Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (119)

Search Parameters:
Keywords = alternative metabolism of sugars

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1173 KiB  
Article
Impact of Drought and Biostimulant in Greenhouse Tomato: Agronomic and Metabolomic Insights
by Marzia Leporino, Mariateresa Cardarelli, Paolo Bonini, Simona Proietti, Stefano Moscatello and Giuseppe Colla
Plants 2025, 14(13), 2000; https://doi.org/10.3390/plants14132000 - 30 Jun 2025
Viewed by 360
Abstract
Widespread drought conditions have increasingly affected agricultural productivity, requiring the exploration of alternative approaches for improving crop tolerance, yield and quality, since plants adopt many physiological strategies to cope with challenging environments. This study evaluated the effects of a vegetal-derived protein hydrolysate (PH), [...] Read more.
Widespread drought conditions have increasingly affected agricultural productivity, requiring the exploration of alternative approaches for improving crop tolerance, yield and quality, since plants adopt many physiological strategies to cope with challenging environments. This study evaluated the effects of a vegetal-derived protein hydrolysate (PH), applied via foliar spray or root drench at a concentration of 3 mL L−1, on tomato plants (n = 96) under well-watered and drought-stressed conditions over a 136-day greenhouse experiment. Overall, sub-optimal irrigation significantly decreased plant dry biomass (−55.3%) and fruit production (−68.8% marketable yield), and enhanced fruit quality in terms of sugar concentration and antioxidant levels. PH treatments, regardless of the application method, did not notably influence above-ground dry biomass, yield, or fruit quality, suggesting that the intensity of drought might have limited PH effectiveness. Metabolomic analysis showed higher concentrations of stress- and quality-related metabolites in tomato fruits from plants under stress, with PH not exerting significant metabolic changes in the fruits. These findings revealed the diminished effectiveness of PHs under severe drought conditions, suggesting that drought stress level needs to be taken into consideration for optimizing biostimulant efficacy. Full article
(This article belongs to the Special Issue Protected Cultivation of Horticultural Crops)
Show Figures

Figure 1

21 pages, 576 KiB  
Article
A Comprehensive Study on the Nutritional Profile and Shelf Life of a Custom-Formulated Protein Bar Versus a Market-Standard Product
by Corina Duda-Seiman, Liliana Mititelu-Tartau, Simona Biriescu, Alexandra-Loredana Almășan, Bianca-Oana Bitu, Adina-Ioana Bucur, Andrei Luca, Bogdan Hoinoiu and Teodora Hoinoiu
Foods 2025, 14(12), 2141; https://doi.org/10.3390/foods14122141 - 19 Jun 2025
Viewed by 1984
Abstract
Background: With growing interest in healthy lifestyles, protein bars have gained popularity. However, many commercial bars contain excessive calories, sugar, and artificial additives that undermine their health benefits. This study aimed to develop a protein bar using natural ingredients with a balanced macronutrient [...] Read more.
Background: With growing interest in healthy lifestyles, protein bars have gained popularity. However, many commercial bars contain excessive calories, sugar, and artificial additives that undermine their health benefits. This study aimed to develop a protein bar using natural ingredients with a balanced macronutrient profile. Method: The protein bar formulation used soy protein extract, a plant-based protein source, known for its complete amino acid profile but limited in methionine, which was complemented by oats to nutritionally balance this deficiency. A database was created to evaluate the cost-effectiveness of commercially available protein bars based on consumer feedback. The experimental bar was tested for nutritional value, shelf life, and physiological impact, using only natural ingredients for texture, flavor, and stability. Results: The experimental protein bar had higher protein and fiber content than a selected commercial bar but a shorter shelf life (7 days vs. 90 days) due to the absence of preservatives. The database helped identify target consumer groups and ensure the product was affordable and nutritionally effective. Conclusion: This study demonstrates that using natural, complementary ingredients can create a protein bar with a more balanced nutrient profile while avoiding harmful additives. The final product supports muscle protein synthesis through its high-quality protein content and promotes glycemic control and satiety via its fiber-rich, low-sugar formulation and metabolic processes, offering a healthier alternative to commercial options, with a focus on consumer health and cost-effectiveness. Full article
(This article belongs to the Special Issue Advances in Improvement and Fortification of Cereal Food)
Show Figures

