Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (43)

Search Parameters:
Keywords = alginate microbeads

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2912 KiB  
Article
Effects of Encapsulation and In Vitro Digestion on Anthocyanin Composition and Antioxidant Activity of Raspberry Juice Powder
by Mokgaetji Johanna Mokale, Sreejarani Kesavan Pillai and Dharini Sivakumar
Foods 2025, 14(14), 2492; https://doi.org/10.3390/foods14142492 - 16 Jul 2025
Viewed by 306
Abstract
Microbeads of raspberry extract were produced using encapsulation matrices alginate + pea protein isolate + psyllium mucilage, alginate + pea protein isolate + psyllium mucilage + okra, and alginate + pea protein isolate + psyllium mucilage + Aloe ferox gel + gallic [...] Read more.
Microbeads of raspberry extract were produced using encapsulation matrices alginate + pea protein isolate + psyllium mucilage, alginate + pea protein isolate + psyllium mucilage + okra, and alginate + pea protein isolate + psyllium mucilage + Aloe ferox gel + gallic acid using freeze-drying method. The microbeads were characterised and assessed for their effectiveness on the release, bioaccessibility, of anthocyanin components and antioxidant activities during in vitro digestion. Alginate + pea protein isolate + psyllium mucilage + Aloe ferox gel + gallic acid matrix showed the highest encapsulation efficiency of 91.60% while the lowest encapsulation efficiency was observed in alginate + pea protein isolate + psyllium mucilage + okra (69.94%). Scanning electron microscope images revealed spherical shapes and varying surface morphologies for different encapsulation matrices. Despite the differences observed in Fourier transform infrared spectra, microbeads showed similar thermal degradation patterns. X-ray diffractograms showed amorphous structures for different encapsulation matrices. Comparatively, alginate+ pea protein isolate + psyllium mucilage + Aloe ferox gel + gallic acid microbeads exhibited the highest bioaccessibility for total phenols (93.14%), cyanidin-3-O-sophoroside (54.61%), and cyanidin-3-O-glucoside (55.30%). The encapsulation matrices of different biopolymer combinations (alginate+ pea protein isolate+ psyllium mucilage, alginate + pea protein isolate + psyllium mucilage + okra, and alginate + pea protein isolate + psyllium mucilage + Aloe ferox gel + gallic acid) enhanced anthocyanin stability and protected it against in vitro degradation of bioactive compounds. Full article
Show Figures

Graphical abstract

16 pages, 2011 KiB  
Proceeding Paper
Sustainable Pharmaceutical Development Utilizing Vigna mungo Polymer Microbeads
by Krishnaveni Manubolu and Raveesha Peeriga
Eng. Proc. 2024, 81(1), 14; https://doi.org/10.3390/engproc2024081014 - 2 Apr 2025
Viewed by 368
Abstract
This study explores the potential of Vigna mungo gum as a sustainable and innovative natural polymer for developing microbeads for the controlled delivery of vildagliptin, a widely used antidiabetic agent. Unlike conventional natural polymers, Vigna mungo gum offers unique biocompatibility, biodegradability, and an [...] Read more.
This study explores the potential of Vigna mungo gum as a sustainable and innovative natural polymer for developing microbeads for the controlled delivery of vildagliptin, a widely used antidiabetic agent. Unlike conventional natural polymers, Vigna mungo gum offers unique biocompatibility, biodegradability, and an eco-friendly production process, distinguishing it as a superior candidate for drug delivery systems. Microbeads were prepared by combining Vigna mungo gum with sodium alginate and inducing gelation using calcium carbonate. Scanning electron microscopy (SEM) revealed a rough, porous microbead surface, advantageous for drug encapsulation and controlled release. Drug release studies demonstrated sustained release kinetics, highlighting the effectiveness of this formulation. These findings underscore the novelty of Vigna mungo gum as a promising platform for antidiabetic drug delivery, providing a sustainable alternative to existing polymer systems. Full article
(This article belongs to the Proceedings of The 1st International Online Conference on Bioengineering)
Show Figures

