Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (559)

Search Parameters:
Keywords = airborne radar

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 9740 KiB  
Article
A Novel Error Correction Method for Airborne HRWS SAR Based on Azimuth-Variant Attitude and Range-Variant Doppler Domain Pattern
by Yihao Xu, Fubo Zhang, Longyong Chen, Yangliang Wan and Tao Jiang
Remote Sens. 2025, 17(16), 2831; https://doi.org/10.3390/rs17162831 - 14 Aug 2025
Viewed by 113
Abstract
In high-resolution and wide-swath (HRWS) synthetic aperture radar (SAR) imaging, the azimuth multi-channel technique effectively suppresses azimuth ambiguity, serving as a reliable approach for achieving wide-swath imaging. However, due to mechanical vibrations of the platform and airflow instabilities, airborne SAR may experience errors [...] Read more.
In high-resolution and wide-swath (HRWS) synthetic aperture radar (SAR) imaging, the azimuth multi-channel technique effectively suppresses azimuth ambiguity, serving as a reliable approach for achieving wide-swath imaging. However, due to mechanical vibrations of the platform and airflow instabilities, airborne SAR may experience errors in attitude and flight path during operation. Furthermore, errors also exist in the antenna patterns, frequency stability, and phase noise among the azimuth multi-channels. The presence of these errors can cause azimuth multi-channel reconstruction failure, resulting in azimuth ambiguity and significantly degrading the quality of HRWS images. This article presents a novel error correction method for airborne HRWS SAR based on azimuth-variant attitude and range-variant Doppler domain pattern, which simultaneously considers the effects of various errors, including channel attitude errors and Doppler domain antenna pattern errors, on azimuth reconstruction. Attitude errors are the primary cause of azimuth-variant errors between channels. This article uses the vector method and attitude transformation matrix to calculate and compensate for the attitude errors of azimuth multi-channels, and employs the two-dimensional frequency-domain echo interferometry method to calculate the fixed delay errors and fixed phase errors. To better achieve channel error compensation, this scheme also considers the estimation and compensation of Doppler domain antenna pattern errors in wide-swath scenes. Finally, the effectiveness of the proposed scheme is confirmed through simulations and processing of airborne real data. Full article
Show Figures

Figure 1

31 pages, 18320 KiB  
Article
Penetrating Radar on Unmanned Aerial Vehicle for the Inspection of Civilian Infrastructure: System Design, Modeling, and Analysis
by Jorge Luis Alva Alarcon, Yan Rockee Zhang, Hernan Suarez, Anas Amaireh and Kegan Reynolds
Aerospace 2025, 12(8), 686; https://doi.org/10.3390/aerospace12080686 - 31 Jul 2025
Viewed by 390
Abstract
The increasing demand for noninvasive inspection (NII) of complex civil infrastructures requires overcoming the limitations of traditional ground-penetrating radar (GPR) systems in addressing diverse and large-scale applications. The solution proposed in this study focuses on an initial design that integrates a low-SWaP (Size, [...] Read more.
The increasing demand for noninvasive inspection (NII) of complex civil infrastructures requires overcoming the limitations of traditional ground-penetrating radar (GPR) systems in addressing diverse and large-scale applications. The solution proposed in this study focuses on an initial design that integrates a low-SWaP (Size, Weight, and Power) ultra-wideband (UWB) impulse radar with realistic electromagnetic modeling for deployment on unmanned aerial vehicles (UAVs). The system incorporates ultra-realistic antenna and propagation models, utilizing Finite Difference Time Domain (FDTD) solvers and multilayered media, to replicate realistic airborne sensing geometries. Verification and calibration are performed by comparing simulation outputs with laboratory measurements using varied material samples and target models. Custom signal processing algorithms are developed to extract meaningful features from complex electromagnetic environments and support anomaly detection. Additionally, machine learning (ML) techniques are trained on synthetic data to automate the identification of structural characteristics. The results demonstrate accurate agreement between simulations and measurements, as well as the potential for deploying this design in flight tests within realistic environments featuring complex electromagnetic interference. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

