Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = allelopathic genes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 15279 KiB  
Article
Coumarin Promotes Hypocotyl Elongation by Increasing the Synthesis of Brassinosteroids in Plants
by Siqi Liu, Aolin Ma, Jie Li, Zhixuan Du, Longfei Zhu and Guanping Feng
Int. J. Mol. Sci. 2025, 26(3), 1092; https://doi.org/10.3390/ijms26031092 - 27 Jan 2025
Cited by 1 | Viewed by 1053
Abstract
Coumarins are natural products commonly found in plants and are typical allelopathic substances that strongly affect the growth of plants after being exudated from the root and help plants absorb Fe in cases of iron deficiency. Although coumarins have been found to have [...] Read more.
Coumarins are natural products commonly found in plants and are typical allelopathic substances that strongly affect the growth of plants after being exudated from the root and help plants absorb Fe in cases of iron deficiency. Although coumarins have been found to have multiple effects, this understanding is still relatively limited. Here, we show that coumarin significantly promotes the elongation of the hypocotyl by enhancing cell elongation. Further research has found that coumarin increases the content of BR in plants by enhancing the expression of brassinosteroid (BR) synthesis genes. The effect of coumarin on promoting hypocotyl elongation is completely blocked by the mutation of the BR synthesis gene DEETIOLATED 2 (DET2) or the co-addition of the BR synthesis inhibitor brassinazole (BRZ). Genetic analysis using Arabidopsis mutants showed that coumarin promoting hypocotyl elongation depends on the signaling pathway of the BRs. Overall, coumarin promotes elongation of the hypocotyl by increasing the synthesis of BRs in plants. These results provide us with new insights into the role of coumarins and offer strong theoretical support for the mechanisms of interactions between plants. Full article
Show Figures

Figure 1

17 pages, 4879 KiB  
Article
Mechanism of Action of Fusarium oxysporum CCS043 Utilizing Allelochemicals for Rhizosphere Colonization and Enhanced Infection Activity in Rehmannia glutinosa
by Feiyue Yuan, Fuxiang Qiu, Jiawei Xie, Yongxi Fan, Bao Zhang, Tingting Zhang, Zhongyi Zhang, Li Gu and Mingjie Li
Plants 2025, 14(1), 38; https://doi.org/10.3390/plants14010038 - 26 Dec 2024
Cited by 1 | Viewed by 906
Abstract
Rehmannia glutinosa is an important medicinal herb; but its long-term cultivation often leads to continuous cropping problems. The underlying cause can be attributed to the accumulation of and alterations in root exudates; which interact with soil-borne pathogens; particularly Fusarium oxysporum; triggering disease [...] Read more.
Rehmannia glutinosa is an important medicinal herb; but its long-term cultivation often leads to continuous cropping problems. The underlying cause can be attributed to the accumulation of and alterations in root exudates; which interact with soil-borne pathogens; particularly Fusarium oxysporum; triggering disease outbreaks that severely affect its yield and quality. It is therefore crucial to elucidate the mechanisms by which root exudates induce F. oxysporum CCS043 outbreaks. In this study; the genome of F. oxysporum CCS043 from R. glutinosa’s rhizosphere microbiota was sequenced and assembled de novo; resulting in a 47.67 Mb genome comprising 16,423 protein-coding genes. Evolutionary analysis suggests that different F. oxysporum strains may adapt to the host rhizosphere microecosystem by acquiring varying numbers of specific genes while maintaining a constant number of core genes.The allelopathic effects of ferulic acid; verbascoside; and catalpol on F. oxysporum CCS043 were examined at the physiological and transcriptomic levels. The application of ferulic acid was observed to primarily facilitate the proliferation and growth of F. oxysporum CCS043; whereas verbascoside notably enhanced the biosynthesis of infection-related enzymes such as pectinase and cellulase. Catalpol demonstrated a moderate level of allelopathic effects in comparison to the other two. Furthermore; 10 effectors were identified by combining the genomic data. Meanwhile; it was found that among the effector-protein-coding genes; ChiC; VRDA; csn; and chitinase exhibited upregulated expression across all treatments. The expression patterns of these key genes were validated using qRT-PCR. Transient overexpression of the two effector-encoding genes in detached R. glutinosa leaves provided further confirmation that ChiC (GME8876_g) and csn (GME9251_g) are key effector proteins responsible for the induction of hypersensitive reactions in R. glutinosa leaf cells. This study provides a preliminary indication that the use of allelochemicals by F. oxysporum CCS043 can promote its own growth and proliferation and enhance infection activity. This finding offers a solid theoretical basis and data support for elucidating the fundamental causes of fungal disease outbreaks in continuous cropping of R. glutinosa and for formulating effective mitigation strategies. Full article
(This article belongs to the Special Issue Allelopathy in Agroecosystems)
Show Figures