Figure 1

22 pages, 8422 KiB  
Article
Alginate Microbeads for Trapping Phenolic Antioxidants in Rosemary (Rosmarinus officinalis L.): Multivariate Optimization Based on Bioactive Properties and Morphological Measurements
by Gizem Toprakçı, İrem Toprakçı and Selin Şahin
Gels 2025, 11(3), 172; https://doi.org/10.3390/gels11030172 - 27 Feb 2025
Cited by 1 | Viewed by 765
Abstract
Medical and aromatic plant extracts are often very sensitive to environmental, gastrointestinal, and processing conditions despite their health benefits. Therefore, they can be rapidly inactivated. Microencapsulation is used to overcome such challenges. In this study, phenolic antioxidants from rosemary (Rosmarinus officinalis L.) [...] Read more.
Medical and aromatic plant extracts are often very sensitive to environmental, gastrointestinal, and processing conditions despite their health benefits. Therefore, they can be rapidly inactivated. Microencapsulation is used to overcome such challenges. In this study, phenolic antioxidants from rosemary (Rosmarinus officinalis L.) were encapsulated in alginate beads by means of ionic gelation. A Box–Behnken design with response surface methodology (BBD–RSM) was used with three numeric factors (calcium chloride concentration, alginate concentration, and hardening time) to achieve the best formulation in terms of encapsulation efficiency, antioxidant activity, and morphological characteristics. Generally, the sodium alginate concentration of the microbeads was the most critical factor (p < 0.0001) for the quality of the products. The optimal encapsulation conditions were accessed using concentrations with almost 6% calcium chloride and 2% alginate, and a time of 10 min for bead hardening in order to obtain the highest responses (30.01% encapsulation efficiency, 7.55 mg-TEAC/g-DM of antioxidant activity value as measured by the DPPH method, a sphericity factor of 0.05, and a roundness of 0.78). At the optimum point, the microbeads were determined to be spherical in shape, and the bulk density value was measured as 0.34 ± 0.01 g/mL. Full article
(This article belongs to the Special Issue Functional Gels Loaded with Natural Products)
Show Figures

Figure 1

15 pages, 4231 KiB  
Article
Microstructure and Release Behavior of Alginate–Natural Hydrocolloid Composites: A Comparative Study
by Hatice Sıçramaz, Ali Baran Dönmez, Buse Güven, Derya Ünal and Elif Aşbay
Polymers 2025, 17(4), 531; https://doi.org/10.3390/polym17040531 - 18 Feb 2025
Cited by 2 | Viewed by 1175
Abstract
This study investigated the effects of combining sodium alginate (ALG) with various natural hydrocolloids on the microstructure and release behaviors of microbeads. The encapsulation solutions were prepared at a 1:1 (w/w) ratio with ALG as the control and carrageenan [...] Read more.
This study investigated the effects of combining sodium alginate (ALG) with various natural hydrocolloids on the microstructure and release behaviors of microbeads. The encapsulation solutions were prepared at a 1:1 (w/w) ratio with ALG as the control and carrageenan (CAR), locust bean gum (LBG), acacia gum (ACA), pectin (PEC), and carboxymethyl cellulose (CMC) as experimental groups. Each formulation contained 0.2% (w/v) tartrazine and was extruded into a CaCl2 solution for bead production. Encapsulation efficiency varied across formulations, with the lowest in the control (ALG-ALG) and highest in ALG-CAR and ALG-CMC, reaching 74% and 78%, respectively. The microbead sizes ranged from 2.07 to 3.48 mm, with the lowest particle diameter observed in ALG-ACA composites. Surface analysis showed smooth and uniform microbeads in the control (ALG-ALG), while ALG-LBG microbeads were rougher. Release kinetics were assessed using various models, with the Higuchi model best describing the release for most formulations (highest R2 values). Tartrazine release followed pseudo-Fickian behavior in all formulations, with slower release in ALG-ACA and faster release in ALG-LBG microbeads. This study fills a gap in understanding how the incorporation of different natural hydrocolloids influences both the encapsulation efficiency and release dynamics of alginate-based microbeads, providing valuable insights for applications in food and pharmaceutical industries. Full article
(This article belongs to the Special Issue Development of Polymer Materials as Functional Coatings)
Show Figures

