Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (154)

Search Parameters:
Keywords = air-bubble system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1181 KiB  
Article
Effects of Ultrafine Bubble Water on Gut Microbiota Composition and Health Markers in Rats
by John Nicholas Jackowetz, Carly S. Hanson, Minto Michael, Kiriako Tsoukalas, Cassandra Villanueva and Peter A. Kozak
Nanomaterials 2025, 15(15), 1193; https://doi.org/10.3390/nano15151193 - 5 Aug 2025
Abstract
Ultrafine bubbles (UFBs) represent an emerging technology with unique physicochemical properties. This study investigated the effects of air-filled UFBs infused in drinking water on gut microbiota composition and the associated health markers in Sprague Dawley rats over a 12-week period. Using a two-phase [...] Read more.
Ultrafine bubbles (UFBs) represent an emerging technology with unique physicochemical properties. This study investigated the effects of air-filled UFBs infused in drinking water on gut microbiota composition and the associated health markers in Sprague Dawley rats over a 12-week period. Using a two-phase design, UFB concentration was increased from 1.7 × 106 to 6.5 × 109 UFBs/mL at week 7 to assess dose-dependent effects. Administration of UFBs in drinking water induced significant shifts in gut microbiome populations, characterized by increased Bacteroidetes (+122% weeks 8–12) and decreased Firmicutes (−43% weeks 8–12) compared to controls. These microbial shifts coincided with enhanced short-chain fatty acid production (butyrate +56.0%, p ≤ 0.001; valerate +63.1%, p ≤ 0.01) and reduced inflammatory markers (TNF-α −84.0%, p ≤ 0.05; IL-1β −41.0%, p ≤ 0.05; IL-10 −69.8%, p ≤ 0.05). UFB effects demonstrated systematic concentration-dependent threshold responses, with 85.7% of parameters exhibiting directional reversals between low (1.7 × 106 UFBs/mL) and high (6.5 × 109 UFBs/mL) concentration phases rather than linear dose–response relationships. The systematic nature of these threshold effects, with 71.4% of parameters achieving statistical significance (p ≤ 0.05), indicates concentration-dependent biological mechanisms rather than random effects on gut biology. Despite current metagenomic techniques identifying only 25% of the total gut microbiome, the observed changes in characterized species and metabolites demonstrate UFB technology’s therapeutic potential for conditions requiring microbiome modulation, providing new insights into UFB influence on complex biological systems. Full article
(This article belongs to the Special Issue Nanobubbles and Nanodroplets: Current State-of-the-Art)
Show Figures

Figure 1

15 pages, 1397 KiB  
Article
Impact of Temperature, pH, Electrolytes, Approach Speed, and Contact Area on the Coalescence Time of Bubbles in Aqueous Solutions with Methyl Isobutyl Carbinol
by Jorge H. Saavedra, Gonzalo R. Quezada, Paola D. Bustos, Joaquim Contreras, Ignacio Salazar, Pedro G. Toledo and Leopoldo Gutiérrez
Polymers 2025, 17(14), 1974; https://doi.org/10.3390/polym17141974 - 18 Jul 2025
Viewed by 311
Abstract
The prevention of bubble coalescence is essential in various industrial processes, such as mineral flotation, where the stability of air–liquid interfaces significantly affects performance. The combined influence of multiple physicochemical parameters on bubble coalescence remains insufficiently understood, particularly under conditions relevant to flotation. [...] Read more.
The prevention of bubble coalescence is essential in various industrial processes, such as mineral flotation, where the stability of air–liquid interfaces significantly affects performance. The combined influence of multiple physicochemical parameters on bubble coalescence remains insufficiently understood, particularly under conditions relevant to flotation. This study explores the key factors that influence the inhibition of bubble coalescence in aqueous solutions containing methyl isobutyl carbinol (MIBC), providing a systematic comparative analysis to assess the effect of each variable on coalescence inhibition. An experimental method was employed in which two air bubbles were formed from identical capillaries and brought into contact either head-to-head or side-by-side, then held until coalescence occurred. This setup allows for reliable measurements of coalescence time with minimal variability regarding the conditions under which the bubbles interact. The study examined the effects of several factors: temperature, pH, salt concentration and type, bubble approach speed, contact area, and contact configuration. The results reveal that coalescence is delayed at lower temperatures, alkaline pH conditions, high salt concentrations, and larger interfacial contact areas between bubbles. Within the range studied, the influence of approach speed was found to be insignificant. These findings provide valuable insights into the fundamental mechanisms governing bubble coalescence and offer practical guidance for optimizing industrial processes that rely on the controlled stabilization of air–liquid interfaces. By understanding and manipulating the factors that inhibit coalescence, it is possible to design more efficient and sustainable mineral flotation systems, thereby reducing environmental impact and conserving water resources. Full article
(This article belongs to the Special Issue Polymers at Surfaces and Interfaces)
Show Figures

