Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,547)

Search Parameters:
Keywords = agroecosystem

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3121 KiB  
Article
Seasonal Changes in the Soil Microbiome on Chernozem Soil in Response to Tillage, Fertilization, and Cropping System
by Andrea Balla Kovács, Evelin Kármen Juhász, Áron Béni, Costa Gumisiriya, Magdolna Tállai, Anita Szabó, Ida Kincses, Tibor Novák, András Tamás and Rita Kremper
Agronomy 2025, 15(8), 1887; https://doi.org/10.3390/agronomy15081887 - 5 Aug 2025
Abstract
Soil microbial communities are crucial for ecosystem services, soil fertility, and the resilience of agroecosystems. This study investigated how long-term (31 years) agronomic practices—tillage, NPK fertilization, and cropping system—along with measured environmental variables influence the microbial biomass and its community composition in Chernozem [...] Read more.
Soil microbial communities are crucial for ecosystem services, soil fertility, and the resilience of agroecosystems. This study investigated how long-term (31 years) agronomic practices—tillage, NPK fertilization, and cropping system—along with measured environmental variables influence the microbial biomass and its community composition in Chernozem soil under corn cultivation. The polyfactorial field experiment included three tillage treatments ((moldboard (MT), ripped (RT), strip (ST)), two fertilization regimes (NPK (N: 160; P: 26; K: 74 kg/ha), and unfertilized control) and two cropping systems (corn monoculture and corn–wheat biculture). The soil samples (0–30 cm) were collected in June and September 2023. Microbial biomass and community structure were quantified using phospholipid fatty acid (PLFA) analysis, which allowed the estimation of total microbial biomass and community composition (arbuscular mycorrhizal (AM) fungi, fungi, Gram-negative (GN) and Gram-positive (GP) bacteria, actinomycetes). Our results showed that microbial biomass increased from June to September, rising by 270% in unfertilized plots and by 135% in NPK-fertilized plots, due to higher soil moisture. Reduced tillage, especially ST, promoted significantly higher microbial biomass, with biomass reaching 290% and 182% of that in MT plots in June and September, respectively. MT had a higher ratio of bacteria-to-fungi compared to RT and ST, indicating a greater sensitivity of fungi to disturbance. NPK fertilization lowered soil pH by about one unit (to 4.1–4.8) and reduced microbial biomass—by 2% in June and 48% in September—compared to the control, with the particular suppression of AM fungi. The cropping system had a smaller overall effect on microbial biomass. Full article
Show Figures

Figure 1

25 pages, 13119 KiB  
Article
Spatial and Temporal Variability of C Stocks and Fertility Levels After Repeated Compost Additions: A Case Study in a Converted Mediterranean Perennial Cropland
by Arleen Rodríguez-Declet, Maria Teresa Rodinò, Salvatore Praticò, Antonio Gelsomino, Adamo Domenico Rombolà, Giuseppe Modica and Gaetano Messina
Soil Syst. 2025, 9(3), 86; https://doi.org/10.3390/soilsystems9030086 (registering DOI) - 4 Aug 2025
Abstract
Land use conversion to perennial cropland often degrades the soil structure and fertility, particularly under Mediterranean climatic conditions. This study assessed spatial and temporal dynamics of soil properties and tree responses to 3-year repeated mature compost additions in a citrus orchard. Digital soil [...] Read more.
Land use conversion to perennial cropland often degrades the soil structure and fertility, particularly under Mediterranean climatic conditions. This study assessed spatial and temporal dynamics of soil properties and tree responses to 3-year repeated mature compost additions in a citrus orchard. Digital soil mapping revealed strong baseline heterogeneity in texture, CEC, and Si pools. Compost application markedly increased total organic C and N levels, aggregate stability, and pH with noticeable changes after the first amendment, whereas a limited C storage potential was found following further additions. NDVI values of tree canopies monitored over a 3-year period showed significant time-dependent changes not correlated with the soil fertility variables, thus suggesting that multiple interrelated factors affect plant responses. The non-crystalline amorphous Si/total amorphous Si (iSi:Siamor) ratio is here proposed as a novel indicator of pedogenic alteration in disturbed agroecosystems. These findings highlight the importance of tailoring organic farming strategies to site-specific conditions and reinforce the value to combine C and Si pool analysis for long-term soil fertility assessment. Full article
Show Figures

