argyro Giannoulaki, Paraskevi Chalkidi, Eleftheria Arvaniti, Sofia Fykari, Smaragda Kritaki and George Z. Kyzas
Processes 2025, 13(7), 2103; https://doi.org/10.3390/pr13072103 - 2 Jul 2025
Cited by 3 | Viewed by 1102
Abstract
Wastewater contains dyes originating from textile industries, and above a certain concentration, they can become dangerous due to their high toxicity. Divalent and trivalent metal coagulants, usually aluminum- or iron-based, have been studied worldwide. However, tetravalent coagulants, such as tin chloride, have not [...] Read more.
Wastewater contains dyes originating from textile industries, and above a certain concentration, they can become dangerous due to their high toxicity. Divalent and trivalent metal coagulants, usually aluminum- or iron-based, have been studied worldwide. However, tetravalent coagulants, such as tin chloride, have not yet been extensively studied for application in wastewater treatment. Therefore, in this study, three types of coagulants were examined: SnCl4, Cs, and a hybrid composite (CS@Sn) in two different mass ratios, abbreviated hereafter as CS@Sn5% and CS@Sn50%. The formation of the suggested CS@Sn hybrid coagulants was confirmed by applying SEM, XRD, and FTIR techniques. The results showed that the optimum conditions for RB5 removal was the addition of 20 mg Sn/L SnCl4 (97.8%) and 50 mg Sn/L of CS@Sn50% (64.8%) at pH 3.0. In addition, SnCl4 was found to be an effective coagulant for all the examined anionic dyes, but it was not as effective for cationic dyes. Moreover, the coagulants were then tested in two mixed-dye solutions, both anionic dyes (RB5/RR120) and anionic/cationic (RB5/MV), resulting in a synergistic effect in the first one and a competitive effect in the secon. Finally, the proposed coagulants were successfully tested on real wastewater samples from an untreated textile dyeing industry. Therefore, the coagulants presented in this work for the removal of several dyes are also capable of being used for wastewater treatment. Full article
(This article belongs to the Special Issue Advances in Adsorption of Wastewater Pollutants)
Show Figures

Figure 1

34 pages, 5490 KB  
Article
Effectiveness of Acidic Chitosan Solutions for Total Organic Carbon Removal in Drinking Water Treatment
by Josefine Molina-Pinna and Félix R. Román-Velázquez
Polymers 2025, 17(13), 1832; https://doi.org/10.3390/polym17131832 - 30 Jun 2025
Cited by 1 | Viewed by 1261
Abstract
Natural organic matter (NOM) in surface waters is a major challenge for drinking water treatment due to its role in the formation of disinfection byproducts (DBPs) during chlorination. This study evaluated the performance of chitosan, a biodegradable coagulant, dissolved in acetic, lactic, and [...] Read more.
Natural organic matter (NOM) in surface waters is a major challenge for drinking water treatment due to its role in the formation of disinfection byproducts (DBPs) during chlorination. This study evaluated the performance of chitosan, a biodegradable coagulant, dissolved in acetic, lactic, and L-ascorbic acids for NOM removal under three turbidity levels (403, 1220, and 5038 NTU). Jar tests were conducted using raw water from the Río Grande de Añasco (Puerto Rico), and TOC, DOC, and UV254 were measured at multiple time points. TOC removal ranged from 39.8% to 74.3%, with the highest performance observed in high-turbidity water treated with chitosan–L-ascorbic acid. DOC and UV254 reductions followed similar trends, with maximum removals of 76.4% and 76.2%, respectively. Estimated THM formation potential (THMFP) was reduced by up to 81.6%. Across all acids, flocculation efficiencies exceeded 95%. Compared to conventional aluminum-based coagulants, chitosan demonstrated comparable performance, while offering environmental benefits. These results confirm the potential of chitosan–acid systems for effective organic matter removal and DBP control, supporting their application as sustainable alternatives in drinking water treatment. Full article
Show Figures

Figure 1

13 pages, 1106 KB  
Article
The Influence of Coagulation on the Fertilizing Properties of Treated Wastewater
by Justyna Czajkowska, Alicja Knap-Bałdyga and Monika Żubrowska-Sudoł
Water 2025, 17(13), 1937; https://doi.org/10.3390/w17131937 - 28 Jun 2025
Cited by 1 | Viewed by 742
Abstract
Treated wastewater (TW) is a valuable source of water for plant irrigation, helping to protect water resources. However, to use it, a preliminary treatment is necessary, typically involving coagulation to reduce turbidity and then disinfection to ensure microbiological safety. The aim of this [...] Read more.
Treated wastewater (TW) is a valuable source of water for plant irrigation, helping to protect water resources. However, to use it, a preliminary treatment is necessary, typically involving coagulation to reduce turbidity and then disinfection to ensure microbiological safety. The aim of this research was to determine changes in the concentrations of basic fertilizer components (N, P, and K) in TW after the coagulation process. The tests were carried out in three measurement series for volumetric and surface coagulation using three coagulants: Al2(SO4)3, PAX-XL 19F, and PAX-XL 1911. Four doses of aluminum were used for each coagulation method (volumetric coagulation: 1, 2, 4, and 8 mg Al/L; surface coagulation: 0.25, 0.5, 1, and 2 mg Al/L). Studies have shown that despite the reduction in the concentration of nutrients during the coagulation process, the reclaimed water used for grass irrigation would cover the entire K requirement of this plant. In the case of N and P, the demand would be covered by 14.34% and 8.55%, depending on the coagulant used and its dose. It was also documented that the type of coagulant significantly influences the reduction of fertilizing properties during wastewater treatment. PAX-XL19F was found to cause the least reduction in P and K concentrations, while Al2(SO4)3 had the least negative impact on N regardless of coagulation method or dose. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Graphical abstract