Figure 1

15 pages, 342 KiB  
Article
Association of Food-Specific Glycemic Load and Distinct Dietary Components with Gestational Diabetes Mellitus Within a Mediterranean Dietary Pattern: A Prospective Cohort Study
by Antigoni Tranidou, Antonios Siargkas, Emmanouela Magriplis, Ioannis Tsakiridis, Panagiota Kripouri, Aikaterini Apostolopoulou, Michail Chourdakis and Themistoklis Dagklis
Nutrients 2025, 17(11), 1917; https://doi.org/10.3390/nu17111917 - 3 Jun 2025
Viewed by 687
Abstract
Background/Objectives: Gestational diabetes mellitus (GDM) is a major pregnancy complication with rising global prevalence. The Mediterranean Diet (MD) has shown metabolic benefits, but total adherence scores may obscure meaningful variation in dietary quality. This study aimed to investigate whether specific dietary patterns, [...] Read more.
Background/Objectives: Gestational diabetes mellitus (GDM) is a major pregnancy complication with rising global prevalence. The Mediterranean Diet (MD) has shown metabolic benefits, but total adherence scores may obscure meaningful variation in dietary quality. This study aimed to investigate whether specific dietary patterns, identified within the MD framework, and their glycemic load (GL) are associated with GDM risk. Methods: This prospective cohort is part of the BORN2020 longitudinal study on pregnant women in Greece; dietary intake was assessed using a validated food frequency questionnaire (FFQ) at two time points (pre-pregnancy and during pregnancy). MD adherence was categorized by Trichopoulou score tertiles. GL was calculated for food groups using glycemic index (GI) reference values and carbohydrate content. Dietary patterns were identified using factor analysis. Logistic regression models estimated adjusted odds ratios (aORs) for GDM risk, stratified by MD adherence and time period, controlling for maternal, lifestyle, and clinical confounders. Results: In total, 797 pregnant women were included. Total MD adherence was not significantly associated with GDM risk. However, both food-specific GLs and dietary patterns with distinct dominant foods were predictive. GL from boiled greens/salads was consistently protective (aOR range: 0.09–0.19, p < 0.05). Patterns high in tea, coffee, and herbal infusions before pregnancy were linked to increased GDM risk (aOR = 1.96, 95% CI: 1.31–3.02, p = 0.001), as were patterns rich in fresh juice, vegetables, fruits, legumes, and olive oil during pregnancy (aOR = 2.91, 95% CI: 1.50–6.24, p = 0.003). A pattern dominated by sugary sweets, cold cuts, animal fats, and refined products was inversely associated with GDM (aOR = 0.34, 95% CI: 0.17–0.64, p = 0.001). A pattern characterized by sugar alternatives was associated with higher risk for GDM (aOR = 4.94, 95% CI: 1.48–19.36, p = 0.014). These associations were supported by high statistical power (power = 1). Conclusions: Within the context of the MD, evaluating both the glycemic impact of specific food groups and identifying risk-associated dietary patterns provides greater insight into GDM risk than overall MD adherence scores alone. Full article
(This article belongs to the Section Nutritional Epidemiology)
Show Figures

Figure 1

21 pages, 1526 KiB  
Article
Strawberry Tree Fruit Residue as Carbon Source Towards Sustainable Fuel Biodesulfurization by Gordonia alkanivorans Strain 1B
by Susana M. Paixão, Tiago P. Silva, Francisco Salgado and Luís Alves
Molecules 2025, 30(10), 2137; https://doi.org/10.3390/molecules30102137 - 13 May 2025
Viewed by 462
Abstract
Biodesulfurization (BDS) is a clean technology that uses microorganisms to efficiently remove sulfur from recalcitrant organosulfur compounds present in fuels (fossil fuels or new-generation fuels resulting from pyrolysis and hydrothermal liquefaction). One of the limitations of this technology is the low desulfurization rates. [...] Read more.
Biodesulfurization (BDS) is a clean technology that uses microorganisms to efficiently remove sulfur from recalcitrant organosulfur compounds present in fuels (fossil fuels or new-generation fuels resulting from pyrolysis and hydrothermal liquefaction). One of the limitations of this technology is the low desulfurization rates. These result in the need for greater amounts of biocatalyst and lead to increased production costs. To mitigate this issue, several approaches have been pursued, such as the use of alternative carbon sources (C-sources) from agro-industrial waste streams or the co-production of high-added-value products by microorganisms. The main goal of this work is to assess the potential of strawberry tree fruit residue (STFr) as an alternative C-source for a BDS biorefinery using Gordonia alkanivorans strain 1B, a well-known desulfurizing bacterium with high biotechnological potential. Hence, the first step was to produce sugar-rich liquor from the STFr and employ it in shake-flask assays to evaluate the influence of different pretreatments (treatments with 1–4% activated charcoal for prior phenolics removal) on metabolic parameters and BDS rates. Afterwards, the liquor was used as the C-source in chemostat assays, compared to commercial sugars, to develop and optimize the use of STFr-liquor as a viable C-source towards cost-effective biocatalyst production. Moreover, the high-market-value bioproducts simultaneously produced during microbial growth were also evaluated. In this context, the best results, considering both the production of biocatalysts with BDS activity and simultaneous bioproduct production (carotenoids and gordofactin biosurfactant/bioemulsifier) were achieved when strain 1B was cultivated in a chemostat with untreated STFr-liquor (5.4 g/L fructose + glucose, 6:4 ratio) as the C-source and in a sulfur-free mineral-minimized culture medium at a dilution rate of 0.04 h−1. Cells from this steady-state culture (STFr L1) achieved the highest desulfurization with 250 mM of dibenzothiophene as a reference organosulfur compound, producing a maximum of ≈213 mM of 2-hydroxibyphenil (2-HBP) with a corresponding specific rate (q2-HBP) of 6.50 µmol/g(DCW)/h (where DCW = dry cell weight). This demonstrates the potential of STFr as a sustainable alternative C-source for the production of cost-effective biocatalysts without compromising BDS ability. Additionally, cells grown in STFr L1 also presented the highest production of added-value products (338 ± 15 µg/g(DCW) of carotenoids and 8 U/mL of gordofactin). These results open prospects for a future G. alkanivorans strain 1B biorefinery that integrates BDS, waste valorization, and the production of added-value products, contributing to the global economic viability of a BDS process and making BDS scale-up a reality in the near future. Full article
(This article belongs to the Special Issue Advances in Biomass Chemicals: Transformation and Valorization)
Show Figures

