Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (61)

Search Parameters:
Keywords = aluminium centre

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 6640 KiB  
Article
Effects of Tool Structure and Process Parameters in Friction Stir Welding on the Temperature and Mechanical Properties of Dissimilar Copper–Aluminium Welded Joints
by Yuxun Zhang, Jinlong Shi, Guofang Liao, Ruixiang Li, Jianyun Peng, Shaoqun Kuang and Fanghua Shen
Metals 2025, 15(2), 193; https://doi.org/10.3390/met15020193 - 12 Feb 2025
Viewed by 959
Abstract
Friction stir welding (FSW) is a solid-state welding method. The effects of tool structure, tool rotational speed, and welding speed in friction stir welding on the temperature, microstructure, and mechanical properties during the welding of 3 mm thick 6061-T6 aluminium alloy and T2 [...] Read more.
Friction stir welding (FSW) is a solid-state welding method. The effects of tool structure, tool rotational speed, and welding speed in friction stir welding on the temperature, microstructure, and mechanical properties during the welding of 3 mm thick 6061-T6 aluminium alloy and T2 pure copper plates were investigated through experiments, numerical simulations, mechanical property tests, and microstructural observations, with the aim of enhancing welding strength and efficiency. The results showed that the welding heat input increased with the shoulder and pin diameters. When the shoulder diameter was in the range of 10–16 mm, proportional increases in the pin diameter resulted in an approximate increase of 30 °C in the weld centre temperature for every 2 mm increase in shoulder diameter. Compared to welding speed, rotational speed had a more significant effect on the heat input. Compared to the smooth tool, the threaded tool promoted the dispersion of copper particles within the aluminium matrix, facilitating the formation of Al2Cu phases. This increased the tensile strength of the weld joint from 183 to 236 MPa (a 28.9% improvement), along with a 57% increase in the weld centre hardness. An energy-dispersive X-ray spectroscopy analysis indicated that welding with the threaded tool resulted in the presence of significantly hard and brittle intermetallic compounds, including AlCu and Al2Cu, in the stirring zone, which substantially enhanced the weld strength. Full article
(This article belongs to the Section Welding and Joining)
Show Figures

Figure 1

17 pages, 6602 KiB  
Article
Studies of Corrosion Inhibition Performance of Inorganic Inhibitors for Aluminum Alloy
by Redouane Farid, Dilip K. Sarkar and Santanu Das
Materials 2025, 18(3), 595; https://doi.org/10.3390/ma18030595 - 28 Jan 2025
Cited by 1 | Viewed by 1028
Abstract
In this study, the behavior of sodium silicate (Na2SiO3), manganese sulfate monohydrate (MnSO4·H2O), and ammonium metavanadate (NH4VO3) as corrosion inhibitors for AA6061 aluminum alloy (Al) was investigated. The polarization resistance (R [...] Read more.
In this study, the behavior of sodium silicate (Na2SiO3), manganese sulfate monohydrate (MnSO4·H2O), and ammonium metavanadate (NH4VO3) as corrosion inhibitors for AA6061 aluminum alloy (Al) was investigated. The polarization resistance (Rp) of the Al substrate immersed in 0.1 M NaCl solution was found to be 13 kΩ·cm2. In comparison, the Rp of the Al substrate immersed in 0.1 M NaCl in the presence of Na2SiO3, Na2SiO3/MnSO4·H2O, and Na2SiO3/NH4VO3 inhibitors was found to be 100, 133, and 679 kΩ·cm2, respectively. The best inhibition result was obtained when the mixture of the inhibitors was used with Rp of 722 kΩ·cm2. The maximum percentage of the corroded area calculated from the scanning electron microscopy (SEM) images was found to be 5.7% for Al substrate immersed in 0.1 M NaCl, which decreased to 0.06% when the mixture of the inhibitors was used. The synergetic effects between the three inhibitors were studied, and the results illustrated that the combination of Na2SiO3, MnSO4·H2O, and NH4VO3 provided the best corrosion inhibition properties for Al in aqueous NaCl environments. Full article
(This article belongs to the Special Issue Corrosion Mechanism and Protection Technology of Metallic Materials)
Show Figures

