Oxidative Addition to Group 1 (K, Rb, Cs) Alumanyl Anions as a Route to o-Carboranyl (hydrido)aluminates
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Considerations
3.2. Syntheses of New Complexes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Holzmann, R.T.; Hughes, R.L.; Smith, I.C.; Lawless, E.W.; Midwest Research, I. Production of the Boranes and Related Research; Academic Press: New York, NY, USA, 1967. [Google Scholar]
- Callahan, K.P.; Hawthorne, M.F. Organometallic reactions of 1-ethynyl-1,2-carborane. J. Am. Chem. Soc. 1973, 95, 4574–4580. [Google Scholar] [CrossRef]
- Yang, X.; Jiang, W.; Knobler, C.B.; Hawthorne, M.F. Rigid-rod molecules: Carborods. Synthesis of tetrameric p-carboranes and the crystal structure of bis(tri-n-butylsilyl)tetra-p-carborane. J. Am. Chem. Soc. 1992, 114, 9719–9721. [Google Scholar] [CrossRef]
- Grimes, R.N. Carboranes; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Bregadze, V.I. Dicarba-closo-dodecaboranes C2B10H12 and their derivatives. Chem. Rev. 1992, 92, 209–223. [Google Scholar] [CrossRef]
- Zakharkin, L.; Bregadze, V.; Okhlobystin, O.Y. Synthesis of organoelement derivatives of barenes (carboranes). J. Organometal. Chem. 1965, 4, 211–216. [Google Scholar] [CrossRef]
- Hlatky, G.G.; Turner, H.W.; Eckman, R.R. Ionic, base-free zirconocene catalysts for ethylene polymerization. J. Am. Chem. Soc. 1989, 111, 2728–2729. [Google Scholar] [CrossRef]
- Brew, S.A.; Jeffery, J.C.; Mortimer, M.D.; Stone, F.G.A. Alkylidyne(carbaborane) complexes of the group 6 metals. Exo-nido-tungstacarborane compounds. J. Chem. Soc. Dalton Trans. 1992, 8, 1365–1374. [Google Scholar] [CrossRef]
- Knobler, C.B.; Marder, T.B.; Mizusawa, E.A.; Teller, R.G.; Long, J.A.; Behnken, P.E.; Hawthorne, M.F. Metallacarboranes in catalysis. 4. Structures of closo- and exo-nido-phosphinerhodacarboranes and a [(PPh3)3Rh]+[nido-7-R-7,8-C2B9H11]− salt. J. Am. Chem. Soc. 1984, 106, 2990–3004. [Google Scholar] [CrossRef]
- Bresciani, N.; Calligaris, M.; Delise, P.; Nardin, G.; Randaccio, L. Structure of a sigma-carboranyl complex of platinum(II), sigma-1-(2-phenyl-1,2-dicarbadecahydrododecaboranyl)(tripropylphosphine)[dipropylpropylidenephosphine)platinum(II)]. J. Am. Chem. Soc. 1974, 96, 5642–5643. [Google Scholar] [CrossRef]
- Kirillova, N.I.; Klimova, T.V.; Struchkov, Y.T.; Stanko, V.I. X-ray diffraction study of C-monosubstituted derivatives of o-carborane with trimethylsilyl and trimethylgermyl substituents. Bull. Acad. Sci. USSR Div. Chem. Sci. 1981, 30, 442–446. [Google Scholar] [CrossRef]
- Zhu, B.; Yu, Y.; Chen, J.; Wu, Q.; Liu, Q. Novel Reactions of the Rhenium Carbyne Complex [(η-C5H5)(CO)(COC2HB10H10)ReCC6H5] with Metal Carbonyl Compounds. Crystal Structures of [ReFe(μ-CC6H5)(μ-CO)(CO)3(μ-C5H5)(COC2HB10H10)] and [ReCo2(μ3-CC6H5)(μ-CO)2(CO)5(η-C5H5)(C2HB10H10)]. Organometallics 1995, 14, 3963–3969. [Google Scholar] [CrossRef]
- Morel, P.; Schaffer, P.; Britten, J.F.; Valliant, J.F. Solvent-metal interactions in bis [1,2-dicarba-closo-dodecaboran(12)-1-yl]mercury(II) dichloromethane solvate and bis [1,12-dicarba-closo-dodecaboran(12)-1-yl]mercury(II) tetrahydrofuran solvate. Acta Cryst. C 2002, 58, m601–m604. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, H.; Sasaki, I.; Shiomi, S.; Yamasaki, N.; Imagawa, H. A Carbaboranylmercuric Salt Catalyzed Reaction; Highly Regioselective Cycloisomerization of 1,3-Dienes. Org. Lett. 2012, 14, 2266–2269. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; Xie, Z. Reaction of a Zirconocene–Carboryne Complex with Pyridines: Ligand C–H Activation. Organometallics 2011, 30, 5953–5959. [Google Scholar] [CrossRef]