Graphical abstract

18 pages, 4177 KiB  
Article
Non-Alcoholic Beer Influences Glucose and Lipid Metabolism and Changes Body Composition in Healthy, Young, Male Adults
by Henriette Kreimeyer, Svenja Sydor, Lara Buchholz, Cagatay Toskal, Mustafa Özcürümez, Bernd Schnabl, Wing-Kin Syn, Jan-Peter Sowa, Paul Manka and Ali Canbay
Nutrients 2025, 17(10), 1625; https://doi.org/10.3390/nu17101625 - 9 May 2025
Viewed by 5059
Abstract
Background and Aims: Non-alcoholic beers (NABs) are gaining popularity as alternatives to alcoholic beverages, yet their metabolic and health effects compared to no consumption of these drinks remain unclear. Material and Methods: The investigator-blinded, single-center, randomized study compares the effects on the metabolism, [...] Read more.
Background and Aims: Non-alcoholic beers (NABs) are gaining popularity as alternatives to alcoholic beverages, yet their metabolic and health effects compared to no consumption of these drinks remain unclear. Material and Methods: The investigator-blinded, single-center, randomized study compares the effects on the metabolism, health, and gut microbiome of the daily consumption of different NABs—pilsener, mixed beer, and wheat beer—on glucose and fat metabolism, body composition, and liver function in 44 healthy young men. The participants consumed 660 mL of one of these beers or water daily for 4 weeks. We measured indicators of glucose and lipid metabolism, liver enzymes, body composition, and the composition of the gut microbiota. Results: The findings revealed that mixed beer increased fasting glucose and triglycerides, and wheat beer increased insulin, C-peptide, and triglycerides. The intake of pilsener and water decreased cholesterol and LDL levels without significantly affecting glucose metabolism. Biomarkers of liver damage such as M30 lowered in water and pilsener, while ALT and AST lowered in mixed beer. The pattern of the gut microbiota also changed, as pilsener lowered Firmicutes and increased Actinobacteria. Conclusions: In summary, consumption of NABs, especially mixed and wheat beers, exerts an unfavorable metabolic impact on glucose and fat, while pilsener and water are more favorable from a metabolic perspective. We concluded that the metabolic alterations seen are probably due to the caloric and sugar content in NABs, rather than polyphenols. The chronic effects of NABs on health should be evaluated in future studies. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

12 pages, 506 KiB  
Review
Monk Fruit Extract and Sustainable Health: A PRISMA-Guided Systematic Review of Randomized Controlled Trials
by Urszula Kaim and Karolina Labus
Nutrients 2025, 17(9), 1433; https://doi.org/10.3390/nu17091433 - 24 Apr 2025
Cited by 1 | Viewed by 3432
Abstract
Sustainable health approaches promote functional food alternatives that support metabolic well-being while reducing reliance on added sugars and artificial sweeteners. Monk fruit extract (MFE), a natural, non-caloric sweetener, is gaining interest for its potential metabolic benefits, but its effects and regulatory status require [...] Read more.
Sustainable health approaches promote functional food alternatives that support metabolic well-being while reducing reliance on added sugars and artificial sweeteners. Monk fruit extract (MFE), a natural, non-caloric sweetener, is gaining interest for its potential metabolic benefits, but its effects and regulatory status require further evaluation. Objective: This PRISMA-guided systematic review synthesizes findings from randomized controlled trials (RCTs) assessing the impact of MFE on metabolic health, lipid profiles, inflammation, and regulatory considerations. Methods: The literature search was conducted across PubMed, Scopus, Web of Science, and Cochrane Library, covering studies published between 2015 and 2025. Inclusion criteria were human RCTs evaluating MFE’s metabolic effects, while animal studies, reviews, and mixed-intervention trials were excluded. Study quality was assessed using the Cochrane risk of bias tool and the Jadad scale. Results: Five randomized controlled trials met the inclusion criteria, demonstrating that monk fruit extract (MFE) reduces postprandial glucose levels by 10–18% and insulin responses by 12–22%. No severe adverse effects were observed. Regulatory analysis indicated that MFE is approved for use in the United States and China, while its status remains under review in the European Union. Conclusions: MFE shows potential as a functional food ingredient for metabolic health. However, long-term clinical trials and a harmonized regulatory framework must confirm its safety and efficacy within sustainable health strategies Full article
(This article belongs to the Special Issue Functional Foods and Sustainable Health (2nd Edition))
Show Figures