Graphical abstract

18 pages, 1635 KiB  
Article
Exploring Calcium Alginate-Based Gels for Encapsulation of Lacticaseibacillus paracasei to Enhance Stability in Functional Breadmaking
by Daiva Zadeike, Zydrune Gaizauskaite, Loreta Basinskiene, Renata Zvirdauskiene and Dalia Cizeikiene
Gels 2024, 10(10), 641; https://doi.org/10.3390/gels10100641 - 8 Oct 2024
Cited by 4 | Viewed by 2614
Abstract
This study focuses on evaluating the efficiency of acid-tolerant Lacticaseibacillus paracasei bacteria encapsulated in an alginate-based gel matrix during repeated sourdough fermentation cycles, as well as their preservation during storage and throughout baking at high temperature. A double-coating procedure was applied, involving the [...] Read more.
This study focuses on evaluating the efficiency of acid-tolerant Lacticaseibacillus paracasei bacteria encapsulated in an alginate-based gel matrix during repeated sourdough fermentation cycles, as well as their preservation during storage and throughout baking at high temperature. A double-coating procedure was applied, involving the encapsulation of bacterial cells in calcium alginate, which was further coated with chitosan. The encapsulation efficiency (EE) did not show significant difference between alginate and alginate–chitosan (97.97 and 96.71%, respectively). The higher number of L. paracasei bacteria was preserved in double-coated microbeads, with survivability rates of 89.51% and 96.90% in wet and dried microbeads, respectively. Encapsulated bacteria demonstrated effective fermentation ability, while double gel-coated cells exhibited slower acidification during sourdough fermentation, maintaining higher efficiency in the second fermentation cycle. The addition of freeze-dried, alginate-based gel-encapsulated bacteria (2–4%, w/w flour) significantly (p < 0.05) improved bread quality and extended its shelf life. A double-layer coating (alginate–chitosan) can be introduced as an innovative strategy for regulating the release of lactic acid bacteria and optimizing fermentation processes. Powdered alginate or alginate–chitosan gel-based L. paracasei microcapsules, at appropriate concentrations, can be used in the production of baked goods with acceptable quality and sensory properties, achieving a lactic acid bacteria count of approximately 106 CFU/g in the crumb, thereby meeting the standard criteria for probiotic bakery products. Full article
(This article belongs to the Special Issue Advancements in Food Gelation: Exploring Mechanisms and Applications)
Show Figures

Figure 1

22 pages, 8826 KiB  
Article
Microbead-Encapsulated Luminescent Bioreporter Screening of P. aeruginosa via Its Secreted Quorum-Sensing Molecules
by Abraham Abbey Paul, Yael Schlichter Kadosh, Ariel Kushmaro and Robert S. Marks
Biosensors 2024, 14(8), 383; https://doi.org/10.3390/bios14080383 - 8 Aug 2024
Cited by 3 | Viewed by 2726
Abstract
Pseudomonas aeruginosa is an opportunistic Gram-negative bacterium that remains a prevalent clinical and environmental challenge. Quorum-sensing (QS) molecules are effective biomarkers in pinpointing the presence of P. aeruginosa. This study aimed to develop a convenient-to-use, whole-cell biosensor using P. aeruginosa reporters individually [...] Read more.
Pseudomonas aeruginosa is an opportunistic Gram-negative bacterium that remains a prevalent clinical and environmental challenge. Quorum-sensing (QS) molecules are effective biomarkers in pinpointing the presence of P. aeruginosa. This study aimed to develop a convenient-to-use, whole-cell biosensor using P. aeruginosa reporters individually encapsulated within alginate-poly-L-lysine (alginate-PLL) microbeads to specifically detect the presence of bacterial autoinducers. The PLL-reinforced microbeads were prepared using a two-step method involving ionic cross-linking and subsequent coating with thin layers of PLL. The alginate-PLL beads showed good stability in the presence of a known cation scavenger (sodium citrate), which typically limits the widespread applications of calcium alginate. In media containing synthetic autoinducers—such as N-(3-oxo dodecanoyl) homoserine lactone (3-oxo-C12-HSL) and N-butanoyl-L-homoserine lactone (C4-HSL), or the cell-free supernatants of planktonic or the flow-cell biofilm effluent of wild P. aeruginosa (PAO1)—the encapsulated bacteria enabled a dose-dependent detection of the presence of these QS molecules. The prepared bioreporter beads remained stable during prolonged storage at 4 and −80 °C and were ready for on-the-spot sensing without the need for recovery. The proof-of-concept, optical fiber-based, and whole-cell biosensor developed here demonstrates the practicality of the encapsulated bioreporter for bacterial detection based on specific QS molecules. Full article
Show Figures