Figure 1

16 pages, 3292 KiB  
Article
Contact-Angle-Guided Semi-Cured Slot-Die Coating Eliminates Air Entrapment in LED Multilayer Films
by Zikeng Fang, Jiaqi Wan, Chenghang Li, Henan Li and Ying Yan
Polymers 2025, 17(11), 1436; https://doi.org/10.3390/polym17111436 - 22 May 2025
Viewed by 509
Abstract
LED polymer multilayer films offer clear advantages over single-layer coatings, such as minimized particle settling, finer control over particle distribution, and more precise spectral tuning. However, the standard “coat–dry–coat” process for these multilayer systems often traps air bubbles, degrading film quality and uniformity. [...] Read more.
LED polymer multilayer films offer clear advantages over single-layer coatings, such as minimized particle settling, finer control over particle distribution, and more precise spectral tuning. However, the standard “coat–dry–coat” process for these multilayer systems often traps air bubbles, degrading film quality and uniformity. This study investigates the air entrainment mechanism in multilayer film formation. Bubbles form when the cured bottom layer exhibits a low contact angle, which destabilizes the advancing liquid front. High-speed microscopy captured these interfacial dynamics, and contact-angle measurements quantified the wetting behavior. Numerical simulations further demonstrated that reduced wettability and vortex formation drive air entrainment. To mitigate air entrainment, a semi-cured slot die coating approach was proposed to modify the surface wettability and suppress the flow instabilities. Incorporating temperature-dependent viscosity into the simulation model improved its predictive accuracy, cutting the error in predicted coating-gap limits from 11.49% to 4.99%. This combined strategy delivers reliable, bubble-free multilayer films and paves the way for more consistent, high-quality LED polymer applications. Full article
(This article belongs to the Special Issue Recent Advances in Polymer Coatings)
Show Figures

Figure 1

19 pages, 4459 KiB  
Article
Reduction of the Cavitation Noise in an Automotive Heater Core
by Jeonga Lee, Woojae Jang, Yoonhyung Lee and Jintai Chung
Appl. Sci. 2025, 15(10), 5737; https://doi.org/10.3390/app15105737 - 20 May 2025
Viewed by 415
Abstract
This study investigates the mechanism behind the cavitation-induced noise in an automotive heater core and proposes a structural solution to eliminate it. Abnormal noise during cold-start conditions in a compact passenger vehicle was traced to cavitation in the heater core of the heating, [...] Read more.
This study investigates the mechanism behind the cavitation-induced noise in an automotive heater core and proposes a structural solution to eliminate it. Abnormal noise during cold-start conditions in a compact passenger vehicle was traced to cavitation in the heater core of the heating, ventilation, and air conditioning (HVAC) system. Controlled bench tests, in-vehicle measurements, and computational fluid dynamics (CFD) simulations were conducted to analyze flow behavior and identify the precise location and conditions for cavitation onset. Results showed that high flow rates and low coolant pressure generated vapor bubbles near the junction of the upper tank and outlet pipe, producing distinctive impulsive noise and vibration signals. Flow visualization using a transparent pipe and accelerometer data confirmed cavitation collapse at this location. CFD analysis indicated that the original geometry created a high-velocity, low-pressure region conducive to cavitation. A redesigned outlet with a tapered transition and larger diameter significantly improved flow conditions, raising the cavitation index and eliminating cavitation events. Experimental validation confirmed the effectiveness of the modified design. These findings contribute to improving the acoustic performance and reliability of automotive HVAC systems and offer broader insights into cavitation mitigation in fluid systems. Full article
Show Figures