Graphical abstract

15 pages, 2223 KiB  
Article
Effects of Glyoxylic Acid on Metabolism and Ripening of ‘Rocha’ Pears Treated with 1-MCP
by Cindy Dias, Clara Sousa, Marta W. Vasconcelos, António Ferrante and Manuela Pintado
Horticulturae 2025, 11(3), 314; https://doi.org/10.3390/horticulturae11030314 - 13 Mar 2025
Viewed by 636
Abstract
The application of 1-methylcyclopropene (1-MCP) is widely used to extend the storage life of climacteric fruits, such as ‘Rocha’ pears. However, the suppression of ethylene’s action by 1-MCP often results in excessive ripening delay, compromising fruit quality and consumer acceptance. In this study, [...] Read more.
The application of 1-methylcyclopropene (1-MCP) is widely used to extend the storage life of climacteric fruits, such as ‘Rocha’ pears. However, the suppression of ethylene’s action by 1-MCP often results in excessive ripening delay, compromising fruit quality and consumer acceptance. In this study, we investigated the potential of glyoxylic acid (GLA) to counteract the effects of 1-MCP and promote ripening. To evaluate this, ‘Rocha’ pears treated with 1-MCP were exposed to 3% (m/v) GLA and stored at 20 ± 2 °C for 15 days. Typical ripening indicators, such as firmness, skin color, ethylene production, respiration rate, volatile organic compounds (VOCs), sugars, and the activity of ethylene biosynthetic enzymes, were measured. Our results indicate that GLA did not induce significant effects on the ripening response, as ethylene production remained comparable to that of the control. Consequently, no significant changes in firmness, skin yellowing, or sugar content were observed in the GLA-treated pears. However, GLA significantly increased respiration rates (approximately 57%) and induced higher emissions of stress-associated VOCs, including hexanal, (E)-2-hexenal, and ethanol. This suggests that GLA may influence metabolic pathways related to energy metabolism and redox homeostasis without necessarily triggering ethylene-induced ripening. This study provides new insights into the interactions between GLA, 1-MCP, and fruit development, contributing to the development of alternative strategies to manage the effects of 1-MCP in ‘Rocha’ pear storage. Full article
(This article belongs to the Section Postharvest Biology, Quality, Safety, and Technology)
Show Figures

Graphical abstract

52 pages, 16989 KiB  
Review
Dietary Guidance, Sensory, Health and Safety Considerations When Choosing Low and No-Calorie Sweeteners
by John L. Sievenpiper, Sidd Purkayastha, V. Lee Grotz, Margaux Mora, Jing Zhou, Katherine Hennings, Cynthia M. Goody and Kristen Germana
Nutrients 2025, 17(5), 793; https://doi.org/10.3390/nu17050793 - 25 Feb 2025
Cited by 3 | Viewed by 5461
Abstract
The growing global focus on the adverse health conditions associated with excessive sugar consumption has prompted health and policy organizations as well as the public to take a more mindful approach to health and wellness. In response, food and beverage companies have proactively [...] Read more.
The growing global focus on the adverse health conditions associated with excessive sugar consumption has prompted health and policy organizations as well as the public to take a more mindful approach to health and wellness. In response, food and beverage companies have proactively innovated and reformulated their product portfolios to incorporate low and no-calorie sweeteners (LNCSs) as viable alternatives to sugar. LNCSs offer an effective and safe approach to delivering sweetness to foods and beverages and reducing calories and sugar intake while contributing to the enjoyment of eating. The objective of this paper is to enhance the understanding of LNCSs segmentation and definitions, dietary consumption and reduction guidance, front-of-package labeling, taste and sensory perception and physiology, metabolic efficacy and impact, as well as the overall safety of LNCSs and sugar. Full article
(This article belongs to the Special Issue Sugar, Sweeteners Intake and Metabolic Health)
Show Figures