Figure 1

16 pages, 9531 KiB  
Article
Betulin Stimulates Osteogenic Differentiation of Human Osteoblasts-Loaded Alginate–Gelatin Microbeads
by Mehmet Ali Karaca, Derya Dilek Kancagi, Ugur Ozbek, Ercument Ovali and Ozgul Gok
Bioengineering 2024, 11(6), 553; https://doi.org/10.3390/bioengineering11060553 - 30 May 2024
Cited by 1 | Viewed by 1795
Abstract
Osteoporosis, a terminal illness, has emerged as a global public health problem in recent years. The long-term use of bone anabolic drugs to treat osteoporosis causes multi-morbidity in elderly patients. Alternative therapies, such as allogenic and autogenic tissue grafts, face important issues, such [...] Read more.
Osteoporosis, a terminal illness, has emerged as a global public health problem in recent years. The long-term use of bone anabolic drugs to treat osteoporosis causes multi-morbidity in elderly patients. Alternative therapies, such as allogenic and autogenic tissue grafts, face important issues, such as a limited source of allogenic grafts and tissue rejection in autogenic grafts. However, stem cell therapy has been shown to increase bone regeneration and decrease osteoporotic bone formation. Stem cell therapy combined with betulin (BET) supplementation might be adequate for bone remodeling and new bone tissue generation. In this study, the effect of BET on the viability and osteogenic differentiation of hFOB 1.19 cells was investigated. The cells were encapsulated in alginate–gelatin (AlGel) microbeads. In vitro tests were conducted during the 12 d of incubation. While BET showed cytotoxic activity (>1 µM) toward non-encapsulated hFOB 1.19 cells, encapsulated cells retained their functionality for up to 12 days, even at 5 µM BET. Moreover, the expression of osteogenic markers indicates an enhanced osteo-inductive effect of betulin on encapsulated hFOB 1.19, compared to the non-encapsulated cell culture. The 3D micro-environment of the AlGel microcapsules successfully protects the hFOB 1.19 cells against BET cytotoxicity, allowing BET to improve the mineralization and differentiation of osteoblast cells. Full article
(This article belongs to the Section Regenerative Engineering)
Show Figures