Figure 1

26 pages, 9399 KiB  
Article
Investigation of Multiphase Flow in Continuous-Casting Water Model with Measurements and Computational Modeling
by Hamed Olia, Dylan Palmer, Ehsan Jebellat and Brian G. Thomas
Fluids 2025, 10(5), 113; https://doi.org/10.3390/fluids10050113 - 28 Apr 2025
Viewed by 651
Abstract
This work introduces a 0.6-scale water model of the continuous slab-casting process and a MATLAB-based model to study the effects of non-primed and multiphase flow on pressure and flow rate. The water model uses stopper-rod flow control and features pressure and velocity measurements [...] Read more.
This work introduces a 0.6-scale water model of the continuous slab-casting process and a MATLAB-based model to study the effects of non-primed and multiphase flow on pressure and flow rate. The water model uses stopper-rod flow control and features pressure and velocity measurements at multiple locations. The new computational model, PFSR V4 (Pressure-drop Flow-rate model of Stopper Rod metal delivery systems, Version 4), improves upon a prior one-dimensional Bernoulli-based framework by incorporating a bubble accumulation zone. This zone represents a region of bubbly flow with an intermediate gas fraction between constant-pressure gas pockets below the stopper tip and the downstream bubbly flow regime. Parametric studies with the water model show that flow remains fully primed at low gas flow rates but transitions to non-primed flow as the gas flow rate exceeds 10–16 SLPM. Three different flow regions are observed inside the water model nozzle: air pocket, bubble accumulation, and bubbly flow, which are also captured by the new computational model. Above a critical gas flow rate, the flow becomes unstable and difficult to control, though higher hot gas flow rates are expected for similar transitions in a real steel caster due to gas expansion at high temperatures. Pressure changes are minimal in the air pocket region and increase significantly in the upper bubble accumulation zone, where liquid velocity is much higher than in the classic bubbly-flow region, found lower in the nozzle. The new model was successfully calibrated to match the observed flow regimes and shows good agreement with the water-model measurements. Full article
(This article belongs to the Special Issue Multiphase Flow for Industry Applications)
Show Figures

Figure 1

25 pages, 4635 KiB  
Article
Influence of Entrapped Air on Hydraulic Transients During Rapid Closure of a Valve Located Upstream and Downstream of an Air Pocket in Pressurised Pipes
by Oscar Pozos-Estrada
Water 2025, 17(7), 927; https://doi.org/10.3390/w17070927 - 22 Mar 2025
Viewed by 732
Abstract
This paper examines the dual impact of trapped air on fluid transients in pressurised conduits, highlighting both its beneficial and detrimental impacts. This research analyses transient pressures caused by rapid valve closure in pipelines that contain air pockets and small bubbles dispersed within [...] Read more.
This paper examines the dual impact of trapped air on fluid transients in pressurised conduits, highlighting both its beneficial and detrimental impacts. This research analyses transient pressures caused by rapid valve closure in pipelines that contain air pockets and small bubbles dispersed within the liquid phase, by a hydraulic jump occurring at the downstream edge of the pockets. Experiments and numerical simulations were conducted with the valve positioned at the ends of the test section on both the inflow and outflow sides. A numerical model utilising the four-point centred scheme and method of characteristics was developed to resolve the governing equations of two-phase flow and was experimentally validated. The results indicate that entrapped air significantly influences hydraulic transients. When the valve is positioned downstream, air pockets and bubbles reduce pressure transients, illustrating a favourable effect. Conversely, when the valve is positioned upstream, adverse pressure transients occur, highlighting a detrimental impact. These outcomes underscore the importance of considering trapped air in pipeline systems, as its existence can either mitigate or exacerbate transient pressures depending on the configuration of the pipeline. The research highlights the significance of considering entrapped air in the design and evaluation of pressurised conduits to improve performance and prevent adverse effects. Full article
Show Figures