Graphical abstract

16 pages, 1640 KiB  
Article
Allelopathic Molecular Mechanisms of the Two Main Allelochemicals in Sweet Potato
by Ruiguo Shi, Guimei Jin, Shicai Shen, Gaofeng Xu, Fengping Zheng, David Roy Clements, Yunhai Yang, Shaosong Yang, Fanghao Wan, Fudou Zhang and Bo Liu
Curr. Issues Mol. Biol. 2024, 46(11), 11890-11905; https://doi.org/10.3390/cimb46110706 - 23 Oct 2024
Cited by 1 | Viewed by 1648
Abstract
Sweet potato (Ipomoea batatas L.) is one of the most important global food crops. This crop exhibits excellent allelopathic potential against various weeds, but its allelopathic mechanism at the molecular level is unclear. Therefore, metabolomic and transcriptomic analyses were performed to explore [...] Read more.
Sweet potato (Ipomoea batatas L.) is one of the most important global food crops. This crop exhibits excellent allelopathic potential against various weeds, but its allelopathic mechanism at the molecular level is unclear. Therefore, metabolomic and transcriptomic analyses were performed to explore the allelopathic effects, metabolic pathway, and associated genes for two major compounds with allelopathic activity, palmitic acid and linoleic acid. The sweet potato variety Ningshu 25 was employed in the current study. The results showed that palmitic acid and linoleic acid had strong allelopathic effects on seed germination, plant growth, antioxidant enzyme activity, and chlorophyll content of two weeds Digitaria sanguinalis and Bidens pilosa. The content of the two targeted metabolites was affected by different environmental conditions and was significantly increased under low temperature (15 °C). Five metabolic pathways involved in the two targeted metabolites of fatty acids were found: fatty acid biosynthesis, fatty acid elongation, fatty acid degradation, biosynthesis of cutin, suberine, and wax, and the linoleic acid metabolism pathway. The synthesis of palmitic acid is significantly enriched in the biosynthesis pathways of fatty acids, cutin, suberine, and wax, and the synthesis of linoleic acid is significantly enriched in the linoleic acid metabolism pathway. Under different environmental conditions, there were three key genes expressed—g4988, g11881, and g19673—located in the biosynthesis pathways of cutin, suberine, and wax; four key genes expressed—g31191, g60956, g49811, and g59542—located in the biosynthesis pathway of fatty acids; and six key expressed genes—g26575, g24787, g23517, g57649, g58562, and g4314—located in biosynthesis pathway of linoleic acid, respectively. Our study advances understanding of the molecular mechanisms behind allelopathic traits in sweet potato and provides a set of candidate genes for use in improving allelopathic potential in sweet potato germplasm resources. Full article
(This article belongs to the Special Issue Molecular Breeding and Genetics Research in Plants, 2nd Edition)
Show Figures

Figure 1

15 pages, 2771 KiB  
Article
Inductive Effect of Exogenous Abscisic Acid on the Weed-Suppressive Activity of Allelopathic and Non-Allelopathic Rice Accessions at the Root Level
by Jiayu Li, Ting Wang, Yuhui Fan, Shuyu Chen, Xinyi Ye, Yanping Wang and Chen Cheng
Agronomy 2024, 14(10), 2297; https://doi.org/10.3390/agronomy14102297 - 6 Oct 2024
Viewed by 1331
Abstract
Rice allelopathy is a natural method of weed control that is regarded as an eco-friendly practice in agroecology. The root growth of allelopathic rice at the seedling stage plays an important role in its weed control. Our study characterizes a plant hormone that [...] Read more.
Rice allelopathy is a natural method of weed control that is regarded as an eco-friendly practice in agroecology. The root growth of allelopathic rice at the seedling stage plays an important role in its weed control. Our study characterizes a plant hormone that promotes root growth, abscisic acid (ABA), to explore its role in the induction of rice allelopathy. Increasing the root morphology traits (root length, root tip number, and root biomass) in rice using different concentrations of exogenous ABA resulted in increased inhibitory ratios against barnyard grass (Echinochloa crus-galli), both in a hydroponic experiment and pot test. In particular, the relative proportion of induced allelopathy to total allelopathy in non-allelopathic rice Lemont (Le) was higher than that in allelopathic rice PI31277 (PI). The total content of phenolic acid, which is an important allelochemical in rice, as previously reported, was significantly elevated in the root exudates of both PI and LE. The gene expression levels of OsPAL, OsC4H, and OsCOL related to phenolic acid synthesis were also up-regulated, with a higher regulatory fold in PI. ABA also increased the expression of OsKSL4 and CYP75B4 involved in the biosynthesis of momilactone B and tricin. Moreover, low concentrations of exogenous ABA mainly positively regulate the expression of OsIAA11, an AUX/IAA transcription factor gene, in the root of PI and Le. These findings suggest that the application of ABA could significantly enhance the weed-suppressive activity of both rice cultivars through regulating root growth and the synthesis of allelochemicals secreted by rice roots, providing an option for the improvement of rice allelopathy through chemical induction. Full article
Show Figures