Figure 1

15 pages, 1276 KiB  
Article
Application of Plant Growth Regulators During Early Fruit Development Stage Increased Perceived Sweetness of Mango Fruit
by Li Li, Xiaowei Ma, Songbiao Wang, Chi Xu, Hongxia Wu, Yanke Wu, Yingzi He, Bin Zheng, Qingzhi Liang, Wentian Xu and Weiming Li
Horticulturae 2025, 11(2), 134; https://doi.org/10.3390/horticulturae11020134 - 27 Jan 2025
Viewed by 1063
Abstract
This study investigated the optimal strategies for improving sugar biosynthesis in mango fruits. Randomized block design was used for experimental treatments. The mango cultivar “Renong-1” was sprayed with five green plant growth regulators, including solutions of SBP (sucrose-based polymers, a new highly efficient [...] Read more.
This study investigated the optimal strategies for improving sugar biosynthesis in mango fruits. Randomized block design was used for experimental treatments. The mango cultivar “Renong-1” was sprayed with five green plant growth regulators, including solutions of SBP (sucrose-based polymers, a new highly efficient and eco-friendly plant growth regulator), SPM (sucrose + potassium dihydrogen phosphate + microelement fertilizer), TPM (taurine + potassium dihydrogen phosphate + microelement fertilize), PFA (potassium fulvic acid), and SOP (seaweed oligosaccharide peptide) at different fruit development stages. Indicators, such as soluble solid content, soluble sugar and starch contents, and activities of 11 enzymes associated with sugar metabolism in physiologically mature and in full ripening fruits were evaluated. The results showed that SBP solution diluted 100-fold exerted the strongest effect on the soluble sugar content and sweetness value of “Renong-1” mango fruits. Based on the linear regression analysis, a significant negative correlation was observed between the activity of acid invertase and the perceived sweetness of physiologically mature fruits, while the activities of other enzymes were significantly negatively correlated with the perceived sweetness of full ripening fruits. According to multiple regression (by lars function in R) and other comprehensive analysis, A1B3 (spraying SBP solution one time in the young fruit stage) was selected as the optimal treatment combination for enhancing “Renong-1” mango perceived sweetness, followed by A1B2 (spraying SBP solution for the first time in the young fruit stage and the second time at medium maturity) as the alternative treatment combination. Full article
(This article belongs to the Special Issue Advances in Tree Crop Cultivation and Fruit Quality Assessment)
Show Figures

Figure 1

22 pages, 5625 KiB  
Article
Genetic and Physiological Characterization of the Pentose Phosphate Pathway in the Yeast Kluyveromyces lactis
by Laura-Katharina Bertels, Stefan Walter and Jürgen J. Heinisch
Int. J. Mol. Sci. 2025, 26(3), 938; https://doi.org/10.3390/ijms26030938 - 23 Jan 2025
Viewed by 1326
Abstract
The pentose phosphate pathway (PPP) is essential for human health and provides, amongst others, the reduction power to cope with oxidative stress. In contrast to the model baker’s yeast, the PPP also contributes to a large extent to glucose metabolism in the milk [...] Read more.
The pentose phosphate pathway (PPP) is essential for human health and provides, amongst others, the reduction power to cope with oxidative stress. In contrast to the model baker’s yeast, the PPP also contributes to a large extent to glucose metabolism in the milk yeast Kluyveromyces lactis. Yet, the physiological consequences of mutations in genes encoding PPP enzymes in K. lactis have been addressed for only a few. We here embarked on a systematic study of such mutants, deleting ZWF1, SOL4, GND1, RKI1, RPE1, TKL1, TAL1, and SHB17. Interestingly, GND1, RKI1, and TKL1 were found to be essential under standard growth conditions. Epistasis analyses revealed that a lack of Zwf1 rescued the lethality of the gnd1 deletion, indicating that it is caused by the accumulation of 6-phosphogluconate. Moreover, the slow growth of a tal1 null mutant, which lacks fructose-1,6-bisphosphate aldolase, was aggravated by deleting the SHB17 gene encoding sedoheptulose-1,7-bisphosphatase. A mitotically stable tetOFF system was established for conditional expression of TAL1 and TKL1, encoding transaldolase and transketolase in the non-oxidative part of the PPP, and employed in a global proteome analysis upon depletion of the enzymes. Results indicate that fatty acid degradation is upregulated, providing an alternative energy source. In addition, tal1 and tkl1 null mutants were complemented by heterologous expression of the respective genes from baker’s yeast and humans. These data demonstrate the importance of the PPP for basic sugar metabolism and oxidative stress response in K. lactis and the potential of this yeast as a model for the study of PPP enzymes from heterologous sources, including human patients. Full article
(This article belongs to the Special Issue Yeasts: Model Systems for Molecular Research)
Show Figures