17 pages, 5455 KiB  
Article
A Hybrid Deep Learning Architecture for Enhanced Vertical Wind and FBAR Estimation in Airborne Radar Systems
by Fusheng Hou and Guanghui Sun
Aerospace 2025, 12(8), 679; https://doi.org/10.3390/aerospace12080679 - 30 Jul 2025
Viewed by 285
Abstract
Accurate prediction of the F-factor averaged over one kilometer (FBAR), a critical wind shear metric, is essential for aviation safety. A central F-factor is used to compute FBAR. i.e., compute the value of FBAR at a point using a spatial [...] Read more.
Accurate prediction of the F-factor averaged over one kilometer (FBAR), a critical wind shear metric, is essential for aviation safety. A central F-factor is used to compute FBAR. i.e., compute the value of FBAR at a point using a spatial interval beginning 500 m prior to the point and ending 500 m beyond the point. Traditional FBAR estimation using the Vicroy method suffers from limited vertical wind speed (W,h) accuracy, particularly in complex, non-idealized atmospheric conditions. This foundational study proposes a hybrid CNN-BiLSTM-Attention deep learning architecture that integrates spatial feature extraction, sequential dependency modeling, and attention mechanisms to address this limitation. The model was trained and evaluated on data generated by the industry-standard Airborne Doppler Weather Radar Simulation (ADWRS) system, using the DFW microburst case (C1-11) as a benchmark hazardous scenario. Following safety assurance principles aligned with SAE AS6983, the proposed model achieved a W,h estimation RMSE (root-mean-squared deviation) of 0.623 m s1 (vs. Vicroy’s 14.312 m s1) and a correlation of 0.974 on 14,524 test points. This subsequently improved FBAR prediction RMSE by 98.5% (0.0591 vs. 4.0535) and MAE (Mean Absolute Error) by 96.1% (0.0434 vs. 1.1101) compared to Vicroy-derived values. The model demonstrated a 65.3% probability of detection for hazardous downdrafts with a low 1.7% false alarm rate. These results, obtained in a controlled and certifiable simulation environment, highlight deep learning’s potential to enhance the reliability of airborne wind shear detection for civil aircraft, paving the way for next-generation intelligent weather avoidance systems. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

21 pages, 10783 KiB  
Article
An ALoGI PU Algorithm for Simulating Kelvin Wake on Sea Surface Based on Airborne Ku SAR
by Limin Zhai, Yifan Gong and Xiangkun Zhang
Sensors 2025, 25(14), 4508; https://doi.org/10.3390/s25144508 - 21 Jul 2025
Viewed by 372
Abstract
The airborne Synthetic Aperture Radar (SAR) has the advantages of high-precision real-time observation of wave height variations and portability in the high frequency band, such as the Ku band. In view of the Four Fast Fourier Transform (4-FFT) algorithm, combined with a Gaussian [...] Read more.
The airborne Synthetic Aperture Radar (SAR) has the advantages of high-precision real-time observation of wave height variations and portability in the high frequency band, such as the Ku band. In view of the Four Fast Fourier Transform (4-FFT) algorithm, combined with a Gaussian operator, a Laplacian of Gaussian (LoG) Phase Unwrapping (PU) expression was derived. Then, an Adaptive LoG (ALoG) algorithm was proposed based on adaptive variance, further optimizing the algorithm through iteration. Building the models of Kelvin wake on the sea surface and height to phase, the interferometric phase of wave height can be simulated. These PU algorithms were qualitatively and quantitatively evaluated. The Principal Component Analysis (PCA) scores of the ALoG iteration (ALoGI) algorithm are the best under the tested noise levels of the simulation. Through a simulation experiment, it has been proven that the superiority of the ALoGI algorithm in high spatial resolution inversion for the sea-ship surface height of the Kelvin wake, with good stability and noise resistance. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