- Cao, B.; Ding, Y.; Fang, F.; Chang, J.; Zhang, J.; Li, S.; Chen, X. The stability of group 10 metal POCOP pincer complexes: Decomposition/reconstruction pathways of the pincer backbone. Dalton Trans. 2019, 48, 13760–13768. [Google Scholar] [CrossRef] [PubMed]
- Chambrier, I.; Hughes, D.L.; Jeans, R.J.; Welch, A.J.; Budzelaar, P.H.M.; Bochmann, M. Do Gold(III) Complexes Form Hydrogen Bonds? An Exploration of AuIII Dicarboranyl Chemistry. Chem. Eur. J. 2020, 26, 939–947. [Google Scholar] [CrossRef]
- Jayaweera, H.D.A.C.; Rahman, M.M.; Pellechia, P.J.; Smith, M.D.; Peryshkov, D.V. Free three-dimensional carborane carbanions. Chem. Sci. 2021, 12, 10441–10447. [Google Scholar] [CrossRef]
- Lobanova, I.A.; Bregadze, V.I.; Timofeev, S.V.; Petrovskii, P.V.; Starikova, Z.A.; Dolgushin, F.M. Mercury derivatives of exo-nido-ruthenacarborane. J. Organometal. Chem. 2000, 597, 48–53. [Google Scholar] [CrossRef]
- Churchill, M.R.; Reis, A.H. Crystal structure and molecular geometry of 3-ethyl-3-alumina-1,2-dicarba-closo-dodecaborane(12), 1,2-B9C2H11AlEt. J. Chem. Soc. Dalton Trans. 1972, 13, 1317–1320. [Google Scholar] [CrossRef]
- Schubert, D.M.; Bandman, M.A.; Rees, W.S., Jr.; Knobler, C.B.; Lu, P.; Nam, W.; Hawthorne, M.F. Synthesis of Group 13 element metallacarboranes and related structure-reactivity correlations. Organometallics 1990, 9, 2046–2061. [Google Scholar] [CrossRef]
- Bandman, M.A.; Knobler, C.B.; Hawthorne, M.F. Synthesis and X-ray structure of a symmetrical bis(η5-dicarbollide) aluminium sandwich. Inorg. Chem. 1988, 27, 2399–2400. [Google Scholar] [CrossRef]
- Rees, W.S.; Schubert, D.M.; Knobler, C.B.; Hawthorne, M.F. Synthesis and X-ray crystal structure of a novel bimetallic bis(η5-dicarbollide) aluminium sandwich complex. J. Am. Chem. Soc. 1986, 108, 5367–5368. [Google Scholar] [CrossRef]
- Son, K.-C.; Lee, Y.-J.; Cheong, M.; Ko, J.; Kang, S.O. Constrained-Geometry Aluminium Complexes with η5;η-Coordination: Syntheses, Structures, and Theoretical Studies of Dicarbollylamino Aluminium(III) Complexes. J. Am. Chem. Soc. 2006, 128, 12086–12087. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-D.; Kim, S.-K.; Kim, T.-J.; Han, W.-S.; Lee, Y.-J.; Yoo, D.-H.; Cheong, M.; Ko, J.; Kang, S.O. Dicarbollylamine Ligand as a Tunable Template for σ,σ- and π,σ-Bonding Modes: Syntheses, Structures, and Theoretical Studies of η5:η1-Coordinated Constrained-Geometry Group 13 Metal Complexes. J. Am. Chem. Soc. 2008, 130, 9904–9917. [Google Scholar] [CrossRef] [PubMed]
- Sohn, H.; Lee, J.-D. Intramolecularly Stabilized o-Carboranyl Aluminum Complexes: Synthesis, Characterization, and X-ray Structural Studies. Crystals 2023, 13, 877. [Google Scholar] [CrossRef]
- Bregadze, V.I.; Usyatinskii, A.Y.; Antonovich, V.A.; Godovikov, N.N. Reaction of carboranes with alkyl derivatives of group III metals. Bull. Acad. Sci. USSR Div. Chem. Sci. 1988, 37, 570–573. [Google Scholar] [CrossRef]