Figure 1

18 pages, 5695 KiB  
Article
Benzoxazinoids Biosynthetic Gene Cluster Identification and Expression Analysis in Maize under Biotic and Abiotic Stresses
by Xiaoqiang Zhao, Zhenzhen Shi, Fuqiang He, Yining Niu, Guoxiang Qi, Siqi Sun, Xin Li and Xiquan Gao
Int. J. Mol. Sci. 2024, 25(13), 7460; https://doi.org/10.3390/ijms25137460 - 7 Jul 2024
Cited by 2 | Viewed by 1741
Abstract
Benzoxazinoids (BXs) are unique bioactive metabolites with protective and allelopathic properties in maize in response to diverse stresses. The production of BXs involves the fine regulations of BXs biosynthetic gene cluster (BGC). However, little is known about whether and how the expression pattern [...] Read more.
Benzoxazinoids (BXs) are unique bioactive metabolites with protective and allelopathic properties in maize in response to diverse stresses. The production of BXs involves the fine regulations of BXs biosynthetic gene cluster (BGC). However, little is known about whether and how the expression pattern of BGC members is impacted by biotic and abiotic stresses. Here, maize BGC was systemically investigated and 26 BGC gene members were identified on seven chromosomes, for which Bin 4.00–4.01/4.03–4.04/7.02 were the most enriched regions. All BX proteins were clearly divided into three classes and seven subclasses, and ten conserved motifs were further identified among these proteins. These proteins were localized in the subcellular compartments of chloroplast, endoplasmic reticulum, or cytoplasmic, where their catalytic activities were specifically executed. Three independent RNA-sequencing (RNA-Seq) analyses revealed that the expression profiles of the majority of BGC gene members were distinctly affected by multiple treatments, including light spectral quality, low-temperature, 24-epibrassinolide induction, and Asian corn borer infestation. Thirteen differentially expressed genes (DEGs) with high and specific expression levels were commonly detected among three RNA-Seq, as core conserved BGC members for regulating BXs biosynthesis under multiple abiotic/biotic stimulates. Moreover, the quantitative real-time PCR (qRT-PCR) verified that six core conserved genes in BGC were significantly differentially expressed in leaves of seedlings upon four treatments, which caused significant increases in 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) content under darkness and wound treatments, whereas a clear decrease in DIMBOA content was observed under low-temperature treatment. In conclusion, the changes in BX metabolites in maize were regulated by BGC gene members in multiple stress presences. Therefore, the identification of key genes associated with BX accumulation under biotic/abiotic stresses will provide valuable gene resources for breeding maize varieties with enhanced capability to adapt to environmental stresses. Full article
(This article belongs to the Special Issue Recent Advances in Maize Stress Biology)
Show Figures