Graphical abstract

18 pages, 1399 KiB  
Article
Encapsulation of Fennel Essential Oil in Calcium Alginate Microbeads via Electrostatic Extrusion
by Erika Dobroslavić, Ena Cegledi, Katarina Robić, Ivona Elez Garofulić, Verica Dragović-Uzelac and Maja Repajić
Appl. Sci. 2024, 14(8), 3522; https://doi.org/10.3390/app14083522 - 22 Apr 2024
Cited by 4 | Viewed by 1945
Abstract
Fennel essential oil (EO) is well known for its biological activities and wide potential for use in the food, cosmetic, and pharmaceutical industries, where the main challenge is to achieve higher stability of EO. This study aimed to evaluate the potential of electrostatic [...] Read more.
Fennel essential oil (EO) is well known for its biological activities and wide potential for use in the food, cosmetic, and pharmaceutical industries, where the main challenge is to achieve higher stability of EO. This study aimed to evaluate the potential of electrostatic extrusion for encapsulation of fennel EO by examining the effects of alginate (1%, 1.5%, and 2%) and whey protein (0%, 0.75%, and 1.5%) concentrations and drying methods on the encapsulation efficiency, loading capacity, bead characteristics, and swelling behavior of the produced fennel EO microbeads. Results revealed that electrostatic extrusion proved to be effective for encapsulating fennel EO, with whey protein addition enhancing the examined characteristics of the obtained microbeads. Freeze-drying exhibited superior performance compared to air-drying. Optimal encapsulation efficiency (51.95%) and loading capacity (78.28%) were achieved by using 1.5% alginate and 0.75% whey protein, followed by freeze-drying. GC-MS analysis revealed no differences in the qualitative aspect of the encapsulated and initial EO, with the encapsulated EO retaining 58.95% of volatile compounds. This study highlighted the potential of electrostatic extrusion using alginate and whey protein as a promising technique for fennel EO encapsulation while also emphasizing the need for further exploration into varied carrier materials and process parameters to optimize the encapsulation process and enhance product quality. Full article
(This article belongs to the Special Issue Natural Products and Bioactive Compounds)
Show Figures

Figure 1

17 pages, 2672 KiB  
Article
Alginate- and Chitosan-Modified Gelatin Hydrogel Microbeads for Delivery of E. coli Phages
by Farzaneh Moghtader, Sencer Solakoglu and Erhan Piskin
Gels 2024, 10(4), 244; https://doi.org/10.3390/gels10040244 - 2 Apr 2024
Cited by 11 | Viewed by 3726
Abstract
Bacterial infections are among the most significant health problems/concerns worldwide. A very critical concern is the rapidly increasing number of antibiotic-resistant bacteria, which requires much more effective countermeasures. As nature’s antibacterial entities, bacteriophages shortly (“phages”) are very important alternatives to antibiotics, having many [...] Read more.
Bacterial infections are among the most significant health problems/concerns worldwide. A very critical concern is the rapidly increasing number of antibiotic-resistant bacteria, which requires much more effective countermeasures. As nature’s antibacterial entities, bacteriophages shortly (“phages”) are very important alternatives to antibiotics, having many superior features compared with antibiotics. The development of phage-carrying controlled-release formulations is still challenging due to the need to protect their activities in preparation, storage, and use, as well as the need to create more user-friendly forms by considering their application area/site/conditions. Here, we prepared gelatin hydrogel microbeads by a two-step process. Sodium alginate was included for modification within the initial recipes, and these composite microbeads were further coated with chitosan. Their swelling ratio, average diameters, and Zeta potentials were determined, and degradations in HCl were demonstrated. The target bacteria Escherichia coli (E.coli) and its specific phage (T4) were obtained from bacterial culture collections and propagated. Phages were loaded within the microbeads with a simple method. The phage release characteristics were investigated comparatively and were demonstrated here. High release rates were observed from the gelatin microbeads. It was possible to reduce the phage release rate using sodium alginate in the recipe and chitosan coating. Using these gelatin-based microbeads as phage carrier matrices—especially in lyophilized forms—significantly improved the phage stability even at room temperature. It was concluded that phage release from gelatin hydrogel microbeads could be further controlled by alginate and chitosan modifications and that user-friendly lyophilized phage formulations with a much longer shelf life could be produced. Full article
(This article belongs to the Special Issue Advanced Gel-Based Materials and Coatings with Enhanced Bioactivity)
Show Figures

