Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (91)

Search Parameters:
Keywords = airlift

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5383 KiB  
Article
Design and Hydrodynamic Performance Analysis of Airlift Sediment Removal Equipment for Seedling Fish Tanks
by Yufei Zhang, Andong Liu, Chenglin Zhang, Chongwu Guan and Haigeng Zhang
J. Mar. Sci. Eng. 2025, 13(7), 1236; https://doi.org/10.3390/jmse13071236 - 26 Jun 2025
Viewed by 338
Abstract
This study innovatively proposes a pipeline-type pneumatic lift sediment removal device for cleaning pollutants at the bottom of fish breeding tanks and conducts hydrodynamic characteristic analysis on its core component, the pneumatic lift pipeline structure, which consists of a horizontal circular tube with [...] Read more.
This study innovatively proposes a pipeline-type pneumatic lift sediment removal device for cleaning pollutants at the bottom of fish breeding tanks and conducts hydrodynamic characteristic analysis on its core component, the pneumatic lift pipeline structure, which consists of a horizontal circular tube with multiple micro-orifices at the bottom and an upward-inclined circular tube. The pipeline has an inner diameter of 20 mm and a vertical length of 1.2 m, with the orifice at one end of the horizontal tube connected to the gas supply line. During operation, compressed gas enters the horizontal tube, generating negative liquid pressure that draws solid–liquid mixtures from the tank bottom into the pipeline, while buoyant forces propel the gas–liquid–solid mixture upward for discharge through the outlet. Under a constant gas flow rate, numerical simulations investigated efficiency variations through three operational scenarios: ① different pipeline orifice diameters, ② varying orifice quantities and spacings, and ③ adjustable pipeline bottom clearance heights. The results indicate that in scenario ①, an orifice diameter of 4 mm demonstrated optimal efficiency; in scenario ②, the eight-orifice configuration achieved peak efficiency; and scenario ③ showed that the proper adjustment of the bottom clearance height enhances pneumatic efficiency, with maximum efficiency observed at a clearance of 10 mm between sediment suction pipe and tank bottom. Full article
Show Figures

Figure 1

20 pages, 9009 KiB  
Article
Calibration of RNG k-ε Model Constants Based on Experimental Data Assimilation: A Study on the Flow Characteristics of Air-Lifted Plunger Interstitial Flow
by Jinglong Zhang, Yucheng Song, Yan Xu, Yanli Yang and Jiahuan Wang
Appl. Sci. 2025, 15(8), 4515; https://doi.org/10.3390/app15084515 - 19 Apr 2025
Viewed by 305
Abstract
This study optimized the constants of the RNG k-ε model using the Ensemble Kalman Filter (ENKF) data assimilation method to improve the accuracy of air-lift plunger gap flow predictions. For high Reynolds number turbulent flow, we conducted numerical simulations integrating experimental data with [...] Read more.
This study optimized the constants of the RNG k-ε model using the Ensemble Kalman Filter (ENKF) data assimilation method to improve the accuracy of air-lift plunger gap flow predictions. For high Reynolds number turbulent flow, we conducted numerical simulations integrating experimental data with a library of predicted data generated via optimal Latin hypercube sampling. ENKF was employed to assimilate these data and adjust the model constants, significantly reducing prediction errors and enhancing the accuracy of plunger models. Specifically, mean square errors for rectangular and circular plungers decreased from 60.67 and 61.48 to 7.12 and 7.20, respectively. The study also revealed significant changes in vortex dynamics and flow distribution following data assimilation, providing insights for optimizing plunger design and improving system energy efficiency. These findings underscore the potential of data assimilation in advancing oil and gas production. Full article
Show Figures