Figure 1

12 pages, 3093 KiB  
Article
Tetrazenyl-, Imido-, and Azidoaluminate Derivatives of a Sterically Demanding Bis-Silazide Ligand
by Han-Ying Liu, Ryan J. Schwamm, Jakub Kenar, Mary F. Mahon and Michael S. Hill
Inorganics 2025, 13(1), 25; https://doi.org/10.3390/inorganics13010025 - 16 Jan 2025
Viewed by 904
Abstract
The potassium alumanyl [{SiNDipp}AlK]2 (SiNDipp = {CH2SiMe2NDipp}2; Dipp = 2,6-i-Pr2C6H3) reacts with organic azides via reductive N2 elimination. With the less sterically encumbered azides [...] Read more.
The potassium alumanyl [{SiNDipp}AlK]2 (SiNDipp = {CH2SiMe2NDipp}2; Dipp = 2,6-i-Pr2C6H3) reacts with organic azides via reductive N2 elimination. With the less sterically encumbered azides PhN3 and C10H15N3 (1-azidoadamantane), the putative initially formed aluminium imide undergoes facile [2 + 3] cycloaddition to provide the tetrazenylaluminates [{SiNDipp}Al-κ2-N,N′-({N(R)}2N2)]K (R = Ph, C10H15). In contrast, each Al(I) centre of [{SiNDipp}AlK]2 only reacts with a single equivalent of 2,4,6-Me3C6H2N3 to provide the imidoaluminate [{SiNDipp}AlN(2,4,6-Me3C6H2)(K∙C6H6)], which crystallises as a monomer and displays a short Al-N distance of 1.7040(13) Å. Attempts to synthesise the azide [{SiNDipp}AlN3] by reaction of [{SiNDipp}AlI] with an excess of KN3 resulted in exclusive formation of the bis(azido)aluminate [{SiNDipp}Al(N3)2K], which crystallises as an infinite 1-dimensional polymer propagated by μ-(1,3)-N3 bridging interactions between the potassium cations and azide anions. Although the THF-adducted azide [{SiNDipp}AlN3(THF)] may be synthesised and characterised by more stringent control of the reaction stoichiometry, the synthetic viability of this route remains compromised by competitive generation of [{SiNDipp}Al(N3)2K]. Full article
Show Figures

Graphical abstract

18 pages, 11958 KiB  
Article
Microstructure Characterisation and Modelling of Pre-Forging Solution Treatment of 7075 Aluminium Alloy Using Novel Heating Methods
by Hao Wu, Zisong Lu, Steven Hill and Richard Turner
J. Manuf. Mater. Process. 2025, 9(1), 2; https://doi.org/10.3390/jmmp9010002 - 25 Dec 2024
Viewed by 1204
Abstract
This study evaluates the effectiveness of these conventional heating methods, commonly adopted in the industry with long durations (typically one hour), in comparison to newer, potentially more efficient approaches such as induction coil heating, infrared module heating, and infrared furnaces that can perform [...] Read more.
This study evaluates the effectiveness of these conventional heating methods, commonly adopted in the industry with long durations (typically one hour), in comparison to newer, potentially more efficient approaches such as induction coil heating, infrared module heating, and infrared furnaces that can perform solution heat treatment in significantly shorter times (5 to 20 min). The properties of the edge and centre regions of the solution-treated billets, including the state of precipitates, grain structures, and Vickers hardness, are investigated and compared. Results have shown that the 7075 billets heated by conventional heating methods sufficiently dissolved the stable precipitates, achieving hardness ranging from 137 to 141 HV, in contrast to the benchmark unheated, as-received sample of approximately 70 HV. In the meantime, the induction coil and infrared furnace demonstrate notable effectiveness, achieving hardness between 126 and 135 HV. The average grain sizes in the centre and edge regions for all samples are measured as 3 and 8 µm, respectively. However, the impact of the grain size on the hardness is negligible compared to the impact of the precipitates. Finite element (FE) modelling comparing the slowest heating method—the electric furnace—and the fastest heating method—induction coil heating—reveals the latter could heat the billet up to 450 °C at a rate ten times faster than the electric furnace. This study highlights the potential of novel heating techniques in promoting the efficiency of heat treatment processes for 7075 aluminium alloys. Full article
Show Figures