Figure 1

14 pages, 2625 KiB  
Article
Whole-Genome Sequencing of Two Potentially Allelopathic Strains of Bacillus from the Roots of C. equisetifolia and Identification of Genes Related to Synthesis of Secondary Metabolites
by Ying Wang, Pan Chen, Qi Lin, Linzhi Zuo and Lei Li
Microorganisms 2024, 12(6), 1247; https://doi.org/10.3390/microorganisms12061247 - 20 Jun 2024
Cited by 1 | Viewed by 1453
Abstract
The coastal Casuarina equisetifolia is the most common tree species in Hainan’s coastal protection forests. Sequencing the genomes of its allelopathic endophytes can allow the protective effects of these bacteria to be effectively implemented in protected forests. The goal of this study was [...] Read more.
The coastal Casuarina equisetifolia is the most common tree species in Hainan’s coastal protection forests. Sequencing the genomes of its allelopathic endophytes can allow the protective effects of these bacteria to be effectively implemented in protected forests. The goal of this study was to sequence the whole genomes of the endophytes Bacillus amyloliquefaciens and Bacillus aryabhattai isolated from C. equisetifolia root tissues. The results showed that the genome sizes of B. amyloliquefaciens and B. aryabhattai were 3.854 Mb and 5.508 Mb, respectively. The two strains shared 2514 common gene families while having 1055 and 2406 distinct gene families, respectively. The two strains had 283 and 298 allelochemical synthesis-associated genes, respectively, 255 of which were shared by both strains and 28 and 43 of which were unique to each strain, respectively. The genes were putatively involved in 11 functional pathways, including secondary metabolite biosynthesis, terpene carbon skeleton biosynthesis, biosynthesis of ubiquinone and other terpene quinones, tropane/piperidine and piperidine alkaloids biosynthesis, and phenylpropanoid biosynthesis. NQO1 and entC are known to be involved in the biosynthesis of ubiquinone and other terpenoid quinones, and rfbC/rmlC, rfbA/rmlA/rffH, and rfbB/rmlB/rffG are involved in the biosynthesis of polyketide glycan units. Among the B. aryabhattai-specific allelochemical synthesis-related genes, STE24 is involved in terpene carbon skeleton production, atzF and gdhA in arginine biosynthesis, and TYR in isoquinoline alkaloid biosynthesis. B. amyloliquefaciens and B. aryabhattai share the genes aspB, yhdR, trpA, trpB, and GGPS, which are known to be involved in the synthesis of carotenoids, indole, momilactones, and other allelochemicals. Additionally, these bacteria are involved in allelochemical synthesis via routes such as polyketide sugar unit biosynthesis and isoquinoline alkaloid biosynthesis. This study sheds light on the genetic basis of allelopathy in Bacillus strains associated with C. equisetifolia, highlighting the possible use of these bacteria in sustainable agricultural strategies for weed management and crop protection. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

14 pages, 1305 KiB  
Article
The Presence of Arbuscular Mycorrhizal Fungi in the Rhizosphere of Transgenic Rapeseed Overexpressing a Trichoderma Thkel1 Gene Improves Plant Development and Yield
by Carlos Nicolás, Mónica Calvo-Polanco, Jorge Poveda, Ana Alonso-Ramírez, Julio Ascaso, Vicent Arbona and Rosa Hermosa
Agriculture 2024, 14(6), 851; https://doi.org/10.3390/agriculture14060851 - 29 May 2024
Cited by 2 | Viewed by 1494
Abstract
Most of the plants belonging to the family of Brassicaceae are non-hosts for arbuscular mycorrhizal fungi (AMF). These plants are known to produce glucosinolates (GSL), a group of allelopathic compounds, with a role in plant defense. The overexpression of the Thkel1 from Trichoderma [...] Read more.
Most of the plants belonging to the family of Brassicaceae are non-hosts for arbuscular mycorrhizal fungi (AMF). These plants are known to produce glucosinolates (GSL), a group of allelopathic compounds, with a role in plant defense. The overexpression of the Thkel1 from Trichoderma harzianum in rapeseed (BnKel) plants, this gene encoding a protein that shares similarities with Brassicaceae plant’s nitrile-specifier and epithiospecifier proteins, modified GSL metabolism, reducing the accumulation of toxic isothiocyanates due to hydrolysis of these secondary metabolites. Here, we have analyzed the effect of AMF application on the GSL profiles and the development and yield of BnKel plants. Our results showed that the reduction of GSL compounds on transgenic plants was not enough to allow the formation of arbuscules and vesicles characteristics of an AMF mycorrhizal association. However, the inoculation of transgenic rapeseed plants expressing Thkel1 with AMF improved seed yield and fatty acid composition of the oilseed, showing a beneficial effect of AMF in these plants. The achievement of this effective beneficial association among mycorrhizas and rapeseed plants opens new opportunities in agribiotechnology for the use of AMF as biofertilizers in Brassicaceae crops with potential application in medical, animal and industrial biotechnology. Full article
(This article belongs to the Special Issue Beneficial Microbes for Sustainable Crop Production)
Show Figures