Figure 1

6 pages, 771 KiB  
Proceeding Paper
Drainage Kinetics of Pulque Foams Prepared with Egg White Protein
by César Antonio Ortiz-Sánchez, Alfonso Flores-Leal, Eduardo Hernández-Aguilar, Ubaldo Richard Marín-Castro and Nayeli Gutiérrez-Casiano
Biol. Life Sci. Forum 2024, 40(1), 48; https://doi.org/10.3390/blsf2024040048 - 21 Mar 2025
Viewed by 236
Abstract
Pulque is an ethnic and traditional fermented beverage produced and consumed in Mexico; it is obtained from certain varieties of Agave, and its final alcohol content is around 4% to 7%. It is rich in protein and its carbohydrate content brings it a [...] Read more.
Pulque is an ethnic and traditional fermented beverage produced and consumed in Mexico; it is obtained from certain varieties of Agave, and its final alcohol content is around 4% to 7%. It is rich in protein and its carbohydrate content brings it a characteristic flavor; also, some probiotic bacteria are present in pulque. On the other hand, foams are a colloid system where the air bubble phase is dispersed in a continuous liquid phase. The foaming of liquids has been recognized as a method that shortens processes such as drying and preserves quality attributes. The present work studied the drainage kinetics of different pulque foams prepared with egg white in order to obtain a product suitable for further drying. Different egg white and pulque concentrations, as well as mixing times, were evaluated. The drainage volume was recorded and foam density was determined among different experiments. It was found that the lowest volume was drained when mixing for 20 min, and the lowest foam density was obtained when egg white and pulque were mixed in a 2:1 ratio. The drainage kinetics of the foam determines important information for its further use in a new product with pulque. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Foods)
Show Figures

Figure 1

7 pages, 3138 KiB  
Proceeding Paper
On-Line Process Monitoring for Aero-Space Components Using Different Technologies of Fiber Optic Sensors During Liquid Resin Infusion (LRI) Process
by Cristian Builes Cárdenas, Tania Grandal González, Arántzazu Núñez Cascajero, Mario Román Rodríguez, Rubén Ruiz Lombera and Paula Rodríguez Alonso
Eng. Proc. 2025, 90(1), 5; https://doi.org/10.3390/engproc2025090005 - 7 Mar 2025
Viewed by 500
Abstract
The FLASH-COMP project aims to introduce novel inspection and monitoring technologies to develop a digital solution to predict defects during manufacturing, aiming to reach a zero-waste approach in composites manufacturing. Particularly, it’s studied the integration of two different Fiber Optic Sensor (FOS) technologies: [...] Read more.
The FLASH-COMP project aims to introduce novel inspection and monitoring technologies to develop a digital solution to predict defects during manufacturing, aiming to reach a zero-waste approach in composites manufacturing. Particularly, it’s studied the integration of two different Fiber Optic Sensor (FOS) technologies: Fiber Bragg Grating (FBG) and distributed All Grating Fiber (AGF®), to retrieve relevant data during the preforming stage and later resin infusion process for aero-space materials. During the study, both FOS technologies were introduced into the materials, varying process conditions and the introduction of some artificial defects to evaluate the sensors response to correlate them after with their signals. Both systems can retrieve relevant information during the process such as vacuum, leaks and temperature changes, presence of voids and air bubbles, detection of dry zones, and resin flow monitoring. Further developments have to be focused on the scalability in the implementation, since FOS are fragile to handle and need specific training to use it in a more industrial field. Full article
Show Figures

Figure 1

14 pages, 1234 KiB  
Article
Effect of Nutrient Solution Activated with Non-Thermal Plasma on Growth and Quality of Baby Leaf Lettuce Grown Indoor in Aeroponics
by Martina Puccinelli, Giulia Carmassi, Damiano Lanza, Rita Maggini, Paolo Vernieri and Luca Incrocci
Agriculture 2025, 15(4), 405; https://doi.org/10.3390/agriculture15040405 - 14 Feb 2025
Viewed by 754
Abstract
Innovation in cultivation methods is essential to address the growing challenges in agriculture, including abiotic and biotic stress, soil degradation, and climate change. Aeroponics, a particular type of hydroponics, presents a promising solution by improving yield and resource use efficiency, especially in controlled [...] Read more.
Innovation in cultivation methods is essential to address the growing challenges in agriculture, including abiotic and biotic stress, soil degradation, and climate change. Aeroponics, a particular type of hydroponics, presents a promising solution by improving yield and resource use efficiency, especially in controlled environments such as plant factories with artificial lighting (PFALs). Additionally, non-thermal plasma (NTP), a partially ionized gas containing reactive oxygen and nitrogen species, can affect plant development and physiology, further enhancing crop production. The objective of this study was to explore the potential of NTP as an innovative method to enhance crop production by treating the nutrient solution in aeroponic systems. During this study, three experiments were conducted to assess the effects of NTP-treated nutrient solutions on baby leaf lettuce (Lactuca sativa L.) aeroponically grown indoors. The nutrient solution was treated with ionized air in a treatment column separated from the aeroponic system by making the ionized air bubble from the bottom of the column. After 2 min of NTP application, a pump took the nutrient solution from the treatment column and sprayed it on the roots of plants. Various frequencies of NTP application were tested, ranging from 2.5% to 50% of irrigation events with nutrient solution activated with NTP. Results indicated that low-frequency NTP treatments (up to 5% of irrigations) stimulated plant growth, increasing leaf biomass (+18–19%) and enhancing the concentration of flavonoids (+16–18%), phenols (+20–21%), and antioxidant capacity (+29–53%). However, higher NTP frequencies (25% and above) negatively impacted plant growth, reducing fresh and dry weight and root biomass, likely due to excessive oxidative stress. The study demonstrates the potential of NTP as a tool for improving crop quality and yields in aeroponic cultivation, with optimal benefits achieved at lower treatment frequencies. Full article
(This article belongs to the Special Issue Nutritional Quality and Health of Vegetables)
Show Figures