Figure 1

12 pages, 5990 KiB  
Article
Mechanism of Aluminium Electrochemical Oxidation and Alumina Deposition Using a Carbon Sphere Electrode
by Shumin Yang, Ao Wang, Xuemei Lin, Yunkai Qi, Guochao Shi, Wei Han and Jianjun Gu
Crystals 2024, 14(12), 1102; https://doi.org/10.3390/cryst14121102 - 21 Dec 2024
Viewed by 992
Abstract
Using electromagnetic and electrochemical theories as a framework, this study examines the influence of carbon sphere electrodes on the distribution patterns of anodic oxidation and deposition current densities in metallic aluminium and porous anodic alumina. Theoretical calculations show that the current density symmetrically [...] Read more.
Using electromagnetic and electrochemical theories as a framework, this study examines the influence of carbon sphere electrodes on the distribution patterns of anodic oxidation and deposition current densities in metallic aluminium and porous anodic alumina. Theoretical calculations show that the current density symmetrically decreases from the centre outward under the effect of carbon sphere electrodes. Increasing the electrode distance improves the uniformity of the current distribution across the film, while decreasing the distance increases the rate of gradient change in current density. Simulation results reveal that at electrode spacings of 15 cm and 1 cm, the oxidation current density at the film centre is 1333 A/m2 and 2.9 × 105 A/m2, respectively. The current density gradually decreases outward along the radius, reaching 1330 A/m2 and 1.8 × 105 A/m2 at the edges, with observed current density gradient change rates of 500 A/m3 and 1.83 × 107 A/m3, respectively. Experimental results confirm that carbon sphere counter electrodes can create non-uniform oxidation and deposition electric fields. Microstructures with gradually varying symmetry can be generated by adjusting the electrode spacing, resulting in porous anodic alumina and composite films exhibiting iridescent, ring-like structural colours. The experimental findings align well with theoretical calculations and simulation results. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

10 pages, 6891 KiB  
Article
Oxidative Addition to Group 1 (K, Rb, Cs) Alumanyl Anions as a Route to o-Carboranyl (hydrido)aluminates
by Han-Ying Liu, Kyle G. Pearce, Michael S. Hill and Mary F. Mahon
Inorganics 2024, 12(12), 309; https://doi.org/10.3390/inorganics12120309 - 27 Nov 2024
Cited by 1 | Viewed by 1218
Abstract
The kinetic stability provided by the sterically demanding {SiNDipp}2− dianion (SiNDipp = {CH2SiMe2NDipp}2; Dipp = 2,6-i-Pr2C6H3) is intrinsic to the isolation of not only the [...] Read more.
The kinetic stability provided by the sterically demanding {SiNDipp}2− dianion (SiNDipp = {CH2SiMe2NDipp}2; Dipp = 2,6-i-Pr2C6H3) is intrinsic to the isolation of not only the group 1 alumanyl reagents ([{SiNDipp}AlM]2; M = K, Rb, Cs) but also facilitates the completely selective oxidative addition of a C-H bond of 1,2-C2B10H12 to the aluminium centre. In each case, the resultant compounds comprise a four-coordinate o-carboranyl (hydrido)aluminate anion, [(SiNDipp)Al(H)(1,2-C2B10H11)], in which the carboranyl cage is bonded to aluminium by an Al-C σ bond. Although the anions further assemble as extended network structures based on Al-H∙∙∙M, B-H∙∙∙M, and C-H∙∙∙M interactions, each structure is unique due to the significant variation in M+ ionic radius as group 1 is descended. The potassium derivative crystallises as a one-dimensional polymer, its rubidium analogue is a dimer due to the polyhapto-sequestration of a molecule of benzene solvent within the alkali metal coordination sphere, and the caesium species is a two-dimensional assembly of hexameric aggregates. Full article
Show Figures