Figure 1

16 pages, 3523 KiB  
Article
Vegetation Composition and Environmental Relationships of Two Amaranthus Species Communities in Variant Agroecosystems at Fayoum Depression, Egypt
by Mai Sayed Fouad, Manar A. Megahed, Nabil A. Abo El-Kassem, Hoda F. Zahran and Abdel-Nasser A. A. Abdel-Hafeez
Diversity 2025, 17(8), 551; https://doi.org/10.3390/d17080551 - 3 Aug 2025
Viewed by 167
Abstract
Amaranthus is appointed as a common weed associated with crops. The research was designed to survey the Amaranth existence pattern throughout the Fayoum Depression, Egypt, accompanied with a community vegetation analysis. The study was extended to collect and analyze associated soil samples. The [...] Read more.
Amaranthus is appointed as a common weed associated with crops. The research was designed to survey the Amaranth existence pattern throughout the Fayoum Depression, Egypt, accompanied with a community vegetation analysis. The study was extended to collect and analyze associated soil samples. The obtained results figured out the prevalence of dicot families, herb growth forms, therophyte followed by phanerophyte life forms, the Pantropical monoregional chorotype, and the Mediterranean and Sudano-Zambezian followed by the Irano-Turanian pluri-regional chorotype. Multilevel pattern analysis stated that Gossypium barbadense, Corchorus olitorius, Sorghum bicolor, Sesamum indicum, and Zea mays are indicator species most related to Amaranth occurrence and prediction. NMDS analysis denoting that the Ibshaway, Youssef Al Seddik, Itsa, and Fayoum districts are the most representative districts for Amaranth existence on the basis of edaphic resources. Itsa and Youssef Al Seddik, in addition to Itsa and Fayoum, resemble each other in species composition. High pH and CaCO3 percentages were discriminatory in Ibshaway, Itsa, and Youssef Al Seddik. Ni was the cornerstone for districts partitioning in pruned trees. Finally, Amaranth was flourishing in both comfortable and harsh habitats with cultivated crops and orchards, as well as on the outskirts. The findings are considered to be valorized by decision makers in arable land management. Full article
(This article belongs to the Section Plant Diversity)
Show Figures

Figure 1

19 pages, 1289 KiB  
Article
Harnessing Extremophile Bacillus spp. for Biocontrol of Fusarium solani in Phaseolus vulgaris L. Agroecosystems
by Tofick B. Wekesa, Justus M. Onguso, Damaris Barminga and Ndinda Kavesu
Bacteria 2025, 4(3), 39; https://doi.org/10.3390/bacteria4030039 - 1 Aug 2025
Viewed by 87
Abstract
Common bean (Phaseolus vulgaris L.) is a critical protein-rich legume supporting food and nutritional security globally. However, Fusarium wilt, caused by Fusarium solani, remains a major constraint to production, with yield losses reaching up to 84%. While biocontrol strategies have been [...] Read more.
Common bean (Phaseolus vulgaris L.) is a critical protein-rich legume supporting food and nutritional security globally. However, Fusarium wilt, caused by Fusarium solani, remains a major constraint to production, with yield losses reaching up to 84%. While biocontrol strategies have been explored, most microbial agents are sourced from mesophilic environments and show limited effectiveness under abiotic stress. Here, we report the isolation and characterization of extremophilic Bacillus spp. from the hypersaline Lake Bogoria, Kenya, and their biocontrol potential against F. solani. From 30 isolates obtained via serial dilution, 9 exhibited antagonistic activity in vitro, with mycelial inhibition ranging from 1.07–1.93 cm 16S rRNA sequencing revealed taxonomic diversity within the Bacillus genus, including unique extremotolerant strains. Molecular screening identified genes associated with the biosynthesis of antifungal metabolites such as 2,4-diacetylphloroglucinol, pyrrolnitrin, and hydrogen cyanide. Enzyme assays confirmed substantial production of chitinase (1.33–3160 U/mL) and chitosanase (10.62–28.33 mm), supporting a cell wall-targeted antagonism mechanism. In planta assays with the lead isolate (B7) significantly reduced disease incidence (8–35%) and wilt severity (1–5 affected plants), while enhancing root colonization under pathogen pressure. These findings demonstrate that extremophile-derived Bacillus spp. possess robust antifungal traits and highlight their potential as climate-resilient biocontrol agents for sustainable bean production in arid and semi-arid agroecosystems. Full article
Show Figures