Figure 1

14 pages, 4938 KiB  
Article
Alginate Microbeads Containing Halloysite and Layered Double Hydroxide as Efficient Carriers of Natural Antimicrobials
by Gianluca Viscusi, Elisa Boccalon, Elena Lamberti, Morena Nocchetti and Giuliana Gorrasi
Nanomaterials 2024, 14(2), 232; https://doi.org/10.3390/nano14020232 - 21 Jan 2024
Cited by 3 | Viewed by 2139
Abstract
The present paper describes the preparation and characterization of novel microbeads from alginate filled with nanoclay such as halloysite nanotubes (HNTs). HNTs were used as support for the growth of layered double hydroxide (LDH) crystals producing a flower-like structure (HNT@LDH). Such nanofiller was [...] Read more.
The present paper describes the preparation and characterization of novel microbeads from alginate filled with nanoclay such as halloysite nanotubes (HNTs). HNTs were used as support for the growth of layered double hydroxide (LDH) crystals producing a flower-like structure (HNT@LDH). Such nanofiller was loaded with grapefruit seed oil (GO), an active compound with antimicrobial activity, up to 50% wt. For comparison, the beads were also loaded with HNT and LDH separately, and filled with the same amount of GO. The characterization of the filler was performed using XRD and ATR spectroscopy. The beads were analyzed through XRD, TGA, ATR and SEM. The functional properties of the beads, as nanocarriers of the active compound, were investigated using UV-vis spectroscopy. The release kinetics were recorded and modelled as a function of the structural characteristics of the nanofiller. Full article
(This article belongs to the Special Issue Recent Advances in Green Nanomaterials: Design and Applications)
Show Figures

Figure 1

18 pages, 4618 KiB  
Article
Formulation and Investigation of CK2 Inhibitor-Loaded Alginate Microbeads with Different Excipients
by Boglárka Papp, Marc Le Borgne, Florent Perret, Christelle Marminon, Liza Józsa, Ágota Pető, Dóra Kósa, Lajos Nagy, Sándor Kéki, Zoltán Ujhelyi, Ádám Pallér, István Budai, Ildikó Bácskay and Pálma Fehér
Pharmaceutics 2023, 15(12), 2701; https://doi.org/10.3390/pharmaceutics15122701 - 29 Nov 2023
Cited by 3 | Viewed by 2076
Abstract
The aim of this study was to formulate and characterize CK2 inhibitor-loaded alginate microbeads via the polymerization method. Different excipients were used in the formulation to improve the penetration of an active agent and to stabilize our preparations. Transcutol® HP was added [...] Read more.
The aim of this study was to formulate and characterize CK2 inhibitor-loaded alginate microbeads via the polymerization method. Different excipients were used in the formulation to improve the penetration of an active agent and to stabilize our preparations. Transcutol® HP was added to the drug–sodium alginate mixture and polyvinylpyrrolidone (PVP) was added to the hardening solution, alone and in combination. To characterize the formulations, mean particle size, scanning electron microscopy analysis, encapsulation efficiency, swelling behavior, an enzymatic stability test and an in vitro dissolution study were performed. The cell viability assay and permeability test were also carried out on the Caco-2 cell line. The anti-oxidant and anti-inflammatory effects of the formulations were finally evaluated. The combination of Transcutol® HP and PVP in the formulation of sodium alginate microbeads could improve the stability, in vitro permeability, anti-oxidant and anti-inflammatory effects of the CK2 inhibitor. Full article
(This article belongs to the Special Issue Dosage Form Formulation Technologies for Improving Bioavailability)
Show Figures