33 pages, 9362 KiB  
Article
Multi-Layer and Profile Soil Moisture Estimation and Uncertainty Evaluation Based on Multi-Frequency (Ka-, X-, C-, S-, and L-Band) and Quad-Polarization Airborne SAR Data from Synchronous Observation Experiment in Liao River Basin, China
by Jiaxin Qian, Jie Yang, Weidong Sun, Lingli Zhao, Lei Shi, Hongtao Shi, Chaoya Dang and Qi Dou
Water 2025, 17(14), 2096; https://doi.org/10.3390/w17142096 - 14 Jul 2025
Viewed by 433
Abstract
Validating the potential of multi-frequency synthetic aperture radar (SAR) data for multi-layer and profile soil moisture (SM) estimation modeling, we conducted an airborne multi-frequency SAR joint observation experiment (AMFSEX) over the Liao River Basin in China. The experiment simultaneously acquired airborne high spatial [...] Read more.
Validating the potential of multi-frequency synthetic aperture radar (SAR) data for multi-layer and profile soil moisture (SM) estimation modeling, we conducted an airborne multi-frequency SAR joint observation experiment (AMFSEX) over the Liao River Basin in China. The experiment simultaneously acquired airborne high spatial resolution quad-polarization (quad-pol) SAR data at five frequencies, including the Ka-, X-, C-, S-, and L-band. A preliminary “vegetation–soil” parameter estimation model based on the multi-frequency SAR data was established. Theoretical penetration depths of the multi-frequency SAR data were analyzed using the Dobson empirical model and the Hallikainen modified model. On this basis, a water cloud model (WCM) constrained by multi-polarization weighted and penetration depth weighted parameters was used to analyze the estimation accuracy of the multi-layer and profile SM (0–50 cm depth) under different vegetation types (grassland, farmland, and woodland). Overall, the estimation error (root mean square error, RMSE) of the surface SM (0–5 cm depth) ranged from 0.058 cm3/cm3 to 0.079 cm3/cm3, and increased with radar frequency. For multi-layer and profile SM (3 cm, 5 cm, 10 cm, 20 cm, 30 cm, 40 cm, 50 cm depth), the RMSE ranged from 0.040 cm3/cm3 to 0.069 cm3/cm3. Finally, a multi-input multi-output regression model (Gaussian process regression) was used to simultaneously estimate the multi-layer and profile SM. For surface SM, the overall RMSE was approximately 0.040 cm3/cm3. For multi-layer and profile SM, the overall RMSE ranged from 0.031 cm3/cm3 to 0.064 cm3/cm3. The estimation accuracy achieved by coupling the multi-source data (multi-frequency SAR data, multispectral data, and soil parameters) was superior to that obtained using the SAR data alone. The optimal SM penetration depth varied across different vegetation cover types, generally falling within the range of 10–30 cm, which holds true for both the scattering model and the regression model. This study provides methodological guidance for the development of multi-layer and profile SM estimation models based on the multi-frequency SAR data. Full article
Show Figures

Figure 1

23 pages, 4237 KiB  
Article
Debris-Flow Erosion Volume Estimation Using a Single High-Resolution Optical Satellite Image
by Peng Zhang, Shang Wang, Guangyao Zhou, Yueze Zheng, Kexin Li and Luyan Ji
Remote Sens. 2025, 17(14), 2413; https://doi.org/10.3390/rs17142413 - 12 Jul 2025
Viewed by 371
Abstract
Debris flows pose significant risks to mountainous regions, and quick, accurate volume estimation is crucial for hazard assessment and post-disaster response. Traditional volume estimation methods, such as ground surveys and aerial photogrammetry, are often limited by cost, accessibility, and timeliness. While remote sensing [...] Read more.
Debris flows pose significant risks to mountainous regions, and quick, accurate volume estimation is crucial for hazard assessment and post-disaster response. Traditional volume estimation methods, such as ground surveys and aerial photogrammetry, are often limited by cost, accessibility, and timeliness. While remote sensing offers wide coverage, existing optical and Synthetic Aperture Radar (SAR)-based techniques face challenges in direct volume estimation due to resolution constraints and rapid terrain changes. This study proposes a Super-Resolution Shape from Shading (SRSFS) approach enhanced by a Non-local Piecewise-smooth albedo Constraint (NPC), hereafter referred to as NPC SRSFS, to estimate debris-flow erosion volume using single high-resolution optical satellite imagery. By integrating publicly available global Digital Elevation Model (DEM) data as prior terrain reference, the method enables accurate post-disaster topography reconstruction from a single optical image, thereby reducing reliance on stereo imagery. The NPC constraint improves the robustness of albedo estimation under heterogeneous surface conditions, enhancing depth recovery accuracy. The methodology is evaluated using Gaofen-6 satellite imagery, with quantitative comparisons to aerial Light Detection and Ranging (LiDAR) data. Results show that the proposed method achieves reliable terrain reconstruction and erosion volume estimates, with accuracy comparable to airborne LiDAR. This study demonstrates the potential of NPC SRSFS as a rapid, cost-effective alternative for post-disaster debris-flow assessment. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Figure 1