Figure 1

12 pages, 2429 KiB  
Article
Huperzine A Production and Acetylcholinesterase Inhibition by Phlegmariurus taxifolius Cell Suspension Culture: A Comparative Study in Flasks and an Airlift Bioreactor
by Rocío del Carmen Pérez Aguilar, Talia Rodríguez Salgado, Olga Lidia Cruz-Miranda, Alexis Uriel Soto Díaz, Ariadna Zenil Rodríguez, Lamine Bensaddek, Christian Carreño-Campos, María Luisa Villarreal, Anabel Ortiz-Caltempa and Alexandre Toshirrico Cardoso-Taketa
Pharmaceuticals 2025, 18(3), 383; https://doi.org/10.3390/ph18030383 - 8 Mar 2025
Cited by 1 | Viewed by 856
Abstract
Background: The callus cultures from the fronds of the lycophyte Phlegmariurus taxifolius produce the huperzine A (HupA) alkaloid, which is used in Alzheimer’s disease treatment. This study aimed to establish the growth kinetics and HupA production by the newly HupS21 cell line [...] Read more.
Background: The callus cultures from the fronds of the lycophyte Phlegmariurus taxifolius produce the huperzine A (HupA) alkaloid, which is used in Alzheimer’s disease treatment. This study aimed to establish the growth kinetics and HupA production by the newly HupS21 cell line grown in 250 mL flasks and in a 2 L airlift bioreactor. Methods: Batch-type kinetics were carried out for 60 days in 250 mL flasks and for 20 days in a 2 L airlift bioreactor. Measurements of dry weight (DW), specific growth rate (μ), doubling time (dt), pH, carbohydrate consumption, and HupA quantification were performed. The acetylcholinesterase (AChE) inhibitory assay of the HupS21 alkaloidal extract was determined. Results: The 250 mL flasks kinetic reached a maximum cell growth of 8.17 g/L DW, with a μ of 0.045 day−1 and a dt of 15.40 days. The maximum HupA production was of 2.03 μg/g DW at day 45. In the 2 L airlift reactor, a maximum growth of 16.70 g/L DW, a μ of 0.062 day−1, a dt of 11.20 days, and HupA production of 2.48 μg/g DW at day 15 were obtained. The alkaloidal extract from the HupS21 cell line at 100 μg/mL showed an AChE inhibitory activity of 85.6 ± 1.27%. Conclusions: The airlift reactor outperformed the flask cultures in maximum cell growth, specific growth rate, doubling time, and HupA production. To our knowledge, this research is the first report on the establishment of suspension cell cultures of P. taxifolius in shaken flasks and in an airlift bioreactor, providing a foundation for scaling up HupA production for pharmaceutical use. Full article
Show Figures

Figure 1

14 pages, 3103 KiB  
Article
Air-Lifting Reverse-Circulation Drilling in Deep Geothermal Wells and the Effect of Dual-Wall Drill Pipe Depth Down the Hole
by Hongyu Ye, Ziwei Lai, Longjun Tian, Renjie Zhang, Bin Liu and Xiuhua Zheng
Energies 2025, 18(5), 1224; https://doi.org/10.3390/en18051224 - 2 Mar 2025
Viewed by 1119
Abstract
Geothermal energy is a renewable energy source that is rich in reserves, widely distributed, stable and reliable. The development of geothermal energy needs to be carried out by drilling wells to exploit the underground thermal fluid, and air-lift reverse circulation drilling technology has [...] Read more.
Geothermal energy is a renewable energy source that is rich in reserves, widely distributed, stable and reliable. The development of geothermal energy needs to be carried out by drilling wells to exploit the underground thermal fluid, and air-lift reverse circulation drilling technology has the advantages of protecting the thermal reserves and reducing costs in the development of geothermal energy. In this paper, based on the working principle of air-lift reverse circulation drilling, combined with the single-phase liquid, liquid–solid, gas–liquid–solid three-phase fluid mechanics theory, the pressure model of air-lift reverse circulation in geothermal deep wells is established. The influence of the depth of dual-wall drilling rods on the lifting force and total friction loss pressure of air-lifting reverse circulation is analyzed, and it is proved that there is an optimal value of the depth of dual-wall drilling rods, which provides a theoretical basis for selecting a suitable depth of dual-wall drilling rods in the construction of air-lifting reverse circulation in geothermal deep wells. Full article
(This article belongs to the Special Issue Development and Utilization in Geothermal Energy)
Show Figures