Figure 1

16 pages, 3753 KiB  
Article
Elevational Patterns and Seasonal Dynamics of Soil Organic Carbon Fractions and Content in Rice Paddies of Yuanyang Terrace, Southwest China
by Haitao Li, Linxi Chang, Yonglin Wu, Yang Li, Xinran Liang, Fangdong Zhan and Yongmei He
Agronomy 2025, 15(8), 1868; https://doi.org/10.3390/agronomy15081868 - 1 Aug 2025
Viewed by 170
Abstract
Soil organic carbon (SOC) is an important part of the global C pool and is sensitive to climate change. The SOC content and fractions of rice paddies along four elevations (250, 1150, 1600 and 1800 m) on the same slope in four seasons [...] Read more.
Soil organic carbon (SOC) is an important part of the global C pool and is sensitive to climate change. The SOC content and fractions of rice paddies along four elevations (250, 1150, 1600 and 1800 m) on the same slope in four seasons (spring, summer, autumn and winter) at Yuanyang Terrace in southwest China were investigated, and their relationship with environmental factors was analyzed. The contents of SOC, unprotected SOC (uPOM), physically protected SOC (pPOM) and biochemically protected SOC (bcPOM) in rice paddies at a low elevation (250 m), were significantly lower by 49–51% than those at relatively high elevations (1600 m and 1800 m). Among the SOC fractions, the highest proportion (33–50%) was uPOM, followed by pPOM and bcPOM (accounting for 17–40%), and the lowest proportion was chemically protected SOC (cPOM). In addition, there were interseasonal differences among the contents of SOC fractions, with a significantly higher content of SOC, uPOM and pPOM at an elevation of 1600 m in summer than in the other three seasons, whereas the cPOM content at an elevation of 250 m in spring was significantly higher than in the other three higher elevations. According to the redundancy analysis (RDA), total nitrogen was the key environmental factor, with an explanatory degree of 56% affecting the contents of SOC and its fractions. Thus, the SOC content increased with increasing elevation, and physical and biochemical protection were potential stabilization mechanisms responsible for their stability in the rice paddy of Yuanyang Terrace. These results provides empirical evidence for the elevational distribution patterns and seasonal dynamics of SOC fractions in rice paddies across Yuanyang Terrace. These findings highlight the importance of physical and biochemical protection mechanisms in stabilizing SOC in rice paddies, which could enhance long-term C sequestration and contribute to climate change mitigation in terraced agroecosystems. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

38 pages, 4443 KiB  
Review
The Role of Plant Growth-Promoting Bacteria in Soil Restoration: A Strategy to Promote Agricultural Sustainability
by Mario Maciel-Rodríguez, Francisco David Moreno-Valencia and Miguel Plascencia-Espinosa
Microorganisms 2025, 13(8), 1799; https://doi.org/10.3390/microorganisms13081799 - 1 Aug 2025
Viewed by 414
Abstract
Soil degradation resulting from intensive agricultural practices, the excessive use of agrochemicals, and climate-induced stresses has significantly impaired soil fertility, disrupted microbial diversity, and reduced crop productivity. Plant growth-promoting bacteria (PGPB) represent a sustainable biological approach to restoring degraded soils by modulating plant [...] Read more.
Soil degradation resulting from intensive agricultural practices, the excessive use of agrochemicals, and climate-induced stresses has significantly impaired soil fertility, disrupted microbial diversity, and reduced crop productivity. Plant growth-promoting bacteria (PGPB) represent a sustainable biological approach to restoring degraded soils by modulating plant physiology and soil function through diverse molecular mechanisms. PGPB synthesizes indole-3-acetic acid (IAA) to stimulate root development and nutrient uptake and produce ACC deaminase, which lowers ethylene accumulation under stress, mitigating growth inhibition. They also enhance nutrient availability by releasing phosphate-solubilizing enzymes and siderophores that improve iron acquisition. In parallel, PGPB activates jasmonate and salicylate pathways, priming a systemic resistance to biotic and abiotic stress. Through quorum sensing, biofilm formation, and biosynthetic gene clusters encoding antibiotics, lipopeptides, and VOCs, PGPB strengthen rhizosphere colonization and suppress pathogens. These interactions contribute to microbial community recovery, an improved soil structure, and enhanced nutrient cycling. This review synthesizes current evidence on the molecular and physiological mechanisms by which PGPB enhance soil restoration in degraded agroecosystems, highlighting their role beyond biofertilization as key agents in ecological rehabilitation. It examines advances in nutrient mobilization, stress mitigation, and signaling pathways, based on the literature retrieved from major scientific databases, focusing on studies published in the last decade. Full article
Show Figures