13 pages, 914 KB  
Article
Natural Coagulants as an Efficient Alternative to Chemical Ones for Continuous Treatment of Aquaculture Wastewater
by Isabella T. Tomasi, Rui A. R. Boaventura and Cidália M. S. Botelho
Appl. Sci. 2025, 15(12), 6908; https://doi.org/10.3390/app15126908 - 19 Jun 2025
Cited by 1 | Viewed by 2083
Abstract
Aquaculture effluents are a growing source of water pollution, releasing suspended solids, organic matter, nitrogen, and phosphorus into aquatic environments. Recirculating aquaculture systems (RASs) have emerged as a more sustainable solution, allowing water to be continuously treated and reused. Within RASs, coagulation–flocculation is [...] Read more.
Aquaculture effluents are a growing source of water pollution, releasing suspended solids, organic matter, nitrogen, and phosphorus into aquatic environments. Recirculating aquaculture systems (RASs) have emerged as a more sustainable solution, allowing water to be continuously treated and reused. Within RASs, coagulation–flocculation is a key treatment step due to its simplicity and effectiveness. Tannin-based coagulants have gained attention as natural alternatives to traditional chemical agents. Although natural coagulants have been studied in aquaculture, only a few works explore their use in continuous-flow systems. This study evaluates a chestnut shell-based (CS) coagulant applied in continuous mode for the post-treatment of aquaculture effluent. The performance of CS was compared with Tanfloc, aluminum sulfate, and ferric chloride in removing color and dissolved organic carbon (DOC). At natural pH (6.5) and 50 mg·L−1, CS and Tanfloc achieved color removal of 61.0% and 65.5%, respectively, outperforming chemical coagulants. For DOC, Tanfloc and chemical coagulants removed 45–50%, while CS removed 32%. All coagulants removed over 90% of phosphorus, but nitrogen removal was limited (30–40%). These results highlight the potential of tannin-derived coagulants, particularly from agro-industrial residues, as sustainable solutions for aquaculture wastewater treatment in continuous systems. Full article
Show Figures

Figure 1

29 pages, 9708 KB  
Article
Coupling Coagulation–Flocculation–Sedimentation with Adsorption on Biosorbent (Corncob) for the Removal of Textile Dyes from Aqueous Solutions
by Hadj Boumedien Rahmoun, Maamar Boumediene, Abderahmane Nekkache Ghenim, Eduardo Ferreira Da Silva and João Labrincha
Environments 2025, 12(6), 201; https://doi.org/10.3390/environments12060201 - 13 Jun 2025
Cited by 4 | Viewed by 3166
Abstract
This study investigates the combined application of coagulation–flocculation–sedimentation (CFS) and adsorption using corncob (CC) biosorbent for the removal of textile dyes from aqueous solutions. Two synthetic dyes Bemacron Blue RS 01 (BB-RS01), a disperse dye, and Bemacid Marine N-5R (BM-N5R), an acid dye [...] Read more.
This study investigates the combined application of coagulation–flocculation–sedimentation (CFS) and adsorption using corncob (CC) biosorbent for the removal of textile dyes from aqueous solutions. Two synthetic dyes Bemacron Blue RS 01 (BB-RS01), a disperse dye, and Bemacid Marine N-5R (BM-N5R), an acid dye were selected for evaluation. The coagulation–flocculation process utilized aluminum sulfate as the coagulant and Superfloc 8396 as the flocculant, with operational parameters including coagulant concentrations ranging from 50 to 600 mg/L, flocculant concentrations between 30 and 125 mg/L, and pH levels spanning from 2 to 11. The corncob biosorbent was characterized using FTIR, SEM, BET, TGA/DTA, and pHpzc analyses. Adsorption isotherm experiments indicated a more favorable correlation with the Langmuir model (R2 = 0.92–0.96), which supports monolayer adsorption. At pH 8, the CFS process achieved a dye removal efficiency of 95.1% for BB-RS01 and 92.3% for BM-N5R was achieved at pH 6.5. The maximum adsorption capacities of BB-RS01 were determined to be 99.5 mg/g, while BM-N5R was found to be 46.08 mg/g. These results indicate that the integration of CFS with raw corncob adsorption provides a cost-effective and efficient method for the remediation of textile dyes. Full article
Show Figures

Figure 1

Back to TopTop