Figure 1

27 pages, 4827 KiB  
Technical Note
Design and Operation of a Multifunctional Pilot-Scale Bioreactor for Enhanced Aerobic Fermentation
by Mauro Moresi
Fermentation 2025, 11(2), 101; https://doi.org/10.3390/fermentation11020101 - 17 Feb 2025
Cited by 2 | Viewed by 2895
Abstract
The primary aim of this work was to share the results from a Research Project supported by the Italian National Research Council, which led to the development of a versatile jacketed tower bioreactor. Designed to optimize oxygen transfer efficiency and process control, the [...] Read more.
The primary aim of this work was to share the results from a Research Project supported by the Italian National Research Council, which led to the development of a versatile jacketed tower bioreactor. Designed to optimize oxygen transfer efficiency and process control, the reactor incorporated a reciprocating air compressor, centrifugal pumps, a draft tube with or without perforated plates, and a series of gas–liquid ejectors. Its flexible design enabled operation in both airlift and ejector-loop modes, making it suitable for a wide range of aerobic fermentation processes. By sharing the detailed engineering design, operational procedures of this pilot-scale bioreactor, as well as its performance data when cultivating yeasts on whey and potato wastewater, a detailed blueprint was given to researchers seeking to advance bioreactor technology, particularly in the context of emerging fields like cultured meat production, pharmaceutical manufacturing, and environmental bioremediation. Full article
(This article belongs to the Section Fermentation Process Design)
Show Figures

Figure 1

34 pages, 10936 KiB  
Article
Enhanced Minimum Spanning Tree Optimization for Air-Lifted Artificial Upwelling Pipeline Network
by Junjie Zhang, Wei Fan, Yonggang Zhao, Zhiyu Zou, Mengjie Qu and Ying Chen
J. Mar. Sci. Eng. 2025, 13(2), 317; https://doi.org/10.3390/jmse13020317 - 9 Feb 2025
Viewed by 973
Abstract
Artificial upwelling (AU), a geoengineering technique aimed at transporting nutrient-enriched deep-sea water to the sunlit surface layers through artificial systems, is increasingly recognized as a promising approach to enhance oceanic fertility and stimulate primary marine productivity, thereby bolstering the ocean capacity for carbon [...] Read more.
Artificial upwelling (AU), a geoengineering technique aimed at transporting nutrient-enriched deep-sea water to the sunlit surface layers through artificial systems, is increasingly recognized as a promising approach to enhance oceanic fertility and stimulate primary marine productivity, thereby bolstering the ocean capacity for carbon sequestration. Several air-lifted AU systems have been implemented in countries such as Norway and China. However, research on the optimization of the air injection pipeline network (AIPN)—a critical component of the air-lifted AU system—remains limited. This paper introduces a refined minimum spanning tree algorithm to propose a novel approach for optimizing the AIPN. Furthermore, the bubble-entrained plume loss rate (NBEP) is developed as a model to assess the efficiency of air-lifted AU systems, which is applied to three case studies involving air-lifted AU systems of varying scales. The findings indicate that the enhanced minimum spanning tree algorithm outperforms the conventional Prim’s algorithm, leading to an average 87% reduction in NBEP of the optimized AIPN, compared to the AIPN of previous air-lifted AU systems while improving system stability. Consequently, the proposed optimization method for AIPN offers valuable scientific and practical insights for the engineering design of the air-lifted AU systems across diverse scales, offering transformative potential for large-scale carbon sequestration and marine productivity enhancement. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