Figure 1

17 pages, 3112 KiB  
Article
Impacts of Conservation Tillage on Soil Organic Carbon Mineralization in Eastern Inner Mongolia
by Boyu Liu, Jianquan Wang, Dian Jin and Hailin Zhang
Agronomy 2025, 15(8), 1847; https://doi.org/10.3390/agronomy15081847 - 30 Jul 2025
Viewed by 198
Abstract
Soil organic carbon (SOC) mineralization plays the critical role of regulating carbon sequestration potential. This process is strongly influenced by agricultural practices, particularly tillage regimes and straw management. However, the complex interactions between tillage methods, straw types, and application rates in terms of [...] Read more.
Soil organic carbon (SOC) mineralization plays the critical role of regulating carbon sequestration potential. This process is strongly influenced by agricultural practices, particularly tillage regimes and straw management. However, the complex interactions between tillage methods, straw types, and application rates in terms of SOC dynamics, especially in semi-arid agroecosystems like eastern Inner Mongolia, remain poorly understood. In this study, we assessed the combined effects of no tillage (NT) vs. rotary tillage (RT), three straw types (maize/MS, wheat/WS, and oilseed rape/OS), and three application rates (0.4%/low, 0.8%/medium, and 1.2%/high) on SOC concentration and mineralization using controlled laboratory incubation with soils from long-term plots. The key findings revealed that NT significantly increased the SOC concentration in the topsoil (0–20 cm) by an average of 14.5% compared to that in the RT. Notably, combining NT with medium-rate wheat straw (0.8%) resulted in the achievement of the highest SOC accumulation (28.70 g/kg). SOC mineralization increased with straw inputs, exhibiting significant straw type × rate interactions. Oilseed rape straw showed the highest specific mineralization rate (33.9%) at low input, while maize straw mineralized fastest under high input with RT. Therefore, our results demonstrate that combining NT with either 0.8% wheat straw or 1.2% maize straw represents an optimal application strategy, as the SOC concentration is enhanced by 12–18% for effective carbon sequestration in this water-limited semi-arid region. Therefore, optimizing SOC sequestration requires the integration of appropriate crop residue application rates and tillage methods tailored to different cropping systems. Full article
Show Figures

Figure 1

23 pages, 694 KiB  
Article
Resilience for Just Transitions of Agroecosystems Under Climate Change: Northern Midlands and Mountains, Vietnam
by Tung Song Nguyen, Leslie Mabon, Huong Thu Thi Doan, Ha Van Le, Thu Huyen Thi Nguyen, Duan Van Vu and Dap Dinh Nguyen
World 2025, 6(3), 102; https://doi.org/10.3390/world6030102 - 30 Jul 2025
Viewed by 483
Abstract
The aim of this research is to identify policy and practice interventions that support a just transition towards resilient practices for resource-dependent communities. We focus on Thai Nguyen and Phu Tho, two provinces in the Northern Midlands and Mountains of Vietnam. The region [...] Read more.
The aim of this research is to identify policy and practice interventions that support a just transition towards resilient practices for resource-dependent communities. We focus on Thai Nguyen and Phu Tho, two provinces in the Northern Midlands and Mountains of Vietnam. The region is reliant on agriculture but is assessed as highly vulnerable to climate change. We surveyed 105 farming households. A Likert-type questionnaire asked respondents to self-assess their experiences of weather extremes and of changes they had made to their farming practices. Our results show that for both Thai Nguyen and Phu Tho, farmers see the effects of climate change on their crops. Respondents in Thai Nguyen were more likely to report technically driven adaptation and engagement with extension services. Respondents in Pho Tho were more likely to continue traditional practices. For both, use of traditional knowledge and practices was related to taking measures to adapt to climate change. Our main conclusion is that at least three actions could support a just transition to resilient livelihoods. First is incorporating natural science and traditional knowledge into decision-making for just transitions. Second is considering long-term implications of interventions that appear to support livelihoods in the short term. Third is tailoring messaging and engagement strategies to the requirements of the most vulnerable people. The main message of this study is that a just transition for resource-dependent communities will inevitably be context-specific. Even in centralized and authoritarian contexts, flexibility to adapt top-down policies to locals’ own experiences of changing climates is needed. Full article
Show Figures