Figure 1

16 pages, 3976 KiB  
Article
Influence of Augmentation Compositions and Confinement Layers on Flyer Velocity in Laser Impact Welding
by Mohammed Abdelmaola, Brian Thurston, Boyd Panton, Anupam Vivek and Glenn Daehn
Metals 2025, 15(2), 190; https://doi.org/10.3390/met15020190 - 12 Feb 2025
Viewed by 862
Abstract
Small-scale impact welding may have several advantages over rivets: the strength can be higher, it can be applied right at the edges in lap joints, and it can be lighter and more easily installed if simple systems can be developed. Laser Impact Welding [...] Read more.
Small-scale impact welding may have several advantages over rivets: the strength can be higher, it can be applied right at the edges in lap joints, and it can be lighter and more easily installed if simple systems can be developed. Laser Impact Welding (LIW) is compact and simple, adapting the technologies of laser shock peening. It is limited in terms of the energy that can be delivered to the joint. Augmented Laser Impact Welding (ALIW) complements optical energy with a small volume of an exothermic detonable compound and has been shown to be an effective welding approach. The scope of this study is extended to build upon previous work by investigating varied augmentation chemistries and confinement layers, specifically borosilicate glass, sapphire, and water. The evaluation of these compositions involved the use of two aluminum alloys: Al 2024 and Al 6061. Photonic Doppler Velocimetry (PDV) was utilized to measure the flyer velocity and assess the detonation energy. The findings indicated that adding micro-air bubbles (GPN-3 scenario) to the original GPN-1 enhanced the flyer velocity by improving the sensitivity, which promoted gas release during detonation. Hence, employing 1 mm thick Al 2024 as a flyer with GPN-3 enhances the flyer velocity by 36.4% in comparison to GPN-1, thereby improving the feasibility of using 1 mm thick material as a flyer and ensuring a successful welded joint with the thickest flyer ever welded with laser impact welding. When comparing the confinement layers, sapphire provided slightly lower flyer velocities compared to borosilicate glass. However, due to its higher resistance to damage and fracture, sapphire is likely more suitable for industrial applications from an economic perspective. Furthermore, the lap shear tests and microstructural evaluations confirmed that GPN-3 provided higher detonation energy, as emphasized by the tendency of the interfacial waves to have a higher amplitude than the less pronounced waves of the original GPN-1. Consequently, this approach demonstrates the key characteristics of a practical process, being simple, cost-effective, and efficient. Full article
(This article belongs to the Special Issue Advanced Metal Welding and Joining Technologies—2nd Edition)
Show Figures

Figure 1

34 pages, 10936 KiB  
Article
Enhanced Minimum Spanning Tree Optimization for Air-Lifted Artificial Upwelling Pipeline Network
by Junjie Zhang, Wei Fan, Yonggang Zhao, Zhiyu Zou, Mengjie Qu and Ying Chen
J. Mar. Sci. Eng. 2025, 13(2), 317; https://doi.org/10.3390/jmse13020317 - 9 Feb 2025
Viewed by 973
Abstract
Artificial upwelling (AU), a geoengineering technique aimed at transporting nutrient-enriched deep-sea water to the sunlit surface layers through artificial systems, is increasingly recognized as a promising approach to enhance oceanic fertility and stimulate primary marine productivity, thereby bolstering the ocean capacity for carbon [...] Read more.
Artificial upwelling (AU), a geoengineering technique aimed at transporting nutrient-enriched deep-sea water to the sunlit surface layers through artificial systems, is increasingly recognized as a promising approach to enhance oceanic fertility and stimulate primary marine productivity, thereby bolstering the ocean capacity for carbon sequestration. Several air-lifted AU systems have been implemented in countries such as Norway and China. However, research on the optimization of the air injection pipeline network (AIPN)—a critical component of the air-lifted AU system—remains limited. This paper introduces a refined minimum spanning tree algorithm to propose a novel approach for optimizing the AIPN. Furthermore, the bubble-entrained plume loss rate (NBEP) is developed as a model to assess the efficiency of air-lifted AU systems, which is applied to three case studies involving air-lifted AU systems of varying scales. The findings indicate that the enhanced minimum spanning tree algorithm outperforms the conventional Prim’s algorithm, leading to an average 87% reduction in NBEP of the optimized AIPN, compared to the AIPN of previous air-lifted AU systems while improving system stability. Consequently, the proposed optimization method for AIPN offers valuable scientific and practical insights for the engineering design of the air-lifted AU systems across diverse scales, offering transformative potential for large-scale carbon sequestration and marine productivity enhancement. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