25 pages, 6781 KiB  
Article
Numerical Simulation on Hybrid Lifting Operation of Polymetallic Nodules and Rare-Earth Elements-Rich Mud by Air-Lift Pump in Deep Sea around Minamitorishima Island
by Yoshiyuki Shimizu, Masatoshi Sugihara, Koichiro Fujinaga, Kentaro Nakamura and Yasuhiro Kato
J. Mar. Sci. Eng. 2025, 13(2), 267; https://doi.org/10.3390/jmse13020267 - 31 Jan 2025
Viewed by 969
Abstract
Polymetallic nodules and REE-rich mud under the seabed of 5500–5700 m water depth around Minamitorishima island are promising and attractive for exploration and development. Following our previous research, numerical analysis was used to investigate the unsteady flow characteristics and the lifting performance of [...] Read more.
Polymetallic nodules and REE-rich mud under the seabed of 5500–5700 m water depth around Minamitorishima island are promising and attractive for exploration and development. Following our previous research, numerical analysis was used to investigate the unsteady flow characteristics and the lifting performance of a commercial production system using an air-lift pump for hybrid lifting, lifting both polymetallic nodules and REE-rich mud. Gas–liquid–solid three-phase flow and gas–liquid two-phase flow in the system were analyzed using the one-dimensional drift–flux model. First, the reliability of the schemes and program was verified by comparing the numerical results with the experimental ones. Next, numerical simulations were conducted, in which the model’s dimensions were related to a commercial production system operated in the deep sea around Minamitorishima island, and the conditions fit the expected production rate. The results revealed the unsteady flow characteristics under the operations, such as start-up, shut-down, feed of polymetallic nodules and REE-rich mud, and those associated with disturbances, such as feed rate fluctuations. We demonstrate that the program and the schemes can simulate the unsteady flow characteristics and the lifting performance of a commercial production system with an air-lift pump well, and they can derive useful information and know-how in advance for the safe and continuous operation of the system. Full article
(This article belongs to the Special Issue Deep-Sea Mining Technologies: Recent Developments and Challenges)
Show Figures

Figure 1

18 pages, 1384 KiB  
Article
Exploring Phaeodactylum tricornutum for Nutraceuticals: Cultivation Techniques and Neurotoxin Risk Assessment
by Tobias Ebbing, Lena Kopp, Konstantin Frick, Tabea Simon, Berit Würtz, Jens Pfannstiel, Ulrike Schmid-Staiger, Stephan C. Bischoff and Günter E. M. Tovar
Mar. Drugs 2025, 23(2), 58; https://doi.org/10.3390/md23020058 - 26 Jan 2025
Cited by 1 | Viewed by 2368
Abstract
This study investigates the potential of the diatom Phaeodactylum tricornutum (PT) as a sustainable and nutritionally valuable food source, focusing on its ability to produce bioactive compounds such as eicosapentaenoic acid, fucoxanthin, chrysolaminarin (CRY) and proteins. PT was cultivated in a flat-plate airlift [...] Read more.
This study investigates the potential of the diatom Phaeodactylum tricornutum (PT) as a sustainable and nutritionally valuable food source, focusing on its ability to produce bioactive compounds such as eicosapentaenoic acid, fucoxanthin, chrysolaminarin (CRY) and proteins. PT was cultivated in a flat-plate airlift photobioreactor (FPA-PBR) illuminated with LEDs from two sides. The study aimed to monitor and minimize β-methylamino-L-alanine (BMAA) levels to address safety concerns. The data showed that the selected FPA-PBR setup was superior in biomass and EPA productivity, and CRY production was reduced. No BMAA was detected in any biomass sample during cultivation. By adjusting the cultivation conditions, PT biomass with different compositional profiles could be produced, enabling various applications in the food and health industries. Biomass from nutrient-repleted conditions is rich in EPA and Fx, with nutritional and health benefits. Biomass from nutrient-depleted conditions accumulated CRY, which can be used as dietary fiber. These results highlight the potential of PT as a versatile ingredient for human consumption and the effectiveness of FPA-PBRs with artificial lighting in producing high-quality biomass. This study also provides the basis for future research to optimize photobioreactor conditions to increase production efficiency and to tailor the biomass profiles of PT for targeted health-promoting applications. Full article
(This article belongs to the Special Issue Algal Cultivation for Obtaining High-Value Products, 2nd Edition)
Show Figures