20 pages, 1857 KiB  
Article
Multi-Information-Assisted Joint Detection and Tracking of Ground Moving Target for Airborne Radar
by Ran Liu, Xiangqian Li, Jinping Sun and Tao Shan
Remote Sens. 2025, 17(12), 2093; https://doi.org/10.3390/rs17122093 - 18 Jun 2025
Viewed by 387
Abstract
Airborne radar-based ground moving target tracking faces challenges such as low detection rates and high clutter density. While lowering the detection threshold can improve detection performance, it introduces significant false alarms, thereby degrading tracking performance. To address these challenges, this paper proposes a [...] Read more.
Airborne radar-based ground moving target tracking faces challenges such as low detection rates and high clutter density. While lowering the detection threshold can improve detection performance, it introduces significant false alarms, thereby degrading tracking performance. To address these challenges, this paper proposes a novel multi-information assisted Joint Detection and Tracking (JDT) framework for ground moving targets. This study enhances detection and tracking performance by integrating multi-source information, specifically echo information, road network data, and velocity limits, enabling bidirectional data exchange between the detector and tracker for multiple ground targets. An adaptive threshold detector is developed by incorporating a priori information and tracker feedback. Additionally, we innovatively propose an improved Variable Structure Interacting Multiple Model (VS-IMM) filter that leverages road network constraints and detector outputs for tracking, featuring an enhanced model probability calculation to significantly reduce computational time. Simulation results demonstrate that the proposed method significantly improves data association accuracy and tracking precision. Full article
(This article belongs to the Special Issue Radar Data Processing and Analysis)
Show Figures

Figure 1

24 pages, 1259 KiB  
Article
Mainlobe Jamming Suppression via Joint Polarization-Range-Doppler Processing
by Liyuan Wang, Huafeng He, Zhen Li, Buma Xiao and Tao Zhou
Remote Sens. 2025, 17(12), 1995; https://doi.org/10.3390/rs17121995 - 9 Jun 2025
Viewed by 308
Abstract
In the field of electromagnetic countermeasures, suppressing mainlobe jamming represents a critical challenge requiring urgent resolution. Conventional polarization-based anti-jamming techniques, which fundamentally rely on obtaining pure jamming signals for prior parameter estimation, demonstrate limited effectiveness against co-frequency mainlobe suppression jamming. To tackle this [...] Read more.
In the field of electromagnetic countermeasures, suppressing mainlobe jamming represents a critical challenge requiring urgent resolution. Conventional polarization-based anti-jamming techniques, which fundamentally rely on obtaining pure jamming signals for prior parameter estimation, demonstrate limited effectiveness against co-frequency mainlobe suppression jamming. To tackle this problem, this paper proposes an innovative joint polarization-range-Doppler processing framework for airborne dual-polarized radar systems. Initially, we develop a polarized eigen-element surrogate technique to accurately estimate jamming polarization parameters, which demonstrates robust performance even under low jamming-to-signal ratio conditions. Subsequently, through Doppler compensation and range processing, we establish a combined feature projection method capable of reliably estimating target polarization from mixed signals containing target echoes, jamming, and noise. Then, leveraging the obtained polarization information, we construct an optimal target polarization projection filter. To comprehensively evaluate system performance, we introduce the novel metric of signal loss ratio, enabling rigorous analysis of the filter’s operational boundaries from dual perspectives: jamming suppression capability and target signal preservation. Extensive simulations across six distinct operational scenarios conclusively demonstrate the method’s superior performance, confirming its significant potential for practical implementation in engineering applications. Full article
Show Figures