Figure 1

19 pages, 3796 KiB  
Article
Comparative Genomics Reveals Evidence of the Genome Reduction and Metabolic Potentials of Aliineobacillus hadale Isolated from Challenger Deep Sediment of the Mariana Trench
by Shaofeng Yang, Jie Liu, Yang Liu, Weichao Wu, Jiahua Wang and Yuli Wei
Microorganisms 2025, 13(1), 132; https://doi.org/10.3390/microorganisms13010132 - 10 Jan 2025
Viewed by 1179
Abstract
Hadal zones account for the deepest 45% of oceanic depth range and play an important role in ocean biogeochemical cycles. As the least-explored aquatic habitat on earth, further investigation is still required to fully elucidate the microbial taxonomy, ecological significance, metabolic diversity, and [...] Read more.
Hadal zones account for the deepest 45% of oceanic depth range and play an important role in ocean biogeochemical cycles. As the least-explored aquatic habitat on earth, further investigation is still required to fully elucidate the microbial taxonomy, ecological significance, metabolic diversity, and adaptation in hadal environments. In this study, a novel strain Lsc_1132T was isolated from sediment of the Mariana Trench at 10,954 m in depth. Strain Lsc_1132T contains heterogenous 16S rRNA genes, exhibiting the highest sequence similarities to the type strains of Neobacillus drentensis LMG 21831T, Neobacillus dielmonensis, Neobacillus drentensis NBRC 102427T, Neobacillus rhizosphaerae, and Neobacillus soli NBRC 102451T, with a range of 98.60–99.10% identity. The highest average nucleotide identity (ANI), the highest digital DNA-DNA hybridization (DDH) values, and the average amino acid identity (AAI) with Neobacillus sp. PS3-40 reached 73.5%, 21.4%, and 75.54%, respectively. The major cellular fatty acids of strain Lsc_1132T included iso-C15:0, Summed Feature 3 (C16:1ω6c and/or C16:1ω7c), iso-C17:0, anteiso-C15:0, and iso-C17:1ω5c. The respiratory quinone of strains Lsc_1132T was MK-7. The G + C content of the genomic DNA was 40.9%. Based on the GTDB taxonomy and phenotypic data, strain Lsc_1132T could represent a novel species of a novel genus, proposed as Aliineobacillus hadale gen. nov. sp. nov. (type strain Lsc_1132T = MCCC 1K09620T). Metabolically, strain Lsc_1132T demonstrates a robust carbohydrate metabolism with many strain-specific sugar transporters. It also has a remarkable capacity for metabolizing amino acids and carboxylic acids. Genomic analysis reveals a streamlined genome in the organism, characterized by a significant loss of orthologous genes, including those involved in cytochrome c synthesis, aromatic compound degradation, and polyhydroxybutyrate (PHB) synthesis, which suggests its adaptation to low oxygen levels and oligotrophic conditions through alternative metabolic pathways. In addition, the reduced number of paralogous genes in strain Lsc_1132T, together with its high protein-coding gene density, may further contribute to streamlining its genome and enhancing its genomic efficiency. This research expands our knowledge of hadal microorganisms and their metabolic strategies for surviving in extreme deep-sea environments. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

11 pages, 1691 KiB  
Article
Cooperation Between Rhodococcus qinshengii and Rhodococcus erythropolis for Carbendazim Degradation
by Roosivelt Solano-Rodríguez, Fortunata Santoyo-Tepole, Mario Figueroa, Voleta Larios-Serrato, Nora Ruiz-Ordaz, Abigail Pérez-Valdespino and Everardo Curiel-Quesada
Microorganisms 2025, 13(1), 40; https://doi.org/10.3390/microorganisms13010040 - 29 Dec 2024
Viewed by 1049
Abstract
Carbendazim (CBZ) is a fungicide widely used on different crops, including soybeans, cereals, cotton, tobacco, peanuts, and sugar beet. Excessive use of this xenobiotic causes environmental deterioration and affects human health. Microbial metabolism is one of the most efficient ways of carbendazim elimination. [...] Read more.
Carbendazim (CBZ) is a fungicide widely used on different crops, including soybeans, cereals, cotton, tobacco, peanuts, and sugar beet. Excessive use of this xenobiotic causes environmental deterioration and affects human health. Microbial metabolism is one of the most efficient ways of carbendazim elimination. In this work, Rhodococcus qingshengii RC1 and Rhodococcus erythropolis RC9 were isolated from a bacterial community growing in a biofilm reactor acclimated with microbiota from carbendazim-contaminated soil. Sequencing analysis of genomes of both strains revealed the presence of cbmA, the gene coding for the enzyme that hydrolyses carbendazim to produce 2-aminobenzimidazole (2-AB). The alternative gene for the first catabolic step (mheI) was detected by PCR in strain RC9 but not in RC1. Metabolomic analysis by HPLC and LC-MS showed that both strains have the ability to metabolize carbendazim. R. qingshengii RC1 converts carbendazim to 2-AB, the first degradation intermediary, while R. erythropolis RC9 metabolizes the fungicide to its mineralization, probably because R. qingshengii RC1 lacks the hdx gene coding for 2-AB hydroxylase. HRESIMS-MS/MS results indicate that R. erythropolis RC9 metabolizes carbendazim by cleavage of the benzene ring and subsequent formation of 5-formyl-2-hydroxy-4,5-dihydro-1H-imidazole-4-carboxylic acid (X2 C5H6N2O4). The presence of carbendazim metabolites in culture supernatants of strains RC9 and RC1 suggests that both strains contribute to the efficient degradation of carbendazim in nature. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Graphical abstract