17 pages, 4765 KiB  
Article
Induction Time of Wetting Films Between Air Bubbles and Hydrophobic Particles in the Presence of Dodecyl Amine Hydrochloride: First Principles Model Analysis and Experimental Validation
by Boris Albijanic, Anh V. Nguyen, Orhan Ozdemir and Arturo A. García-Figueroa
Molecules 2025, 30(3), 695; https://doi.org/10.3390/molecules30030695 - 5 Feb 2025
Viewed by 707
Abstract
An attachment of a particle on a bubble is a very complex process due to the surface chemistry of bubbles and particles, and hence it is difficult to describe the bubble–particle attachment mechanism from first principles. This paper focuses on better understanding of [...] Read more.
An attachment of a particle on a bubble is a very complex process due to the surface chemistry of bubbles and particles, and hence it is difficult to describe the bubble–particle attachment mechanism from first principles. This paper focuses on better understanding of the bubble–particle attachment mechanism by predicting induction time from first principles for the glass beads–dodecyl amine hydrochloride (DAH) system. The induction time for the bubble–particle attachment was determined using an optically based attachment timer. The zeta potentials of bubbles and glass particles were measured by the microelectrophoresis method. The contact angle between a bubble and a particle was obtained using atomic force microscopy. In these calculations, the overall disjoining pressure and the overall energy of bubble–particle interactions comprised a sum of the DLVO and non-DLVO contributions. The overall energy of interactions was used to determine the critical film thickness, while the overall disjoining pressure was employed to estimate the wetting film drainage time using the theoretical models. By comparing experimental data and theoretical models for drainage of wetting films, it was found that the attachment of glass particles to air bubbles in the presence of DAH is accelerated due to the mobility of the air–water interface (of the wetting films), which has incorrectly been assumed as rigid (fully immobile) in the classical Stefan–Reynolds theory. Full article
Show Figures

Figure 1

17 pages, 2226 KiB  
Article
Enhancing Agricultural Biogas Desulfurization: Improving Cost-Efficiency and Robustness Through Micro-Aeration with Psychrophilic Anaerobic Liquid/Solid Media
by Rajinikanth Rajagopal and Bernard Goyette
Agriculture 2024, 14(12), 2113; https://doi.org/10.3390/agriculture14122113 - 22 Nov 2024
Viewed by 1203
Abstract
This study endeavors to develop an economical and user-friendly biological sulfide oxidation system and explore its mechanism for generating biological elemental sulfur under micro-aerobic conditions using psychrophilic anaerobically digested media (liquid/solid inoculums obtained from agricultural livestock wastes) for sulfide-free biogas production. With an [...] Read more.
This study endeavors to develop an economical and user-friendly biological sulfide oxidation system and explore its mechanism for generating biological elemental sulfur under micro-aerobic conditions using psychrophilic anaerobically digested media (liquid/solid inoculums obtained from agricultural livestock wastes) for sulfide-free biogas production. With an initial hydrogen sulfide concentration of 5000 ppm, a biogas flow rate ranging from 0.9 to 1.8 L/h-Linoculum-mix, and an air injection rate of 0.6–1% (oxygen concentration in biogas), a remarkable biodesulfurization efficiency of 99–100% was attained using solid inoculum as the biodesulfurization medium. This efficiency was achieved without compromising the methane quality in the treated biogas. Compared to liquid inoculum, solid inoculum requires less than half the volume and no mixing equipment, such as bubble column reactors. The biodesulfurization reactor requires only 1 m3, which is approximately 1.5% of the volume of a wet anaerobic digester and 3% of a dry anaerobic digester, while processing cow manure (Total Solids: 20%) at 1.03 m3 of manure per day. Moreover, it can be operated at (19–20 °C), leading to substantial reductions in cost and footprint. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