Figure 1

23 pages, 10177 KiB  
Article
Analysis Transcriptome and Phytohormone Changes Associated with the Allelopathic Effects of Ginseng Hairy Roots Induced by Different-Polarity Ginsenoside Components
by Tingting Zhou, Qiong Li, Xin Huang and Changbao Chen
Molecules 2024, 29(8), 1877; https://doi.org/10.3390/molecules29081877 - 19 Apr 2024
Cited by 4 | Viewed by 3752
Abstract
The allelopathic autotoxicity of ginsenosides is an important cause of continuous cropping obstacles in ginseng planting. There is no report on the potential molecular mechanism of the correlation between polarity of ginsenoside components and their allelopathic autotoxicity. This study applied a combination of [...] Read more.
The allelopathic autotoxicity of ginsenosides is an important cause of continuous cropping obstacles in ginseng planting. There is no report on the potential molecular mechanism of the correlation between polarity of ginsenoside components and their allelopathic autotoxicity. This study applied a combination of metabolomics and transcriptomics analysis techniques, combined with apparent morphology, physiological indexes, and cell vitality detection of the ginseng hairy roots, through which the molecular mechanism of correlation between polarity and allelopathic autotoxicity of ginsenosides were comprehensively studied. The hairy roots of ginseng presented more severe cell apoptosis under the stress of low-polarity ginsenoside components (ZG70). ZG70 exerted allelopathic autotoxicity by regulating the key enzyme genes of cis-zeatin (cZ) synthesis pathway, indole-3-acetic acid (IAA) synthesis pathway, and jasmonates (JAs) signaling transduction pathway. The common pathway for high-polarity ginsenoside components (ZG50) and ZG70 to induce the development of allelopathic autotoxicity was through the expression of key enzymes in the gibberellin (GA) signal transduction pathway, thereby inhibiting the growth of ginseng hairy roots. cZ, indole-3-acetamid (IAM), gibberellin A1 (GA1), and jasmonoyl-L-isoleucine (JA-ILE) were the key response factors in this process. It could be concluded that the polarity of ginsenoside components were negatively correlated with their allelopathic autotoxicity. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

21 pages, 2682 KiB  
Review
Potential Momilactones in Rice Stress Tolerance and Health Advantages
by Ramin Rayee, La Hoang Anh, Tran Dang Khanh and Tran Dang Xuan
Agronomy 2024, 14(3), 405; https://doi.org/10.3390/agronomy14030405 - 20 Feb 2024
Cited by 6 | Viewed by 3147
Abstract
The aim of this review was to provide an updated outlook on the relevance of momilactones in rice during the 50 years since their discovery. Momilactones A (MA) and B (MB) were initially extracted from rice husks in 1973 and have since been [...] Read more.
The aim of this review was to provide an updated outlook on the relevance of momilactones in rice during the 50 years since their discovery. Momilactones A (MA) and B (MB) were initially extracted from rice husks in 1973 and have since been identified in various parts of the rice plant including leaves, bran, straw, roots, and root exudates. The biosynthesis of these compounds in rice initiates from geranylgeranyl diphosphate (GGDP) and progresses through several cyclization stages. The genes governing the synthesis of MA and MB are located on chromosome 4 within the rice genome. Concentrations of these compounds vary across different parts of the rice plant, ranging from 2 to 157 μg/g. Notably, Japonica rice varieties tend to have higher levels of MA and MB (157 and 83 μg/g, respectively) compared to Indica varieties (20.7 and 4.9 μg/g, respectively). There is a direct correlation between the levels of MA and MB and the increase in antioxidant activity, protein, and amylose content in rice grains. The production of these compounds is enhanced under environmental stresses such as drought, salinity, chilling, and UV exposure, indicating their potential role in rice’s tolerance to these conditions. MA and MB also demonstrate allelopathic, antibacterial, and antifungal properties, potentially improving the resilience of rice plants against biotic stressors. Although their antioxidant activity is modest, they effectively inhibit leukemia cells at a concentration of 5 µM. They also show promise in diabetes management by inhibiting enzymes like α-amylase (with IC50 values of 132.56 and 129.02 mg/mL, respectively) and α-glucosidase (with IC50 values of 991.95 and 612.03 mg/mL, respectively). The therapeutic qualities of MA and MB suggest that cultivating rice varieties with higher concentrations of these compounds, along with developing their derivatives, could benefit the pharmaceutical industry and enhance treatments for chronic diseases. Consequently, breeding rice cultivars with increased momilactone levels could offer substantial advantages to rice farmers. Full article
Show Figures