Figure 1

20 pages, 5107 KiB  
Article
Nitrate Removal by Floating Treatment Wetlands under Aerated and Unaerated Conditions: Field and Laboratory Results
by Jenna McCoy, Matt Chaffee, Aaron Mittelstet, Tiffany Messer and Steve Comfort
Nitrogen 2024, 5(4), 808-827; https://doi.org/10.3390/nitrogen5040053 - 25 Sep 2024
Viewed by 2141
Abstract
Urban and storm water retention ponds eventually become eutrophic after years of receiving runoff water. In 2020, a novel biological and chemical treatment was initiated to remove accumulated nutrients from an urban retention pond that had severe algae and weed growth. Our approach [...] Read more.
Urban and storm water retention ponds eventually become eutrophic after years of receiving runoff water. In 2020, a novel biological and chemical treatment was initiated to remove accumulated nutrients from an urban retention pond that had severe algae and weed growth. Our approach installed two 6.1 m × 6.1 m floating treatment wetlands (FTWs) and two airlift pumps that contained slow-release lanthanum composites, which facilitated phosphate precipitation. Four years of treatment (2020–2023) resulted in median nitrate-N concentrations decreasing from 23 µg L−1 in 2020 to 1.3 µg L−1 in 2023, while PO4-P decreased from 42 µg L−1 to 19 µg L−1. The removal of N and P from the water column coincided with less algae, weeds, and pond muck (sediment), and greater dissolved oxygen (DO) concentrations and water clarity. To quantify the sustainability of this bio-chemical approach, we focused on quantifying nitrate removal rates beneath FTWs. By enclosing quarter sections (3.05 × 3.05 m) of the field-scale FTWs inside vinyl pool liners, nitrate removal rates were measured by spiking nitrate into the enclosed root zone. The first field experiment showed that DO concentrations inside the pool liners were well below the ambient values of the pond (<0.5 mg/L) and nitrate was quickly removed. The second field experiment quantified nitrate loss under a greater range of DO values (<0.5–7 mg/L) by including aeration as a treatment. Nitrate removal beneath FTWs was roughly one-third less when aerated versus unaerated. Extrapolating experimental removal rates to two full-sized FTWs installed in the pond, we estimate between 0.64 to 3.73 kg of nitrate-N could be removed over a growing season (May–September). Complementary laboratory mesocosm experiments using similar treatments to field experiments also exhibited varying nitrate removal rates that were dependent on DO concentrations. Using an average annual removal rate of 1.8 kg nitrate-N, we estimate the two full-size FTWs could counter 14 to 56% of the annual incoming nitrate load from the contributing watershed. Full article
Show Figures

Figure 1

24 pages, 6311 KiB  
Article
Air-Lift Pumping System for Hybrid Mining of Rare-Earth Elements-Rich Mud and Polymetallic Nodules around Minamitorishima Island
by Yoshiyuki Shimizu, Masatoshi Sugihara, Koichiro Fujinaga, Kentaro Nakamura and Yasuhiro Kato
J. Mar. Sci. Eng. 2024, 12(9), 1470; https://doi.org/10.3390/jmse12091470 - 23 Aug 2024
Cited by 2 | Viewed by 1531
Abstract
REE-rich mud under the seabed at a 5500–5700 m water depth around Minamitorishima island and polymetallic nodules buried in the deep seabed are very promising and attractive to explore and develop. REEs are critical to develop due to the recent paradigm shift to [...] Read more.
REE-rich mud under the seabed at a 5500–5700 m water depth around Minamitorishima island and polymetallic nodules buried in the deep seabed are very promising and attractive to explore and develop. REEs are critical to develop due to the recent paradigm shift to renewable energies based on green technologies. Numerical analysis using a one-dimensional drift–flux model for gas–liquid–solid three-phase flow and gas–liquid two-phase flow was conducted to examine the characteristics of an air-lift pumping system for mining these mineral resources. Empirical equations of REE-rich mud and the physical properties of polymetallic nodules around Minamitorishima island were utilized in the analysis. As a result, the characteristics, i.e., the performance of the system, were clarified in three cases: REE-rich mud, polymetallic nodules, and both. The time transient, i.e., the unsteady characteristics of the system, was also shown, such as the start-up and feeding slurry with REE-rich mud and polymetallic nodules. The findings from the unsteady characteristics will be useful in considering the operation of a real project or a commercial system in the future. Full article
(This article belongs to the Special Issue Deep-Sea Mining Technologies: Recent Developments and Challenges)
Show Figures