15 pages, 1301 KiB  
Review
Efficacy of a High-Protein Diet to Lower Glycemic Levels in Type 2 Diabetes Mellitus: A Systematic Review
by María Nelly Flores-Hernández, Hilda Martínez-Coria, Héctor E. López-Valdés, Marcela Arteaga-Silva, Isabel Arrieta-Cruz and Roger Gutiérrez-Juárez
Int. J. Mol. Sci. 2024, 25(20), 10959; https://doi.org/10.3390/ijms252010959 - 11 Oct 2024
Cited by 8 | Viewed by 6763
Abstract
Diabetes is a metabolic disease with a high worldwide prevalence and an important factor in mortality and disability in the population. Complications can be reduced or prevented with lifestyle changes in physical activity, dietary habits, and smoking cessation. High-protein diets (HPDs, >30% or [...] Read more.
Diabetes is a metabolic disease with a high worldwide prevalence and an important factor in mortality and disability in the population. Complications can be reduced or prevented with lifestyle changes in physical activity, dietary habits, and smoking cessation. High-protein diets (HPDs, >30% or >1.0 g/Kg/day) decrease hyperglycemia in part due to their content of branched-chain amino acids (BCAAs), mainly leucine. Leucine (and other BCAAs) improve glucose metabolism by directly signaling in the medio-basal hypothalamus (MBH), increasing liver insulin sensitivity. To determine the effectiveness of an HPD to lower hyperglycemia, we analyzed the results of published clinical studies focusing on the levels of fasting plasma glucose and/or glycosylated hemoglobin (HbA1c) in patients with type 2 diabetes mellitus (T2DM). We carried out a systematic search for clinical studies using HPDs. We searched five databases (Scopus, Web of Science, PubMed, Epistemonikos, and Cochrane), collecting 179 articles and finally selecting 8 articles to analyze their results. In conclusion, HPDs are an effective alternative to reduce hyperglycemia in patients with T2DM, especially so-called Paleolithic diets, due to their higher-quality protein from animal and vegetal sources and their exclusion of grains, dairy products, salt, refined fats, and added sugars. Full article
(This article belongs to the Special Issue Amino Acids and Related Compounds in Health and Disease)
Show Figures