Figure 1

23 pages, 6482 KiB  
Article
A Genome-Wide Identification and Expression Analysis of the Casparian Strip Membrane Domain Protein-like Gene Family in Pogostemon cablin in Response to p-HBA-Induced Continuous Cropping Obstacles
by Yating Su, Muhammad Zeeshan Ul Haq, Xiaofeng Liu, Yang Li, Jing Yu, Dongmei Yang, Yougen Wu and Ya Liu
Plants 2023, 12(22), 3901; https://doi.org/10.3390/plants12223901 - 19 Nov 2023
Cited by 10 | Viewed by 2102
Abstract
Casparian strip membrane domain protein-like (CASPL) genes are key genes for the formation and regulation of the Casparian strip and play an important role in plant abiotic stress. However, little research has focused on the members, characteristics, and biological functions of [...] Read more.
Casparian strip membrane domain protein-like (CASPL) genes are key genes for the formation and regulation of the Casparian strip and play an important role in plant abiotic stress. However, little research has focused on the members, characteristics, and biological functions of the patchouli PatCASPL gene family. In this study, 156 PatCASPL genes were identified at the whole-genome level. Subcellular localization predicted that 75.6% of PatCASPL proteins reside on the cell membrane. A phylogenetic analysis categorized PatCASPL genes into five subclusters alongside Arabidopsis CASPL genes. In a cis-acting element analysis, a total of 16 different cis-elements were identified, among which the photo-responsive element was the most common in the CASPL gene family. A transcriptome analysis showed that p-hydroxybenzoic acid, an allelopathic autotoxic substance, affected the expression pattern of PatCASPLs, including a total of 27 upregulated genes and 30 down-regulated genes, suggesting that these PatCASPLs may play an important role in the regulation of patchouli continuous cropping obstacles by affecting the formation and integrity of Casparian strip bands. These results provided a theoretical basis for exploring and verifying the function of the patchouli PatCASPL gene family and its role in continuous cropping obstacles. Full article
(This article belongs to the Special Issue Plant Stress Physiology and Molecular Biology)
Show Figures

Figure 1

20 pages, 9285 KiB  
Article
Receptor Plants Alleviated Allelopathic Stress from Invasive Chenopodium ambrosioides L. by Upregulating the Production and Autophagy of Their Root Border Cells
by Qiang Wang, Xijie Zhou, Shengli He, Wenguo Wang, Danwei Ma, Yu Wang and Hong Zhang
Plants 2023, 12(22), 3810; https://doi.org/10.3390/plants12223810 - 9 Nov 2023
Cited by 3 | Viewed by 1646
Abstract
Chenopodium ambrosioides L. is an invasive plant native to the Neotropics that has seriously threatened the ecological security of China, and allelopathy is one of the mechanisms underlying its successful invasion. Maize (Zea mays L.) and soybean (Glycine max (L.) Merr.), [...] Read more.
Chenopodium ambrosioides L. is an invasive plant native to the Neotropics that has seriously threatened the ecological security of China, and allelopathy is one of the mechanisms underlying its successful invasion. Maize (Zea mays L.) and soybean (Glycine max (L.) Merr.), as the main food crops, are usually affected by C. ambrosioides in their planting areas. The purpose of this study was to investigate the ultrastructure, autophagy, and release-related gene expression of receptor plant root border cells (RBCs) after exposure to volatile oil from C. ambrosioides and its main component α-terpene, which were studied using maize and soybean as receptor plants. The volatiles inhibited root growth and promoted a brief increase in the number of RBCs. As the volatile concentration increased, the organelles in RBCs were gradually destroyed, and intracellular autophagosomes were produced and continuously increased in number. Transcriptomic analysis revealed that genes involved in the synthesis of the plasma membrane and cell wall components in receptor root cells were significantly up-regulated, particularly those related to cell wall polysaccharide synthesis. Meanwhile, polygalacturonase and pectin methylesterases (PME) exhibited up-regulated expression, and PME activity also increased. The contribution of α-terpene to this allelopathic effect of C. ambrosioides volatile oil exceeded 70%. Based on these results, receptor plant root tips may increase the synthesis of cell wall substances while degrading the intercellular layer, accelerating the generation and release of RBCs. Meanwhile, their cells survived through autophagy of RBCs, indicating the key role of RBCs in alleviating allelopathic stress from C. ambrosioides volatiles. Full article
(This article belongs to the Special Issue Plant-Soil Interaction Response to Global Change)
Show Figures