Figure 1

26 pages, 7606 KiB  
Article
Research on a Prediction Model Based on a Newton–Raphson-Optimization–XGBoost Algorithm Predicting Environmental Electromagnetic Effects for an Airborne Synthetic Aperture Radar
by Yan Shen, Yazhou Chen, Yuming Wang, Liyun Ma and Xiaolu Zhang
Electronics 2025, 14(11), 2202; https://doi.org/10.3390/electronics14112202 - 29 May 2025
Viewed by 344
Abstract
Airborne synthetic aperture radar (SAR) serves as critical battlefield reconnaissance equipment, yet it remains vulnerable to electromagnetic interference (EMI) in combat environments, leading to image-quality degradation. To address this challenge, this study proposes an EMI-effect prediction framework for airborne SAR electromagnetic environments, based [...] Read more.
Airborne synthetic aperture radar (SAR) serves as critical battlefield reconnaissance equipment, yet it remains vulnerable to electromagnetic interference (EMI) in combat environments, leading to image-quality degradation. To address this challenge, this study proposes an EMI-effect prediction framework for airborne SAR electromagnetic environments, based on the Newton–Raphson-based optimization (NRBO) and XGBoost algorithms. The methodology enables interference-level prediction through electromagnetic signal parameters obtained from reconnaissance operations, providing operational foundations with which SAR systems can mitigate the impacts of EMI. A laboratory-based airborne SAR EMI test system was developed to establish mapping relationships between EMI signal parameters and SAR imaging performance degradation. This experimental platform facilitated EMI-effect investigations across diverse interference scenarios. An evaluation methodology for SAR image degradation caused by EMI was formulated, revealing the characteristic influence patterns of different interference signals in the context of SAR imagery. The NRBO–XGBoost framework was established through algorithmic integration of Newton–Raphson search principles with trap avoidance mechanisms from the Newton–Raphson optimization algorithm, optimizing the XGBoost hyperparameters. Utilizing the developed test system, comprehensive EMI datasets were constructed under varied interference conditions. Comparative experiments demonstrated the NRBO–XGBoost model’s superior accuracy and generalization performance relative to conventional prediction approaches. Full article
Show Figures

Figure 1

36 pages, 10251 KiB  
Article
Integrating Advanced Sensor Technologies for Enhanced Agricultural Weather Forecasts and Irrigation Advisories: The MAGDA Project Approach
by Martina Lagasio, Stefano Barindelli, Zenaida Chitu, Sergio Contreras, Amelia Fernández-Rodríguez, Martijn de Klerk, Alessandro Fumagalli, Andrea Gatti, Lukas Hammerschmidt, Damir Haskovic, Massimo Milelli, Elena Oberto, Irina Ontel, Julien Orensanz, Fabiola Ramelli, Francesco Uboldi, Aso Validi and Eugenio Realini
Remote Sens. 2025, 17(11), 1855; https://doi.org/10.3390/rs17111855 - 26 May 2025
Viewed by 824
Abstract
Weather forecasting is essential for agriculture, yet current methods often lack the localized accuracy required to manage extreme weather events and optimize irrigation. The MAGDA Horizon Europe/EUSPA project addresses this gap by developing a modular system that integrates novel European space-based, airborne, and [...] Read more.
Weather forecasting is essential for agriculture, yet current methods often lack the localized accuracy required to manage extreme weather events and optimize irrigation. The MAGDA Horizon Europe/EUSPA project addresses this gap by developing a modular system that integrates novel European space-based, airborne, and ground-based technologies. Unlike conventional forecasting systems, MAGDA enables precise, field-level predictions through the integration of cutting-edge technologies: Meteodrones provide vertical atmospheric profiles where traditional data are sparse; GNSS-reflectometry offers real-time soil moisture insights; and all observations feed into convection-permitting models for accurate nowcasting of extreme events. By combining satellite data, GNSS, Meteodrones, and high-resolution meteorological models, MAGDA enhances agricultural and water management with precise, tailored forecasts. Climate change is intensifying extreme weather events such as heavy rainfall, hail, and droughts, threatening both crop yields and water resources. Improving forecast reliability requires better observational data to refine initial atmospheric conditions. Recent advancements in assimilating reflectivity and in situ observations into high-resolution NWMs show promise, particularly for convective weather. Experiments using Sentinel and GNSS-derived data have further improved severe weather prediction. MAGDA employs a high-resolution cloud-resolving model and integrates GNSS, radar, weather stations, and Meteodrones to provide comprehensive atmospheric insights. These enhanced forecasts support both irrigation management and extreme weather warnings, delivered through a Farm Management System to assist farmers. As climate change increases the frequency of floods and droughts, MAGDA’s integration of high-resolution, multi-source observational technologies, including GNSS-reflectometry and drone-based atmospheric profiling, is crucial for ensuring sustainable agriculture and efficient water resource management. Full article
Show Figures