Figure 1

24 pages, 1757 KiB  
Review
Unraveling the Interactions between Flooding Dynamics and Agricultural Productivity in a Changing Climate
by Thidarat Rupngam and Aimé J. Messiga
Sustainability 2024, 16(14), 6141; https://doi.org/10.3390/su16146141 - 18 Jul 2024
Cited by 20 | Viewed by 10014
Abstract
Extreme precipitation and flooding frequency associated with global climate change are expected to increase worldwide, with major consequences in floodplains and areas susceptible to flooding. The purpose of this review was to examine the effects of flooding events on changes in soil properties [...] Read more.
Extreme precipitation and flooding frequency associated with global climate change are expected to increase worldwide, with major consequences in floodplains and areas susceptible to flooding. The purpose of this review was to examine the effects of flooding events on changes in soil properties and their consequences on agricultural production. Flooding is caused by natural and anthropogenic factors, and their effects can be amplified by interactions between rainfall and catchments. Flooding impacts soil structure and aggregation by altering the resistance of soil to slaking, which occurs when aggregates are not strong enough to withstand internal stresses caused by rapid water uptake. The disruption of soil aggregates can enhance soil erosion and sediment transport during flooding events and contribute to the sedimentation of water bodies and the degradation of aquatic ecosystems. Total precipitation, flood discharge, and total water are the main factors controlling suspended mineral-associated organic matter, dissolved organic matter, and particulate organic matter loads. Studies conducted in paddy rice cultivation show that flooded and reduced conditions neutralize soil pH but changes in pH are reversible upon draining the soil. In flooded soil, changes in nitrogen cycling are linked to decreases in oxygen, the accumulation of ammonium, and the volatilization of ammonia. Ammonium is the primary form of dissolved inorganic nitrogen in sediment porewaters. In floodplains, nitrate removal can be enhanced by high denitrification when intermittent flooding provides the necessary anaerobic conditions. In flooded soils, the reductive dissolution of minerals can release phosphorus (P) into the soil solution. Phosphorus can be mobilized during flood events, leading to increased availability during the first weeks of waterlogging, but this availability generally decreases with time. Rainstorms can promote the subsurface transport of P-enriched soil particles, and colloidal P can account for up to 64% of total P in tile drainage water. Anaerobic microorganisms prevailing in flooded soil utilize alternate electron acceptors, such as nitrate, sulfate, and carbon dioxide, for energy production and organic matter decomposition. Anaerobic metabolism leads to the production of fermentation by-products, such as organic acids, methane, and hydrogen sulfide, influencing soil pH, redox potential, and nutrient availability. Soil enzyme activity and the presence of various microbial groups, including Gram+ and Gram− bacteria and mycorrhizal fungi, are affected by flooding. Waterlogging decreases the activity of β-glucosidase and acid phosphomonoesterase but increases N-acetyl-β-glucosaminidase in soil. Since these enzymes control the hydrolysis of cellulose, phosphomonoesters, and chitin, soil moisture content can impact the direction and magnitude of nutrient release and availability. The supply of oxygen to submerged plants is limited because its diffusion in water is extremely low, and this impacts mitochondrial respiration in flooded plant tissues. Fermentation is the only viable pathway for energy production in flooded plants, which, under prolonged waterlogging conditions, is inefficient and results in plant death. Seed germination is also impaired under flooding stress due to decreased sugar and phytohormone biosynthesis. The sensitivity of different crops to waterlogging varies significantly across growth stages. Mitigation and adaptation strategies, essential to the management of flooding impacts on agriculture, enhance resilience to climate change through improved drainage and water management practices, soil amendments and rehabilitation techniques, best management practices, such as zero tillage and cover crops, and the development of flood-tolerant crop varieties. Technological advances play a crucial role in assessing flooding dynamics and impacts on crop production in agricultural landscapes. This review embarks on a comprehensive journey through existing research to unravel the intricate interplay between flooding events, agricultural soil, crop production, and the environment. We also synthesize available knowledge to address critical gaps in understanding, identify methodological challenges, and propose future research directions. Full article
(This article belongs to the Section Hazards and Sustainability)
Show Figures

Figure 1

9 pages, 2842 KiB  
Article
A Rapid and Reliable Spectrofluorimetric Method to Measure the Urinary Lactulose/Mannitol Ratio for Dysbiosis Assessment
by Lorenzo Marino Cerrato, Elisabetta Schiano, Fortuna Iannuzzo, Gian Carlo Tenore, Vincenzo Summa, Maria Daglia, Ettore Novellino and Mariano Stornaiuolo
Biomedicines 2024, 12(7), 1557; https://doi.org/10.3390/biomedicines12071557 - 13 Jul 2024
Viewed by 1524
Abstract
Gut microbiota plays a crucial role in human health homeostasis, and the result of its alteration, known as dysbiosis, leads to several pathologies (e.g., inflammatory bowel disease, metabolic syndrome, and Crohn’s disease). Traditional methods used to assess dysbiosis include the dual sugar absorption [...] Read more.
Gut microbiota plays a crucial role in human health homeostasis, and the result of its alteration, known as dysbiosis, leads to several pathologies (e.g., inflammatory bowel disease, metabolic syndrome, and Crohn’s disease). Traditional methods used to assess dysbiosis include the dual sugar absorption test and the urinary lactulose/mannitol ratio (LMR) measurement using mass spectrometry. Despite its precision, this approach is costly and requires specialized equipment. Hence, we developed a rapid and reliable spectrofluorimetric method for measuring LMR in urine, offering a more accessible alternative. This spectrofluorimetric assay quantifies the fluorescence of nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADPH) produced during the enzymatic oxidation of mannitol and lactulose, respectively. The assay requires 100 µL of urine samples and detects LMR values lower (eubiosis) and higher (dysbiosis) than 0.05, ultimately being amenable to high-throughput screening and automatization, making it practical for clinical and research settings. A validation of the method demonstrated its high precision, accuracy, and robustness. Additionally, this study confirmed analyte stability under various storage conditions, ensuring reliable results even with delayed analysis. Overall, this spectrofluorimetric technique reduces costs, time, and the environmental impact associated with traditional mass spectrometry methods, making it a viable option for widespread use in the assessment of dysbiosis. Full article
Show Figures

Figure 1

Back to TopTop