Figure 1

23 pages, 4119 KiB  
Review
A Systematic Review on the Continuous Cropping Obstacles and Control Strategies in Medicinal Plants
by Muhammad Zeeshan Ul Haq, Jing Yu, Guanglong Yao, Huageng Yang, Hafiza Amina Iqbal, Hassam Tahir, Hongguang Cui, Ya Liu and Yougen Wu
Int. J. Mol. Sci. 2023, 24(15), 12470; https://doi.org/10.3390/ijms241512470 - 5 Aug 2023
Cited by 62 | Viewed by 6760
Abstract
Continuous cropping (CC) is a common practice in agriculture, and usually causes serious economic losses due to soil degeneration, decreased crop yield and quality, and increased disease incidence, especially in medicinal plants. Continuous cropping obstacles (CCOs) are mainly due to changes in soil [...] Read more.
Continuous cropping (CC) is a common practice in agriculture, and usually causes serious economic losses due to soil degeneration, decreased crop yield and quality, and increased disease incidence, especially in medicinal plants. Continuous cropping obstacles (CCOs) are mainly due to changes in soil microbial communities, nutrient availability, and allelopathic effects. Recently, progressive studies have illustrated the molecular mechanisms of CCOs, and valid strategies to overcome them. Transcriptomic and metabolomics analyses revealed that identified DEGs (differently expressed genes) and metabolites involved in the response to CCOs are involved in various biological processes, including photosynthesis, carbon metabolism, secondary metabolite biosynthesis, and bioactive compounds. Soil improvement is an effective strategy to overcome this problem. Soil amendments can improve the microbial community by increasing the abundance of beneficial microorganisms, soil fertility, and nutrient availability. In this review, we sum up the recent status of the research on CCOs in medicinal plants, the combination of transcriptomic and metabolomics studies, and related control strategies, including uses of soil amendments, crop rotation, and intercropping. Finally, we propose future research trends for understanding CCOs, and strategies to overcome these obstacles and promote sustainable agriculture practices in medicinal plants. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

22 pages, 9077 KiB  
Article
Biochar-Dual Oxidant Composite Particles Alleviate the Oxidative Stress of Phenolic Acid on Tomato Seed Germination
by Yuting Tu, Jinchun Shen, Zhiping Peng, Yanggui Xu, Zhuxian Li, Jianyi Liang, Qiufang Wei, Hongbo Zhao and Jichuan Huang
Antioxidants 2023, 12(4), 910; https://doi.org/10.3390/antiox12040910 - 11 Apr 2023
Cited by 5 | Viewed by 3048
Abstract
Phenolic acid is a well-known allelochemical, but also a pollutant in soil and water impeding crop production. Biochar is a multifunctional material widely used to mitigate the phenolic acids allelopathic effect. However, phenolic acid absorbed by biochar can still be released. In order [...] Read more.
Phenolic acid is a well-known allelochemical, but also a pollutant in soil and water impeding crop production. Biochar is a multifunctional material widely used to mitigate the phenolic acids allelopathic effect. However, phenolic acid absorbed by biochar can still be released. In order to improve the removal efficiency of phenolic acids by biochar, the biochar-dual oxidant (BDO) composite particles were synthesized in this study, and the underlying mechanism of the BDO particles in ameliorating p-coumaric acid (p-CA) oxidative damage to tomato seed germination was revealed. Upon p-CA treatment, the BDO composite particles application increased the radical length, radical surface area, and germination index by 95.0%, 52.8%, and 114.6%, respectively. Compared to using biochar or oxidants alone, the BDO particles addition resulted in a higher removal rate of p-CA and produced more O2•−, HO, SO4•− and 1O2 radicals via autocatalytic action, suggesting that BDO particles removed phenolic acid by both adsorption and free radical oxidation. The addition of BDO particles maintained the levels of the antioxidant enzyme activity close to the control, and reduced the malondialdehyde and H2O2 by 49.7% and 49.5%, compared to the p-CA treatment. Integrative metabolomic and transcriptomic analyses revealed that 14 key metabolites and 62 genes were involved in phenylalanine and linoleic acid metabolism, which increased dramatically under p-CA stress but down-regulated with the addition of BDO particles. This study proved that the use of BDO composite particles could alleviate the oxidative stress of phenolic acid on tomato seeds. The findings will provide unprecedented insights into the application and mechanism of such composite particles as continuous cropping soil conditioners. Full article
Show Figures