21 pages, 6260 KiB  
Article
Parameters of Collision and Adhesion Process Between a Rising Bubble and Quartz in Long-Chain Amine Solution and Their Correlation with Flotation
by Shuling Gao, Bochao Li, Lifeng Ma, Wenbao Liu, Sikai Zhao and Yanbai Shen
Minerals 2024, 14(11), 1129; https://doi.org/10.3390/min14111129 - 8 Nov 2024
Viewed by 847
Abstract
The successful adhesion of air bubbles to mineral particles is the crucial to flotation technology. This paper systematically investigates the parameters variation in the dynamic interaction process between a rising bubble and a quartz plate in long-chain amine solutions (dodecylamine, tedecylamine, and octadecylamine). [...] Read more.
The successful adhesion of air bubbles to mineral particles is the crucial to flotation technology. This paper systematically investigates the parameters variation in the dynamic interaction process between a rising bubble and a quartz plate in long-chain amine solutions (dodecylamine, tedecylamine, and octadecylamine). The results show that the type and concentration of long-chain amine affected the collision and adhesion process between bubbles and quartz plates remarkably. The maximum rebound distance (rebound distance after the first collision) of bubbles and the stable-state liquid film thickness gradually decreases with the increase of reagent concentration. Additionally, the collision-rebound duration and induction time shorten accordingly, the surface tension of the solution decreases, the surface hydrophobicity of quartz increases, and the deformation degree and average movement velocity of bubbles decrease. With the increase in carbon chain length, the adsorption form of the amine collector and quartz surface becomes closer to vertical, and the density of water molecules decreases. The recovery of quartz particles is highest with octadecylamine systems, corresponding well with the changing trend in steady-state liquid film thickness. This research provides an effective method for in-depth analysis of the microscopic interaction mechanism between bubbles and mineral surfaces and the prediction of flotation results. Full article
(This article belongs to the Special Issue Interfacial Chemistry of Critical Mineral Flotation)
Show Figures

Figure 1

15 pages, 4784 KiB  
Article
Effect of Interface Defects on the Electric–Thermal–Stress Coupling Field Distribution of Cable Accessory Insulation
by Xu Lu, Ran Hu, Kongying Guo, Rui Lan, Jie Tian, Yanhui Wei and Guochang Li
Energies 2024, 17(17), 4498; https://doi.org/10.3390/en17174498 - 8 Sep 2024
Cited by 1 | Viewed by 1141
Abstract
The combined insulation interface of a high-voltage cable and accessories is the weakest part of a cable system. In this paper, the parameters of the dielectric constant, thermal conductivity, and elastic modulus of cross-linked polyethylene (XLPE) and silicone rubber (SIR) are obtained experimentally. [...] Read more.
The combined insulation interface of a high-voltage cable and accessories is the weakest part of a cable system. In this paper, the parameters of the dielectric constant, thermal conductivity, and elastic modulus of cross-linked polyethylene (XLPE) and silicone rubber (SIR) are obtained experimentally. On this basis, the model of a specific type of 110 kV cable and prefabricated insulation joint is established. A simulation of the electric–thermal–stress coupling field in the presence of typical defects in the main insulation–inner semi-conductive (SEMI) shielding layer (XLPE/SEMI interface) and the main insulation–silicone rubber insulation layer (XLPE/SIR interface) is studied. The simulation results show that at the XLPE/SIR interface, the electric field distortion caused by bubble defects reached 20.17 kV/mm, and the temperature rose to 56.15 °C. The effect of air-gap defects on the interface is similar to that of bubble defects. In addition, the semi-conductive impurity defects induced an increase in temperature to 56.82 °C and an increase in stress to 0.32 MPa. At the XLPE/SEMI interface, the electric field distortion induced by bubble defects was 19.98 kV/mm, and the temperature rose to 61.72 °C. The electric field distortion caused by metallic and semi-conductive defects was 8.44 kV/mm and 8.64 kV/mm, respectively. This study serves as a reference for the fault analysis and the operation and maintenance of cable accessories. Full article
Show Figures

Figure 1

Back to TopTop