- Clegg, W.; Brown, D.A.; Bryan, S.J.; Wade, K. Preparation and crystal structure of the dicarboranyl-magnesium bis(dioxane) adduct Mg(2-Me-1,2-C2B10H10)2·2C4H8O2. J. Organometal. Chem. 1987, 325, 39–46. [Google Scholar] [CrossRef]
- Pearce, K.G.; Morris, L.J.; Robinson, T.P.; Johnson, A.L.; Mahon, M.F.; Hill, M.S. From alkaline earth to coinage metal carboranyls. Dalton Trans. 2024, 53, 6653–6659. [Google Scholar] [CrossRef]
- Liu, H.Y.; Schwamm, R.J.; Neale, S.E.; Hill, M.S.; McMullin, C.L.; Mahon, M.F. Reductive Dimerization of CO by a Na/Mg(I) Diamide. J. Am. Chem. Soc. 2021, 143, 17851–17856. [Google Scholar] [CrossRef]
- Schwamm, R.J.; Coles, M.P.; Hill, M.S.; Mahon, M.F.; McMullin, C.L.; Rajabi, N.A.; Wilson, A.S.S. A Stable Calcium Alumanyl. Angew. Chem. Int. Ed. 2020, 59, 3928–3932. [Google Scholar] [CrossRef]
- Schwamm, R.J.; Hill, M.S.; Liu, H.Y.; Mahon, M.F.; McMullin, C.L.; Rajabi, N.A. Seven-Membered Cyclic Potassium Diamidoalumanyls. Chem. Eur. J. 2021, 27, 14971–14980. [Google Scholar] [CrossRef]
- Liu, H.-Y.; Hill, M.S.; Mahon, M.F.; McMullin, C.L.; Schwamm, R.J. Seven-Membered Cyclic Diamidoalumanyls of Heavier Alkali Metals: Structures and C–H Activation of Arenes. Organometallics 2023, 42, 2881–2892. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.-Y.; Neale, S.E.; Hill, M.S.; Mahon, M.F.; McMullin, C.L.; Richards, E. [{SiNDipp}MgNa]2: A Potent Molecular Reducing Agent. Organometallics 2024, 43, 879–888. [Google Scholar] [CrossRef] [PubMed]
- Hill, M.S.; Liu, H.-Y.; Neale, S.E.; Mahon, M.F.; McMullin, C.L.; Morrison, B.L. Cooperative Dihydrogen Activation at a Na(I)2/Mg(I)2 Ensemble. Chem. Commun. 2023, 59, 3846–3849. [Google Scholar]
- Liu, H.-Y.; Mahon, M.F.; Hill, M.S. Aluminium–Boron Bond Formation by Boron Ester Oxidative Addition at an Alumanyl Anion. Inorg. Chem. 2023, 62, 15310–15319. [Google Scholar] [CrossRef]
- Liu, H.-Y.; Shere, H.T.W.; Neale, S.E.; Hill, M.S.; Mahon, M.F.; McMullin, C.L. Terminal Alkyne Activation by an Al(I)-centred Anion: Impact on Mechanism of Alkali Metal Identity. Organometallics, 2024; in press. [Google Scholar]
- Kashin, A.N.; Butin, K.P.; Stanko, V.I.; Beletskaya, I.P. Acidity of ortho-, meta-, and para-barenes. Bull. Acad. Sci. USSR Div. Chem. Sci. 1969, 18, 1775–1777. [Google Scholar] [CrossRef]
- Poater, J.; Viñas, C.; Escayola, S.; Solà, M.; Teixidor, F. Pioneering the Power of Twin Bonds in a Revolutionary Double Bond Formation. Unveiling the True Identity of o-Carboryne as o-Carborene. Chem. Eur. J. 2023, 29, e202302448. [Google Scholar] [CrossRef]
- Rüttger, F.; Stalke, D.; John, M. Resonance and structural assignment in (car)borane clusters using 11B residual quadrupolar couplings. Chem. Commun. 2023, 59, 14657–14660. [Google Scholar] [CrossRef]
- Reddy, N.D.; Roesky, H.W.; Noltemeyer, M.; Schmidt, H.-G. Reactions of AlH3·NMe3 with Nitriles: Structural Characterization and Substitution Reactions of Hexameric Aluminium Imides. Inorg. Chem. 2002, 41, 2374–2378. [Google Scholar] [CrossRef]
- Kumar, S.S.; Reddy, N.D.; Roesky, H.W.; Vidovic, D.; Magull, J.; Winter, R.F. Synthesis, Structure, and Cyclic Voltammetric Studies of [CpFeC5H4C⋮CAlNCH2(C4H3S)]6: The First Model Compound for the Fixation of Metal-Containing Ligands on an Aluminium Nitride Cluster. Organometallics 2003, 22, 3348–3350. [Google Scholar] [CrossRef]