Graphical abstract

15 pages, 9727 KiB  
Article
Effect of Annealing Time on Grain Structure Evolution and Superplastic Response of Al-Mg 5xxx Alloys
by Eric Kojo Kweitsu, Dilip Kumar Sarkar, Ahmed Y. Algendy, X.-Grant Chen, Jocelyn Veilleux and Nicolas Bombardier
Materials 2024, 17(22), 5492; https://doi.org/10.3390/ma17225492 - 11 Nov 2024
Viewed by 1541
Abstract
The impact of annealing on the recrystallized grain structure and superplastic behavior of two Al-Mg 5xxx alloys used for high-speed blow forming (HSBF) was studied. The results revealed that both alloys demonstrated rapid static recrystallization after only a few minutes of annealing at [...] Read more.
The impact of annealing on the recrystallized grain structure and superplastic behavior of two Al-Mg 5xxx alloys used for high-speed blow forming (HSBF) was studied. The results revealed that both alloys demonstrated rapid static recrystallization after only a few minutes of annealing at 520 °C, forming fine and equiaxed grain structures. After four min of annealing, Alloy 2 (Al-4.0Mg-1.18Mn) exhibited a higher fraction of small grains (<10 µm) compared to Alloy 1 (Al-4.5Mg-0.74Mn). Moreover, Alloy 2 displayed enhanced resistance to grain coarsening with increasing annealing times, which was attributed to its higher amount of Al6(Mn,Fe) intermetallic particles and a higher number density of Mn dispersoids. Optimizing the annealing time can effectively develop a fine and stable grain structure in Al-Mg 5xxx alloys. During tensile deformation, Alloy 2 consistently showed higher ductility compared to Alloy 1 at low strain rates (170% vs. 138% at 0.001 s−1 and 163% vs. 134% at 0.01 s−1), whereas at a high strain rate of 1 s−1, both alloys displayed comparable tensile elongation. The high superplastic response of Alloy 2 at low strain rates renders it a superior superplastic alloy for HSBF applications. Full article
(This article belongs to the Special Issue Advanced Materials: Process, Properties, and Applications)
Show Figures

Figure 1

28 pages, 8231 KiB  
Article
Comparative Analysis of Active Bonded Piezoelectric Repair Systems for Damaged Structures under Mechanical and Thermo-Mechanical Loads
by Mohammed Abdulla, Meftah Hrairi, Abdul Aabid, Nur Azam Abdullah and Muneer Baig
Actuators 2024, 13(10), 390; https://doi.org/10.3390/act13100390 - 2 Oct 2024
Viewed by 1013
Abstract
Active repair systems employing piezoelectric (PZT) patches have emerged as promising solutions for mitigating crack propagation and enhancing structural integrity in various engineering applications. However, the existing literature predominantly focuses on the application of PZT patches for repairing structures under mechanical loading. In [...] Read more.
Active repair systems employing piezoelectric (PZT) patches have emerged as promising solutions for mitigating crack propagation and enhancing structural integrity in various engineering applications. However, the existing literature predominantly focuses on the application of PZT patches for repairing structures under mechanical loading. In this study, a finite element analysis (FEA) is employed to investigate the repair of a centre-cracked aluminium plate under both mechanical and thermo-mechanical loading conditions. This study explores the influence of key parameters, including temperature, PZT patch thickness, type of PZT material, adhesive material, and adhesive thickness, on the structural integrity and crack propagation behaviour. The results reveal significant differences in stress distribution and crack propagation tendencies under varying loading conditions and parameter settings. These findings emphasize the necessity of considering thermo-mechanical loading conditions and parameter variations when designing effective active repair systems. In conclusion, this study provides valuable insights into optimizing PZT patch-based repair strategies for improved structural integrity and crack mitigation in aerospace and other engineering applications under diverse loading scenarios. Full article
Show Figures