Graphical abstract

19 pages, 6248 KiB  
Article
The Release of Grape Pomace Phenolics from Alginate-Based Microbeads during Simulated Digestion In Vitro: The Influence of Coatings and Drying Method
by Josipa Martinović, Jasmina Lukinac, Marko Jukić, Rita Ambrus, Mirela Planinić, Gordana Šelo, Gabriela Perković and Ana Bucić-Kojić
Gels 2023, 9(11), 870; https://doi.org/10.3390/gels9110870 - 1 Nov 2023
Cited by 8 | Viewed by 2441
Abstract
Grape pomace is a byproduct of wineries and a sustainable source of bioactive phenolic compounds. Encapsulation of phenolics with a well-chosen coating may be a promising means of delivering them to the intestine, where they can then be absorbed and exert their health-promoting [...] Read more.
Grape pomace is a byproduct of wineries and a sustainable source of bioactive phenolic compounds. Encapsulation of phenolics with a well-chosen coating may be a promising means of delivering them to the intestine, where they can then be absorbed and exert their health-promoting properties, including antioxidant, anti-inflammatory, anticancer, cardioprotective, and antimicrobial effects. Ionic gelation of grape pomace extract with natural coatings (sodium alginate and its combination with maltodextrins, gelatin, chitosan, gums Tragacanth and Arabic) was performed, and the resulting hydrogel microbeads were then air-, vacuum-, and freeze-dried to prevent spoilage. Freeze-drying showed advantages in preserving the geometrical parameters and morphology of the microbeads compared to other drying techniques. A good relationship was found between the physicochemical properties of the dried microbeads and the in vitro release of phenolics. Freeze-dried microbeads showed the highest cumulative release of phenols in the intestinal phase (23.65–43.27 mgGAE/gMB), while the most suitable release dynamics in vitro were observed for alginate-based microbeads in combination with gelatin, gum Arabic, and 1.5% (w/v) chitosan. The results highlight the importance of developing encapsulated formulations containing a natural source of bioactive compounds that can be used in various functional foods and pharmaceutical products. Full article
Show Figures

Graphical abstract

17 pages, 4656 KiB  
Article
In Vitro and In Vivo Evaluation of Epidermal Growth Factor (EGF) Loaded Alginate-Hyaluronic Acid (AlgHA) Microbeads System for Wound Healing
by Maqsood Ali, Si Hyun Kwak, Je Yeon Byeon and Hwan Jun Choi
J. Funct. Biomater. 2023, 14(8), 403; https://doi.org/10.3390/jfb14080403 - 28 Jul 2023
Cited by 3 | Viewed by 3150
Abstract
The management of skin injuries is one of the most common concerns in medical facilities. Different types of biomaterials with effective wound-healing characteristics have been studied previously. In this study, we used alginate (Alg) and hyaluronic acid (HA) composite (80:20) beads for the [...] Read more.
The management of skin injuries is one of the most common concerns in medical facilities. Different types of biomaterials with effective wound-healing characteristics have been studied previously. In this study, we used alginate (Alg) and hyaluronic acid (HA) composite (80:20) beads for the sustained release of epidermal growth factor (EGF) delivery. Heparin crosslinked AlgHA beads showed significant loading and entrapment of EGF. Encapsulated beads demonstrated biocompatibility with rat L929 cells and significant migration at the concentration of AlgHAEGF100 and AlgHAEGF150 within 24 h. Both groups significantly improved the expression of Fetal Liver Kinase 1 (FLK-1) along with the Intercellular Adhesion Molecule-1 (ICAM-1) protein in rat bone Mesenchymal stem cells (rbMSCs). In vivo assessment exhibited significant epithelialization and wound closure gaps within 2 weeks. Immunohistochemistry shows markedly significant levels of ICAM-1, FLK-1, and fibronectin (FN) in the AlgHAEGF100 and AlgHAEGF150 groups. Hence, we conclude that the EGF-loaded alginate-hyaluronic acid (AlgHA) bead system can be used to promote wound healing. Full article
Show Figures