Graphical abstract

19 pages, 8867 KiB  
Article
Proof-of-Concept of a Monopulse Antenna Architecture Enabling Radar Sensors in Unmanned Aircraft Collision Avoidance Systems for UAS in U-Space Airspaces
by Javier Ruiz Alapont, Miguel Ferrando-Bataller and Juan V. Balbastre
Appl. Sci. 2025, 15(10), 5618; https://doi.org/10.3390/app15105618 - 17 May 2025
Viewed by 596
Abstract
In this paper, we propose and prove an innovative radar antenna concept suitable for collision avoidance (CA) systems installed onboard small, unmanned aircraft (UA). The proposed architecture provides 360° monopulse coverage around the host platform, enabling the detection and accurate position estimation of [...] Read more.
In this paper, we propose and prove an innovative radar antenna concept suitable for collision avoidance (CA) systems installed onboard small, unmanned aircraft (UA). The proposed architecture provides 360° monopulse coverage around the host platform, enabling the detection and accurate position estimation of airborne, non-cooperative intruders using lightweight, low-profile antennas. These antennas can be manufactured using low-cost 3D printing techniques and are easily integrated into the UA airframe without compromising airworthiness. We present a Detect and Avoid (DAA) concept of operations (ConOps) aligned with the SESAR U-space ConOps, Edition 4. In this ConOps, the Remain Well Clear (RWC) and CA functions are treated separately: RWC is the responsibility of ground-based U-space services, while CA is implemented as an airborne safety net using onboard equipment. Based on this framework, we derive operation-centric design requirements and propose an antenna architecture based on a fixed circular array of sector waveguides. This solution overcomes key limitations of existing radar antennas for UAS CA systems by providing a wider field of view, higher power handling, and reduced mechanical complexity and cost. We prove the proposed concept through a combination of simulations and measurements conducted in an anechoic chamber using a 24 GHz prototype. Full article
(This article belongs to the Special Issue Recent Advances and Applications of Autonomous Aerial Vehicles)
Show Figures

Figure 1

22 pages, 5446 KiB  
Article
Dense 3D Reconstruction Based on Multi-Aspect SAR Using a Novel SAR-DAISY Feature Descriptor
by Shanshan Feng, Fei Teng, Jun Wang and Wen Hong
Remote Sens. 2025, 17(10), 1753; https://doi.org/10.3390/rs17101753 - 17 May 2025
Viewed by 522
Abstract
Dense 3D reconstruction from multi-aspect angle synthetic aperture radar (SAR) imagery has gained considerable attention for urban monitoring applications. However, achieving reliable dense matching between multi-aspect SAR images remains challenging due to three fundamental issues: anisotropic scattering characteristics that cause inconsistent features across [...] Read more.
Dense 3D reconstruction from multi-aspect angle synthetic aperture radar (SAR) imagery has gained considerable attention for urban monitoring applications. However, achieving reliable dense matching between multi-aspect SAR images remains challenging due to three fundamental issues: anisotropic scattering characteristics that cause inconsistent features across different aspect angles, geometric distortions, and speckle noise. To overcome these limitations, we introduce SAR-DAISY, a novel local feature descriptor specifically designed for dense matching in multi-aspect SAR images. The proposed method adapts the DAISY descriptor structure to SAR images specifically by incorporating the Gradient by Ratio (GR) operator for robust gradient calculation in speckle-affected imagery and enforcing multi-aspect consistency constraints during matching. We validated our method on W-band airborne SAR data collected over urban areas using circular flight paths. Experimental results demonstrate that SAR-DAISY generates detailed 3D point clouds with well-preserved structural features and high computational efficiency. The estimated heights of urban structures align with ground truth measurements. This approach enables 3D representation of complex urban environments from multi-aspect SAR data without requiring prior knowledge. Full article
(This article belongs to the Special Issue SAR Images Processing and Analysis (2nd Edition))
Show Figures