Figure 1

15 pages, 10165 KiB  
Article
Experimental Investigation of Film Thickness in Wastewater Airlift Pumps by an Image Processing Method
by Min Jiang, Zhineng Wang and Bingzheng Chen
Water 2024, 16(14), 2010; https://doi.org/10.3390/w16142010 - 15 Jul 2024
Cited by 1 | Viewed by 1254
Abstract
The airlift pump is a key part of wastewater treatment and is employed as an innovative and feasible collection tool. However, as one of the key factors in the lifting capability of airlift pumps, film thickness in the gas–liquid two-phase flow operating in [...] Read more.
The airlift pump is a key part of wastewater treatment and is employed as an innovative and feasible collection tool. However, as one of the key factors in the lifting capability of airlift pumps, film thickness in the gas–liquid two-phase flow operating in pumps is still an unknown topic because it is difficult to measure. This paper proposes a visualization method for measuring film thickness and investigates the film thickness when operating under gas flow with a high rate in airlift pumps using experiments. Firstly, a simulation experiment platform was built, and the images of the film structure were acquired by a high-speed camera. Then, image-processing technology and an image distortion correction were proposed to extract the gas–liquid interface for studying the thickness of the film. The experimental results demonstrated that a large film thickness ranging from 0.15 D to 0.24 D was found in airlift pumps and that its film thickness kept a constant value, even under a high gas superficial velocity, maintaining a large output liquid flow from airlift pumps. As wastewater was carried by wastewater treatment, a larger film thickness of the annular film will benefit the high lifting rate of wastewater. The works in this paper offer valuable insights for the higher performance of working airlift pumps and wastewater treatment efficiency. Full article
(This article belongs to the Special Issue Wastewater Treatment Technologies: Theory, Methods and Applications)
Show Figures

Figure 1

11 pages, 1008 KiB  
Article
The Cultivation of Spirulina maxima in a Medium Supplemented with Leachate for the Production of Biocompounds: Phycocyanin, Carbohydrates, and Biochar
by Wallyson Ribeiro dos Santos, Matheus Lopes da Silva, Geronimo Virginio Tagliaferro, Ana Lucia Gabas Ferreira and Daniela Helena Pelegrine Guimarães
AgriEngineering 2024, 6(2), 1289-1299; https://doi.org/10.3390/agriengineering6020074 - 9 May 2024
Viewed by 1794
Abstract
Cyanobacteria are microorganisms that grow rapidly in an aquatic medium, showing the capacity of accumulations of biocompounds subsequently converted into value-added biocompounds. The cyanobacterium Spirulina maxima can produce pigments besides accumulating significant amounts of carbohydrates and proteins. An alternative to reducing biomass production [...] Read more.
Cyanobacteria are microorganisms that grow rapidly in an aquatic medium, showing the capacity of accumulations of biocompounds subsequently converted into value-added biocompounds. The cyanobacterium Spirulina maxima can produce pigments besides accumulating significant amounts of carbohydrates and proteins. An alternative to reducing biomass production costs at an industrial scale is the use of landfill leachate in the growing medium, as well as the mitigation of this pollutant. The objective of this work was to cultivate Spirulina maxima in a medium supplemented with leachate, using the design of experiments to evaluate the effects of leachate concentration (% v/v), light source, and light intensity in an airlift photobioreactor, analyzing them as a response to the productivity of biomass, phycocyanin, carbohydrates, and biochar. The highest values of productivity (mg L−1d−1) were 97.44 ± 3.20, 12.82 ± 0.38, 6.19 ± 1.54, and 34.79 ± 3.62 for biomass, carbohydrates, phycocyanin, and biochar, respectively, adjusted for experiment 2 with the factors of leachate concentration (5.0% v/v), light source (tubular LED), and luminosity (54 µmol m−2 s−1), respectively. The use of leachate as a substitute for macronutrients in Zarrouk’s medium for the cultivation of Spirulina maxima is a viable alternative in the production of biocompounds as long as it is used at an appropriate level. Full article
Show Figures