- Zhu, H.P.; Chai, J.F.; Fan, H.J.; Roesky, H.W.; He, C.; Jancik, V.; Schmidt, H.G.; Noltemeyer, M.; Merrill, W.A.; Power, P.R. A stable aluminacyclopropene LA1(η2-2H2) and its end-on azide insertion to an aluminaazacyclobutene. Angew. Chem. Int. Ed. 2005, 44, 5090–5093. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Liu, Y.; Wu, B.; Yang, X.-J. Reactions of α-diimine-aluminium complexes with sodium alkynides: Versatile structures of aluminium σ-alkynide complexes. Dalton Trans. 2015, 44, 13671–13680. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.P.; Oswald, R.B.; Fan, H.J.; Roesky, H.W.; Ma, Q.J.; Yang, Z.; Schmidt, H.G.; Noltemeyer, M.; Starke, K.; Hosmane, N.S. Aluminacyclopropene: Syntheses, characterization, and reactivity toward terminal alkynes. J. Am. Chem. Soc. 2006, 128, 5100–5108. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Hohmeister, H.; Mösch-Zanetti, N.C.; Roesky, H.W.; Noltemeyer, M.; Schmidt, H.-G. Syntheses and Characterization of μ,η1,η1-3,5-Di-tert-butylpyrazolato Derivatives of Aluminium. Inorg. Chem. 2001, 40, 2363–2367. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Mösch-Zanetti, N.C.; Roesky, H.W.; Hewitt, M.; Cimpoesu, F.; Schneider, T.R.; Stasch, A.; Prust, J. The First Structurally Characterized Aluminium Compounds with Terminal Acetylide Groups. Angew. Chem. Int. Ed. 2000, 39, 3099–3101. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Oliva, J.M.; Allan, N.L.; Schleyer, P.v.R.; Vinas, C.; Teixidor, F. Strikingly Long C-C Distances in 1,2-Disubstituted ortho-Carboranes and Their Dianions. J. Am. Chem. Soc. 2005, 127, 13538–13547. [Google Scholar] [CrossRef]
- Li, J.; Pang, R.; Li, Z.; Lai, G.; Xiao, X.-Q.; Müller, T. Exceptionally Long C-CSingle Bonds in Diamino-o-carborane as Induced by NegativeHyperconjugation. Angew. Chem. Int. Ed. 2019, 58, 1397–1401. [Google Scholar] [CrossRef]
- Alekseyeva, E.S.; Batsanov, A.S.; Boyd, L.A.; Fox, M.A.; Hibbert, T.G.; Howard, J.A.K.; MacBridge, J.A.H.; Mackinnon, A.; Wade, K. Intra- and inter-molecular carboranyl C–H⋯N hydrogen bonds in pyridyl-containing ortho-carboranes. Dalton Trans. 2003, 475–482. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT-Integrated Space-Group and Crystal-Structure Determination. Acta Cryst. 2015, A71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Cryst. 2015, C71, 3–8. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.-Y.; Pearce, K.G.; Hill, M.S.; Mahon, M.F. Oxidative Addition to Group 1 (K, Rb, Cs) Alumanyl Anions as a Route to o-Carboranyl (hydrido)aluminates. Inorganics 2024, 12, 309. https://doi.org/10.3390/inorganics12120309
Liu H-Y, Pearce KG, Hill MS, Mahon MF. Oxidative Addition to Group 1 (K, Rb, Cs) Alumanyl Anions as a Route to o-Carboranyl (hydrido)aluminates. Inorganics. 2024; 12(12):309. https://doi.org/10.3390/inorganics12120309
Chicago/Turabian StyleLiu, Han-Ying, Kyle G. Pearce, Michael S. Hill, and Mary F. Mahon. 2024. "Oxidative Addition to Group 1 (K, Rb, Cs) Alumanyl Anions as a Route to o-Carboranyl (hydrido)aluminates" Inorganics 12, no. 12: 309. https://doi.org/10.3390/inorganics12120309
APA StyleLiu, H.-Y., Pearce, K. G., Hill, M. S., & Mahon, M. F. (2024). Oxidative Addition to Group 1 (K, Rb, Cs) Alumanyl Anions as a Route to o-Carboranyl (hydrido)aluminates. Inorganics, 12(12), 309. https://doi.org/10.3390/inorganics12120309