Figure 1

13 pages, 6392 KiB  
Article
A New Process of Chemical Plating Ni-P Electromagnetic Induction Heating Activation on the Surface of Aluminium Alloy Base Material
by Jin Gao, Kaifang Cui, Siqi Li, Liang Zhong, Jingxiong Dai, Zhigang Yang and Rongming Qiang
Coatings 2024, 14(9), 1221; https://doi.org/10.3390/coatings14091221 - 22 Sep 2024
Cited by 2 | Viewed by 1882
Abstract
Nowadays, there are many surface treatment methods for aluminium alloys; the most commonly used of these is the chemical dip galvanizing process, which is complicated due to its use of large quantities of corrosive drugs. In order to simplify the process, this paper [...] Read more.
Nowadays, there are many surface treatment methods for aluminium alloys; the most commonly used of these is the chemical dip galvanizing process, which is complicated due to its use of large quantities of corrosive drugs. In order to simplify the process, this paper proposes a new electromagnetic induction heating activation method instead of the zinc dipping process. The method works as follows: The substrate is first degreased and then activated. The activation process starts by soaking the degreased substrate in an activation solution, taking it out after ten minutes, and placing it into an induction heating unit. The activation solution is sprayed onto the surface of the substrate while heating, using the energy generated by high temperatures to complete the activation reaction. The surface of the activated substrate forms a nanoscale film of nickel, which is finally utilised as a catalytic centre for ENP (an advanced surface treatment process that deposits a very uniform layer). The optimisation of important parameters of the non-destructive activation process was determined using the L9 Taguchi method. The main parameters ranged from 0.15 L/min to 0.25 L/min for spray rate, 200 °C to 400 °C for heat treatment temperature, and 1:4, 1:5, and 1:6 for Ni2+ and H2PO4 ion concentration ratios. The above data were derived from a single variable and were analysed using Minitab 20 software. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), energy spectrometry (EDS), and ultrasonic experiments were used to characterize and analyse the surface morphology, composition, and bond strength of the coatings. The results show that the nanoscale nickel particles can completely cover the surface of the substrate, forming a layer of nano-film. After activation and ultrasonic cleaning for 30 s at an ultrasonic frequency of 40 KHz and a power of 80 W, the surface nano-film was not destroyed, which proves that it had a high bonding strength. After the application of the plating, the plated surface had a compact microstructure, and the continuity was good. Therefore, compared with the currently commonly used zinc dipping process, this process has the advantages of being a low-cost, simple operation, and non-destructive and environmentally friendly activation process for the substrate. Full article
Show Figures

Figure 1

14 pages, 5194 KiB  
Article
Development of a MELCOR Model for LVR-15 Severe Accidents Assessment
by Alain Flores y Flores, Guido Mazzini and Antonio Dambrosio
Energies 2024, 17(14), 3384; https://doi.org/10.3390/en17143384 - 10 Jul 2024
Viewed by 1093
Abstract
LVR-15 is a light-water-tank-type research reactor placed in a stainless-steel vessel under a shielding cover located in the Research Centre Rez (CVR) near Prague. It is operated at a steady-state power of up to 10 MWt under atmospheric pressure and is cooled by [...] Read more.
LVR-15 is a light-water-tank-type research reactor placed in a stainless-steel vessel under a shielding cover located in the Research Centre Rez (CVR) near Prague. It is operated at a steady-state power of up to 10 MWt under atmospheric pressure and is cooled by forced circulation. In 2011, the fuel was replaced, going from high-enriched uranium (HEU) to low-enriched uranium (LEU). After 2017, the State Office for Nuclear Safety (SUJB) asked CVR to evaluate the LVR-15 under Design Extended Conditions B (DEC-B). For this reason, a new model was developed in the MELCOR code, which allows for modelling the progression of a severe accident (SA) in light-water nuclear power plants and estimating the behaviour of the reactor under SA conditions. The model was built by collecting information about the LVR-15. Since the research reactor can have different core configurations according to the location of the core components, the core configuration with the most fuel (hottest campaign K221) was selected. Then, to create the radial nodalisation, the details of the core components were obtained and grouped in five radial rings and 27 axial levels. The simulation was run with the boundary conditions collected from campaign K221, and the results were compared with the reference values of the campaign with a negligible percentage of error. For the coolant inlet and outlet temperature, the reference values were 318.18 K and 323.5 K, respectively, while for the simulation, the steady state reached 319 K for the inlet temperature and 324 K for the outlet temperature. Additionally, the cladding temperature of the hottest assembly was compared with the reference value (353.72 K) and the steady-state simulation results (362 K). In future work, different transients leading to severe accidents will be simulated. When simulating the LVR-15 reactor with MELCOR, specific attention is required for the aluminium-cladded fuel assemblies, as the model requires some assumptions to cope with the phenomenological limitations. Full article
(This article belongs to the Special Issue Advanced Technologies in Nuclear Engineering)
Show Figures