Figure 1

21 pages, 1443 KiB  
Article
Life Cycle Assessment of Exopolysaccharides and Phycocyanin Production with Arthrospira platensis
by Isadora Cogo Badan, Sun-Hwa Jung, Rickwinder Singh, Vivekanand Vivekanand, Justus Knappert, Cornelia Rauh and Christoph Lindenberger
Fermentation 2024, 10(3), 163; https://doi.org/10.3390/fermentation10030163 - 13 Mar 2024
Cited by 5 | Viewed by 3309
Abstract
In the pursuit of sustainable solutions for contemporary environmental challenges arising from the increasing global demand for energy, this study delves into the potential of cyanobacteria, specifically Arthrospira platensis (commonly known as “spirulina”), as a versatile resource. Employing a life cycle assessment (LCA) [...] Read more.
In the pursuit of sustainable solutions for contemporary environmental challenges arising from the increasing global demand for energy, this study delves into the potential of cyanobacteria, specifically Arthrospira platensis (commonly known as “spirulina”), as a versatile resource. Employing a life cycle assessment (LCA) in accordance with the ISO 14044:2006 standard and employing both midpoint and endpoint indicators, the study comprehensively evaluates environmental impacts. The research explored a range of scenarios, specifically investigating variations in light intensity and harvesting volume. These investigations were carried out using a pilot-scale photobioreactor, specifically an airlift reactor system featuring a horizontal tubular downcomer. The primary focus is on extracting valuable compounds, namely exopolysaccharides and phycocyanin. It emphasized the extraction of value-added products and strategic integration with a biogas plant for process heat, contributing to developing a sustainable supply network and offering insights into environmentally conscious algae cultivation practices with implications for renewable energy and the production of valuable products. The results emphasize the project’s potential economic feasibility with minimal energy impact from by-product extraction. The environmental assessment identifies marine ecotoxicity and fossil resource depletion as principal impacts, predominantly influenced by upstreaming and harvesting stages. After conducting comparisons across various scenarios, it was found that cultivations under higher light intensities have a lower environmental impact than cultivations with low light supply. However, regardless of light intensity, processes with shorter harvesting cycles tend to have a smaller environmental impact compared to processes with longer harvesting cycles. Overall, this research contributes a nuanced and realistic perspective, fostering informed decision-making in sustainable algae cultivation practices, with implications for renewable energy and valuable compound production. Full article
(This article belongs to the Special Issue Cyanobacteria and Eukaryotic Microalgae)
Show Figures