Graphical abstract

22 pages, 24849 KiB  
Article
Blind Signal Separation with Deep Residual Networks for Robust Synthetic Aperture Radar Signal Processing in Interference Electromagnetic Environments
by Lixiong Fang, Jianwen Zhang, Yi Ran, Kuiyu Chen, Aimer Maidan, Lu Huan and Huyang Liao
Electronics 2025, 14(10), 1950; https://doi.org/10.3390/electronics14101950 - 11 May 2025
Cited by 1 | Viewed by 626
Abstract
With the rapid development of electronic technology, the electromagnetic interference encountered by airborne synthetic aperture radar (SAR) is no longer satisfied with a single type of interference, and it often encounters both suppressive and deceptive interference. In this manuscript, an algorithm based on [...] Read more.
With the rapid development of electronic technology, the electromagnetic interference encountered by airborne synthetic aperture radar (SAR) is no longer satisfied with a single type of interference, and it often encounters both suppressive and deceptive interference. In this manuscript, an algorithm based on blind signal separation (BSS) and deep residual learning is proposed for airborne SAR multi-electromagnetic interference suppression. Firstly, theoretical airborne SAR imaging in a multi-electromagnetic interference environment model is established, and the signal-mixed model of multi-electromagnetic interference is proposed. Then, a BSS algorithm using maximum kurtosis deconvolution and improved principal component analysis (PCA) is presented for suppressing the composite electromagnetic interference encountered by airborne SAR. Finally, in order to find the desired signal among multiple separated sources and to cope with the residual noise, a deep residual network is designed for signal recognition and denoising. This method uses a BSS algorithm with maximum kurtosis deconvolution and improved PCA to perform mixed signal separation. After performing signal separation, the original echo signal and the jamming can be obtained. To solve the separation order uncertainty and residual noise problems of the existing BSS algorithms, the deep residual network is designed to recognize airborne SAR signals after airborne SAR imaging. This algorithm has a better signal restoration degree, higher image restoration degree, and better compound interference suppression performance before and after anti-interference. Simulation and measurement results demonstrate the effectiveness of our presented algorithm. Full article
(This article belongs to the Special Issue New Insights in Radar Signal Processing and Target Recognition)
Show Figures

Figure 1

18 pages, 5335 KiB  
Article
Surface Reflection Suppression Method for Air-Coupled SFCW GPR Systems
by Primož Smogavec and Dušan Gleich
Remote Sens. 2025, 17(10), 1668; https://doi.org/10.3390/rs17101668 - 9 May 2025
Viewed by 669
Abstract
Air-coupled ground penetrating radar (GPR) systems are widely used for subsurface imaging in demining, geological surveys, and infrastructure assessment applications. However, strong surface reflections can introduce interference, leading to receiver saturation and reducing the clarity of subsurface features. This paper presents a novel [...] Read more.
Air-coupled ground penetrating radar (GPR) systems are widely used for subsurface imaging in demining, geological surveys, and infrastructure assessment applications. However, strong surface reflections can introduce interference, leading to receiver saturation and reducing the clarity of subsurface features. This paper presents a novel surface reflection suppression algorithm for stepped-frequency continuous wave (SFCW) GPR systems. The proposed method estimates the surface reflection component and applies phase-compensated subtraction at the receiver site, effectively suppressing background reflections. A modular SFCW radar system was developed and tested in a laboratory setup simulating a low-altitude airborne deployment to validate the proposed approach. B-scan and time-domain analyses demonstrate significant suppression of surface reflections, improving the visibility of subsurface targets. Unlike previous static echo cancellation methods, the proposed method performs on-board pre-downconversion removal of surface clutter that compensates for varying ground distance, which is a unique contribution of this work. Full article
Show Figures

Figure 1

16 pages, 4317 KiB  
Article
Characteristics of Wind Profiles for Airborne Wind Energy Systems
by Hao He, Xiaojing Niu, Xiaoyu Li, Yanfeng Cai, Leming Li, Xinwei Ye and Junhao Wang
Energies 2025, 18(9), 2373; https://doi.org/10.3390/en18092373 - 6 May 2025
Viewed by 530
Abstract
An airborne wind energy system (AWES) harvests wind at a higher altitude above conventional wind turbines using tethered flying devices. For the design and development of an AWES, we need to know the representative wind speed profile, and its temporal variation is also [...] Read more.
An airborne wind energy system (AWES) harvests wind at a higher altitude above conventional wind turbines using tethered flying devices. For the design and development of an AWES, we need to know the representative wind speed profile, and its temporal variation is also quite important for the optimization of operation control. This study investigates wind speed profiles up to 3000 m, utilizing ERA5 data spanning from 2000 to 2022 and measured data from a laser wind radar. The long-term averaged wind profile is statistically analyzed, as well as wind profiles with different cumulative probabilities, which are generally consistent with the logarithmic law. Statistical results show that the frequency of negative shear is more than 85% in instantaneous wind profiles, with a greater likelihood at altitudes between 500 m and 1500 m. Fluctuations in wind speed and direction based on 10 min averaged wind speed data have also been provided, which are described by a normal distribution. The wind speed fluctuations primarily concentrate within 2 m/s, with a standard deviation of approximately 0.45 m/s. The wind direction fluctuations are severe at the ground layer and show a rapid decay trend with increasing altitude and averaged wind speed. These results can support the design and control optimization of the AWES. Full article
Show Figures

Figure 1

Back to TopTop