Figure 1

21 pages, 29925 KiB  
Article
The Impact of Multiple Thermal Cycles Using CMT® on Microstructure Evolution in WAAM of Thin Walls Made of AlMg5
by Vinicius Lemes Jorge, Felipe Ribeiro Teixeira, Sten Wessman, Americo Scotti and Sergio Luiz Henke
Metals 2024, 14(6), 717; https://doi.org/10.3390/met14060717 - 17 Jun 2024
Cited by 5 | Viewed by 1729
Abstract
Wire Arc Additive Manufacturing (WAAM) of thin walls is an adequate technology for producing functional components made with aluminium alloys. The AlMg5 family is one of the most applicable alloys for WAAM. However, WAAM differs from traditional fabrication routes by imposing multiple thermal [...] Read more.
Wire Arc Additive Manufacturing (WAAM) of thin walls is an adequate technology for producing functional components made with aluminium alloys. The AlMg5 family is one of the most applicable alloys for WAAM. However, WAAM differs from traditional fabrication routes by imposing multiple thermal cycles on the material, leading the alloy to undergo cyclic thermal treatments. Depending on the heat source used, thermal fluctuation can also impact the microstructure of the builds and, consequently, the mechanical properties. No known publications discuss the effects of these two WAAM characteristics on the built microstructure. To study the influence of multiple thermal cycles and heat source-related thermal fluctuations, a thin wall was built using CMT-WAAM on a laboratory scale. Cross-sections of the wall were metallographically analysed, at the centre of a layer that was re-treated, and a region at the transition between two layers. The focus was the solidification modes and solubilisation and precipitations of secondary phases. Samples from the wall were post-heat treated in-furnace with different soaking temperatures and cooling, to support the results. Using numerical simulations, the progressive thermal cycles acting on the HAZ of one layer were simplified by a temperature sequence with a range of peak temperatures. The results showed that different zones are formed along the layers, either as a result of the imposed thermal cycling or the solidification mode resulting from CMT-WAAM deposition. In the zones, a band composed of coarse dendrites and an interdendritic phase and another band formed by alternating sizes of cells coexisted with the fusion and heat-affected zones. The numerical simulation revealed that the thermal cycling did not significantly promote the precipitation of second-phase particles. Full article
Show Figures

Figure 1

25 pages, 6307 KiB  
Article
On the Determination of Elastic Properties of Single-Walled Nitride Nanotubes Using Numerical Simulation
by Nataliya A. Sakharova, André F. G. Pereira, Jorge M. Antunes, Bruno M. Chaparro, Tomás G. Parreira and José V. Fernandes
Materials 2024, 17(10), 2444; https://doi.org/10.3390/ma17102444 - 18 May 2024
Cited by 2 | Viewed by 1519
Abstract
In recent years, tubular nanostructures have been related to immense advances in various fields of science and technology. Considerable research efforts have been centred on the theoretical prediction and manufacturing of non-carbon nanotubes (NTs), which meet modern requirements for the development of novel [...] Read more.
In recent years, tubular nanostructures have been related to immense advances in various fields of science and technology. Considerable research efforts have been centred on the theoretical prediction and manufacturing of non-carbon nanotubes (NTs), which meet modern requirements for the development of novel devices and systems. In this context, diatomic inorganic nanotubes formed by atoms of elements from the 13th group of the periodic table (B, Al, Ga, In, Tl) and nitrogen (N) have received much research attention. In this study, the elastic properties of single-walled boron nitride, aluminium nitride, gallium nitride, indium nitride, and thallium nitride nanotubes were assessed numerically using the nanoscale continuum modelling approach (also called molecular structural mechanics). The elastic properties (rigidities, surface Young’s and shear moduli, and Poisson’s ratio) of nitride nanotubes are discussed with respect to the bond length of the corresponding diatomic hexagonal lattice. The results obtained contribute to a better understanding of the mechanical response of nitride compound-based nanotubes, covering a broad range, from the well-studied boron nitride NTs to the hypothetical thallium nitride NTs. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