Figure 1

37 pages, 1338 KiB  
Review
Advances in Nitrogen-Rich Wastewater Treatment: A Comprehensive Review of Modern Technologies
by Abdullah Omar, Fares Almomani, Hazim Qiblawey and Kashif Rasool
Sustainability 2024, 16(5), 2112; https://doi.org/10.3390/su16052112 - 3 Mar 2024
Cited by 23 | Viewed by 7037
Abstract
Nitrogen-rich wastewater is a major environmental issue that requires proper treatment before disposal. This comprehensive overview covers biological, physical, and chemical nitrogen removal methods. Simultaneous nitrification–denitrification (SND) is most effective in saline water when utilizing both aerobic and anoxic conditions with diverse microbial [...] Read more.
Nitrogen-rich wastewater is a major environmental issue that requires proper treatment before disposal. This comprehensive overview covers biological, physical, and chemical nitrogen removal methods. Simultaneous nitrification–denitrification (SND) is most effective in saline water when utilizing both aerobic and anoxic conditions with diverse microbial populations for nitrogen removal. Coupling anammox with denitrification could increase removal rates and reduce energy demand. Suspended growth bioreactors effectively treated diverse COD/N ratios and demonstrated resilience to low C/N ratios. Moving biofilm bioreactors exhibit reduced mortality rates, enhanced sludge–liquid separation, increased treatment efficiency, and stronger biological structures. SND studies show ≥90% total nitrogen removal efficiency (%RETN) in diverse setups, with Defluviicoccus, Nitrosomonas, and Nitrospira as the main microbial communities, while anammox–denitrification achieved a %RETN of 77%. Systems using polyvinyl alcohol/sodium alginate as a growth medium showed a %RETN ≥ 75%. Air-lift reflux configurations exhibited high %RETN and %RENH4, reducing costs and minimizing sludge formation. Microwave pretreatment and high-frequency electric fields could be used to improve the %RENH4. Adsorption/ion exchange, membrane distillation, ultrafiltration, and nanofiltration exhibit promise in industrial wastewater treatment. AOPs and sulfate-based oxidants effectively eliminate nitrogen compounds from industrial wastewater. Tailoring proposed treatments for cost-effective nitrogen removal, optimizing microbial interactions, and analyzing the techno-economics of emerging technologies are crucial. Full article
(This article belongs to the Special Issue Solutions to Water Pollution by Sewage, Nutrients and Chemicals)
Show Figures

Figure 1

22 pages, 2858 KiB  
Article
Study of Chlorella sorokiniana Cultivation in an Airlift Tubular Photobioreactor Using Anaerobic Digestate Substrate
by Paraskevi Psachoulia, Christos Chatzidoukas and Petros Samaras
Water 2024, 16(3), 485; https://doi.org/10.3390/w16030485 - 1 Feb 2024
Cited by 6 | Viewed by 2544
Abstract
Microalgae offer a promising solution for efficiently treating high-nitrogen wastewater and recovering valuable nutrients. To optimize microalgae growth and nutrient assimilation, case-dependent studies are essential to demonstrate the process’s potential. This study aimed to evaluate the treatment capacity of high-nitrogen anaerobic digestion effluent [...] Read more.
Microalgae offer a promising solution for efficiently treating high-nitrogen wastewater and recovering valuable nutrients. To optimize microalgae growth and nutrient assimilation, case-dependent studies are essential to demonstrate the process’s potential. This study aimed to evaluate the treatment capacity of high-nitrogen anaerobic digestion effluent as a nutrient source for a C. sorokiniana microalgal culture in a tubular photobioreactor. The study had two primary objectives: to assess how the concentration and composition of the digestate influence microalgae growth, and to identify the preferred nitrogen forms assimilated by the microalgae during long-term, continuous operation. A 20 L tubular airlift bioreactor was constructed and used in batch mode; various digestate concentrations were examined with ammonia nitrogen levels reaching to 160 mg/L. These experiments revealed a biomass growth rate of up to 130 mg/L/d and an ammonia nitrogen assimilation rate ranging from 8.3 to 12.5 mg/L/d. The presence of phosphorous proved essential for microalgae growth, and the growth entered a stationary phase when the initial phosphorous was fully assimilated. A nitrogen-to-phosphorous (N/P) ratio of 10 supported efficient species growth. While ammonia was the preferred nitrogen form for microalgae, they could also utilize alternative forms such as organic and nitrate nitrogen, depending on the specific digestate properties. The results from the continuous photobioreactor operation confirmed the findings from the batch mode, especially regarding the initial nitrogen and phosphorous content. An important condition for nearly complete ammonia removal was the influent dilution rate, to balance the nitrogen assimilation rate. Moreover, treated effluent was employed as dilution medium, contributing to a more environmentally sustainable water management approach for the entire process, at no cost to the culture growth rate. Full article
Show Figures

Figure 1

Back to TopTop