Graphical abstract

27 pages, 4281 KiB  
Article
In Vitro Bioaccessibility Assessment of Phenolic Compounds from Encapsulated Grape Pomace Extract by Ionic Gelation
by Josipa Martinović, Jasmina Lukinac, Marko Jukić, Rita Ambrus, Mirela Planinić, Gordana Šelo, Ana-Marija Klarić, Gabriela Perković and Ana Bucić-Kojić
Molecules 2023, 28(13), 5285; https://doi.org/10.3390/molecules28135285 - 7 Jul 2023
Cited by 19 | Viewed by 2692
Abstract
Grape pomace is a by-product of winemaking characterized by a rich chemical composition from which phenolics stand out. Phenolics are health-promoting agents, and their beneficial effects depend on their bioaccessibility, which is influenced by gastrointestinal digestion. The effect of encapsulating phenol-rich grape pomace [...] Read more.
Grape pomace is a by-product of winemaking characterized by a rich chemical composition from which phenolics stand out. Phenolics are health-promoting agents, and their beneficial effects depend on their bioaccessibility, which is influenced by gastrointestinal digestion. The effect of encapsulating phenol-rich grape pomace extract (PRE) with sodium alginate (SA), a mixture of SA with gelatin (SA-GEL), and SA with chitosan (SA-CHIT) on the bioaccessibility index (BI) of phenolics during simulated digestion in vitro was studied. A total of 27 individual phenolic compounds (IPCs) were quantified by UHPLC. The addition of a second coating to SA improved the encapsulation efficiency (EE), and the highest EE was obtained for SA-CHIT microbeads (56.25%). Encapsulation affected the physicochemical properties (size, shape and texture, morphology, crystallinity) of the produced microbeads, which influenced the delivery of phenolics to the intestine and their BI. Thus, SA-GEL microbeads had the largest size parameters, as confirmed by scanning electron microscopy (SEM), and the highest BI for total phenolic compounds and IPCs (gallic acid, 3,4-dihydroxybenzoic acid and o-coumaric acid, epicatechin, and gallocatechin gallate) ranged from 96.20 to 1011.3%. The results suggest that encapsulated PRE has great potential to be used as a functional ingredient in products for oral administration. Full article
(This article belongs to the Special Issue Delivery Systems of Bioactive Compounds)
Show Figures

Graphical abstract

18 pages, 4638 KiB  
Article
3D-Printed Tumor-on-Chip for the Culture of Colorectal Cancer Microspheres: Mass Transport Characterization and Anti-Cancer Drug Assays
by Mónica Gabriela Sánchez-Salazar, Regina Crespo-López Oliver, Sofía Ramos-Meizoso, Valeri Sofía Jerezano-Flores, Salvador Gallegos-Martínez, Edna Johana Bolívar-Monsalve, Carlos Fernando Ceballos-González, Grissel Trujillo-de Santiago and Mario Moisés Álvarez
Bioengineering 2023, 10(5), 554; https://doi.org/10.3390/bioengineering10050554 - 5 May 2023
Cited by 15 | Viewed by 4495
Abstract
Tumor-on-chips have become an effective resource in cancer research. However, their widespread use remains limited due to issues related to their practicality in fabrication and use. To address some of these limitations, we introduce a 3D-printed chip, which is large enough to host [...] Read more.
Tumor-on-chips have become an effective resource in cancer research. However, their widespread use remains limited due to issues related to their practicality in fabrication and use. To address some of these limitations, we introduce a 3D-printed chip, which is large enough to host ~1 cm3 of tissue and fosters well-mixed conditions in the liquid niche, while still enabling the formation of the concentration profiles that occur in real tissues due to diffusive transport. We compared the mass transport performance in its rhomboidal culture chamber when empty, when filled with GelMA/alginate hydrogel microbeads, or when occupied with a monolithic piece of hydrogel with a central channel, allowing communication between the inlet and outlet. We show that our chip filled with hydrogel microspheres in the culture chamber promotes adequate mixing and enhanced distribution of culture media. In proof-of-concept pharmacological assays, we biofabricated hydrogel microspheres containing embedded Caco2 cells, which developed into microtumors. Microtumors cultured in the device developed throughout the 10-day culture showing >75% of viability. Microtumors subjected to 5-fluorouracil treatment displayed <20% cell survival and lower VEGF-A and E-cadherin expression than untreated controls. Overall, our tumor-on-chip device proved suitable for studying cancer biology and performing drug response assays. Full article
(This article belongs to the Special Issue Advances in Organoid Research and Developmental Engineering)
Show Figures

Graphical abstract

Back to TopTop