17 pages, 9001 KiB  
Article
Investigation of the Penetration Performance of the Radial Forging Process for Wrought Aluminium Alloy
by Yongfei Wang, Linhua Xiong, Dongxiao Feng, Shengdun Zhao and Yi Guo
Materials 2024, 17(9), 2065; https://doi.org/10.3390/ma17092065 - 27 Apr 2024
Cited by 5 | Viewed by 2024
Abstract
With the wide application potential of wrought aluminium alloy in aerospace, automobile and electronic products, high-quality aluminium bars prepared by the radial forging (RF) process have received extensive attention. Penetration performance refers to the depth of radial plastic deformation of forgings, which is [...] Read more.
With the wide application potential of wrought aluminium alloy in aerospace, automobile and electronic products, high-quality aluminium bars prepared by the radial forging (RF) process have received extensive attention. Penetration performance refers to the depth of radial plastic deformation of forgings, which is the key factor in determining the quality of forging. In this work, the penetration performance of the radial forging process for 6063 wrought aluminium bars is investigated by simulation using FORGE software. The minimum reduction amount of the hammer is calculated based on the forging penetration theory of forging. The influence of process parameters including forging ratio (FR) and billet temperature on the effective stress and hammer load in the RF process are investigated. The RF-deformed billet is then produced with the optimal process parameters obtained from the simulation results. The average grain size of aluminium alloy semi-solid spherical material is used to evaluate the forging penetration. Simulation results showed that the effective strain at the edge and the centre of the RF-deformed billet gradually increases, but the increasing speed of the effective strain at the edge becomes low. The hammer load first decreases quickly and then gradually maintains stability by increasing the FR. It is found that low billet temperature and high FR should be selected as appropriate process parameters under the allowable tonnage range of RF equipment. Under an isothermal temperature of 630 °C and a sustaining time of 10 min, the difference in the average grain dimension between the edge and the centre positions of the starting extruded blank is 186.43 μm, while the difference in the average grain dimension between the edge and the centre positions of the RF-deformed blank is 15.09 μm. The improvement ratio of penetration performance for the RF-deformed blank is obtained as 91.19%. Full article
Show Figures