Figure 1

18 pages, 3217 KiB  
Review
Defensive Molecules Momilactones A and B: Function, Biosynthesis, Induction and Occurrence
by Hisashi Kato-Noguchi
Toxins 2023, 15(4), 241; https://doi.org/10.3390/toxins15040241 - 25 Mar 2023
Cited by 30 | Viewed by 3462
Abstract
Labdane-related diterpenoids, momilactones A and B were isolated and identified in rice husks in 1973 and later found in rice leaves, straws, roots, root exudate, other several Poaceae species and the moss species Calohypnum plumiforme. The functions of momilactones in rice are well [...] Read more.
Labdane-related diterpenoids, momilactones A and B were isolated and identified in rice husks in 1973 and later found in rice leaves, straws, roots, root exudate, other several Poaceae species and the moss species Calohypnum plumiforme. The functions of momilactones in rice are well documented. Momilactones in rice plants suppressed the growth of fungal pathogens, indicating the defense function against pathogen attacks. Rice plants also inhibited the growth of adjacent competitive plants through the root secretion of momilactones into their rhizosphere due to the potent growth-inhibitory activity of momilactones, indicating a function in allelopathy. Momilactone-deficient mutants of rice lost their tolerance to pathogens and allelopathic activity, which verifies the involvement of momilactones in both functions. Momilactones also showed pharmacological functions such as anti-leukemia and anti-diabetic activities. Momilactones are synthesized from geranylgeranyl diphosphate through cyclization steps, and the biosynthetic gene cluster is located on chromosome 4 of the rice genome. Pathogen attacks, biotic elicitors such as chitosan and cantharidin, and abiotic elicitors such as UV irradiation and CuCl2 elevated momilactone production through jasmonic acid-dependent and independent signaling pathways. Rice allelopathy was also elevated by jasmonic acid, UV irradiation and nutrient deficiency due to nutrient competition with neighboring plants with the increased production and secretion of momilactones. Rice allelopathic activity and the secretion of momilactones into the rice rhizosphere were also induced by either nearby Echinochloa crus-galli plants or their root exudates. Certain compounds from Echinochloa crus-galli may stimulate the production and secretion of momilactones. This article focuses on the functions, biosynthesis and induction of momilactones and their occurrence in plant species. Full article
(This article belongs to the Special Issue Biological Activities and Potential Applications of Phytotoxins)
Show Figures

Graphical abstract

17 pages, 2274 KiB  
Review
Ginsenosides and Biotic Stress Responses of Ginseng
by Paul H. Goodwin and Madison A. Best
Plants 2023, 12(5), 1091; https://doi.org/10.3390/plants12051091 - 1 Mar 2023
Cited by 16 | Viewed by 4596
Abstract
Ginsenosides are saponins that possess a sugar moiety attached to a hydrophobic aglycone triterpenoid. They have been widely studied for their various medicinal benefits, such as their neuroprotective and anti-cancer activities, but their role in the biology of ginseng plants has been much [...] Read more.
Ginsenosides are saponins that possess a sugar moiety attached to a hydrophobic aglycone triterpenoid. They have been widely studied for their various medicinal benefits, such as their neuroprotective and anti-cancer activities, but their role in the biology of ginseng plants has been much less widely documented. In the wild, ginsengs are slow-growing perennials with roots that can survive for approximately 30 years; thus, they need to defend themselves against many potential biotic stresses over many decades. Biotic stresses would be a major natural selection pressure and may at least partially explain why ginseng roots expend considerable resources in order to accumulate relatively large amounts of ginsenosides. Ginsenosides may provide ginseng with antimicrobial activity against pathogens, antifeedant activity against insects and other herbivores, and allelopathic activity against other plants. In addition, the interaction of ginseng with pathogenic and non-pathogenic microorganisms and their elicitors may trigger increases in different root ginsenosides and associated gene expression, although some pathogens may be able to suppress this behavior. While not covered in this review, ginsenosides also have roles in ginseng development and abiotic stress tolerance. This review shows that there is considerable evidence supporting ginsenosides as important elements of ginseng’s defense against a variety of biotic stresses. Full article
(This article belongs to the Special Issue Plant Metabolomics: Metabolite Responses to Stress)
Show Figures

Figure 1

Back to TopTop