Figure 1

19 pages, 3775 KiB  
Article
Aluminium-Based Metal–Organic Framework Nano Cuboids and Nanoflakes with Embedded Gold Nanoparticles for Carbon Dioxide Fixation with Epoxides into Cyclic Esters
by Gabriela Kopacka, Kinga Wasiluk, Pawel W. Majewski, Michał Kopyt, Piotr Kwiatkowski and Elżbieta Megiel
Int. J. Mol. Sci. 2024, 25(2), 1020; https://doi.org/10.3390/ijms25021020 - 13 Jan 2024
Cited by 6 | Viewed by 2779
Abstract
The fixation of carbon dioxide with epoxides is one of the most attractive methods for the green utilisation of this greenhouse gas and leads to many valuable chemicals. This process is characterised by 100% atom efficiency; however, an efficient catalyst is required to [...] Read more.
The fixation of carbon dioxide with epoxides is one of the most attractive methods for the green utilisation of this greenhouse gas and leads to many valuable chemicals. This process is characterised by 100% atom efficiency; however, an efficient catalyst is required to achieve satisfactory yields. Metal–organic frameworks (MOFs) are recognised as being extremely promising for this purpose. Nevertheless, many of the proposed catalysts are based on ions of rare elements or elements not entirely safe for the environment; this is notable with commercially unavailable ligands. In an effort to develop novel catalysts for CO2 fixation on an industrial scale, we propose novel MOFs, which consist of aluminium ions coordinated with commercially available 1,4-naphthalene dicarboxylic acid (Al@NDC) and their nanocomposites with gold nanoparticles entrapped inside their structure (AlAu@NDC). Due to the application of 4-amino triazole and 5-amino tetrazole as crystallization mediators, the morphology of the synthesised materials can be modified. The introduction of gold nanoparticles (AuNPs) into the structure of the synthesised Al-based MOFs causes the change in morphology from nano cuboids to nanoflakes, simultaneously decreasing their porosity. However, the homogeneity of the nanostructures in the system is preserved. All synthesised MOF materials are highly crystalline, and the simulation of PXRD patterns suggests the same tetragonal crystallographic system for all fabricated nanomaterials. The fabricated materials are proven to be highly efficient catalysts for carbon dioxide cycloaddition with a series of model epoxides: epichlorohydrin; glycidol; styrene oxide; and propylene oxide. Applying the synthesised catalysts enables the reactions to be performed under mild conditions (90 °C; 1 MPa CO2) within a short time and with high conversion and yield (90% conversion of glycidol towards glycerol carbonate with 89% product yield within 2 h). The developed nanocatalysts can be easily separated from the reaction mixture and reused several times (both conversion and yield do not change after five cycles). The excellent performance of the fabricated catalytic materials might be explained by their high microporosity (from 421 m2 g−1 to 735 m2 g−1); many catalytic centres in the structure exhibit Lewis acids’ behaviour, increased capacity for CO2 adsorption, and high stability. The presence of AuNPs in the synthesised nanocatalysts (0.8% w/w) enables the reaction to be performed with a higher yield within a shorter time; this is especially important for less-active epoxides such as propylene oxide (two times higher yield was obtained using a nanocomposite, in comparison with Al-MOF without nanoparticles). Full article
(This article belongs to the Special Issue Advances in Heterogeneous Catalysts)
Show Figures

Graphical abstract

12 pages, 4673 KiB  
Article
Heterogeneity of Adhesive Joint Properties
by Kamil Anasiewicz and Józef Kuczmaszewski
Materials 2023, 16(23), 7303; https://doi.org/10.3390/ma16237303 - 24 Nov 2023
Viewed by 1170
Abstract
This paper presents the results of a study of adhesive joints, focused on the heterogeneity of the properties of the adhesive material in the adhesive joint. The main objective of the study was to determine potential differences in the material properties of adhesive [...] Read more.
This paper presents the results of a study of adhesive joints, focused on the heterogeneity of the properties of the adhesive material in the adhesive joint. The main objective of the study was to determine potential differences in the material properties of adhesive joints made with selected structural adhesives. Due to the impact of the joined material on the adhesive during the curing of the joint as well as the impact of phenomena occurring during the curing of the adhesive, the properties of the adhesive joint may vary along the thickness of the joint. Determining the differences in material properties over the thickness of the adhesive bond is important for more accurate prediction of adhesive bond strength in FEM simulations. In order to observe changes in the material properties of bonds, nanoindentation tests have been carried out on eight adhesive joint bonds made with common structural adhesives used to join sheets of aluminium alloy or corrosion-resistant steel. Basing on the achieved test results, load/unload curves were developed for imprints at characteristic spots of the joints. Distinct differences in the achieved average force value were observed for imprints located in the wall-adjacent zone and in the centre of the adhesive joint; this can be interpreted as areas of the joint with different material structures of higher or lower density of imperfections or porosities. Differences in the load/unload curves for ‘rigid’ and ‘flexible’ adhesives were analysed. The summary includes a conclusion that an adhesive joint is characterised by heterogeneous properties along its thickness. Full article
Show Figures

Figure 1

Back to TopTop