Figure 1

24 pages, 2620 KiB  
Review
Formiguer Fertilization: Historical Agricultural Biochar Use in Catalonia and Its Modern-Day Resource Implications
by Nicolas Sesson Farré and Aaron Kinyu Hoshide
Resources 2025, 14(8), 120; https://doi.org/10.3390/resources14080120 - 28 Jul 2025
Viewed by 221
Abstract
Biochar is an amendment that can enhance both soil fertility and sequester carbon. However, its historical applications continue to be underexplored. In this overview, we investigate the formiguer method of burning woody biomass to create agricultural biochar for use as fertilizer in Catalonia, [...] Read more.
Biochar is an amendment that can enhance both soil fertility and sequester carbon. However, its historical applications continue to be underexplored. In this overview, we investigate the formiguer method of burning woody biomass to create agricultural biochar for use as fertilizer in Catalonia, Spain, within the context of historical biochar use. A literature review targeted searches of scholarly databases to compare the formiguer method to Amazonian terra preta and other traditional biochar use. We identified sources covering biochar properties, soil impacts, and historical agricultural practices within the Iberian Peninsula and briefly described the main methods or treatments used during this process. Past research demonstrates that the formiguer method, which involves pyrolytic combustion of biomass within soil mounds, improves microbial activity, increases soil phosphorus and potassium availability from soil structure, and leads to long-term carbon stabilization, even though it can result in short-term decreases in soil organic carbon and nitrogen losses. Despite being abandoned in Europe with the rise of chemical fertilizers, the use of formiguers exemplifies a decentralized approach to nutrient and agroecosystem management. The literature highlights the relevance that these traditional biochar practices can have in informing modern soil management and sustainable agricultural strategies. Understanding the formiguer can offer critical insights to optimize contemporary biochar applications and historical techniques into future sustainability frameworks. Full article
(This article belongs to the Special Issue Resource Extraction from Agricultural Products/Waste: 2nd Edition)
Show Figures

Figure 1

28 pages, 33384 KiB  
Article
Spatial Analysis of Soil Acidity and Available Phosphorus in Coffee-Growing Areas of Pichanaqui: Implications for Liming and Site-Specific Fertilization
by Kenyi Quispe, Nilton Hermoza, Sharon Mejia, Lorena Estefani Romero-Chavez, Elvis Ottos, Andrés Arce and Richard Solórzano Acosta
Agriculture 2025, 15(15), 1632; https://doi.org/10.3390/agriculture15151632 - 28 Jul 2025
Viewed by 356
Abstract
Soil acidity is one of the main limiting factors for coffee production in Peruvian rainforests. The objective of this study is to predict the spatial acidity variability for recommending site-specific liming and phosphorus fertilization treatments. We analyzed thirty-six edaphoclimatic variables, eight methods for [...] Read more.
Soil acidity is one of the main limiting factors for coffee production in Peruvian rainforests. The objective of this study is to predict the spatial acidity variability for recommending site-specific liming and phosphorus fertilization treatments. We analyzed thirty-six edaphoclimatic variables, eight methods for estimating liming doses, and three geospatial variables from 552 soil samples in the Pichanaqui district of Peru. Multivariate statistics, nonparametric comparison, and geostatistical analysis with Ordinary Kriging interpolation were used for data analysis. The results showed low coffee yields (0.70 ± 0.16 t ha−1) due to soil acidification. The interquartile ranges (IQR) were found to be 3.80–5.10 for pH, 0.21–0.87 cmol Kg−1 for Al+3, and 2.55–6.53 mg Kg−1 for available P, which are limiting soil conditions for coffee plantations. Moreover, pH, Al+3, Ca+2, and organic matter (OM) were the variables with the highest accuracy and quality in the spatial prediction of soil acidity (R2 between 0.77 and 0.85). The estimation method of liming requirements, MPM (integration of pH and organic material method), obtained the highest correlation with soil acidity-modulating variables and had a high spatial predictability (R2 = 0.79), estimating doses between 1.50 and 3.01 t ha−1 in soils with organic matter (OM) > 4.00%. The MAC (potential acidity method) method (R2 = 0.59) estimated liming doses between 0.51 and 0.88 t ha−1 in soils with OM < 4.00% and potential acidity greater than 0.71 cmol Kg−1. Regarding phosphorus fertilization (DAP), the results showed high requirements (median = 137.21 kg ha−1, IQR = 8.28 kg ha−1), with high spatial predictability (R2 = 0.74). However, coffee plantations on Ferralsols, with Paleogene parental material, mainly in dry forests, had the lowest predicted fertilization requirements (between 6.92 and 77.55 kg ha−1 of DAP). This research shows a moderate spatial variation of acidity, the need to optimize phosphorus fertilization, and an optimal prediction of liming requirements using the MPM and MAC methods, which indicate high requirements in the southwest of the Pichanaqui district. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

25 pages, 1668 KiB  
Article
The Impact of Climate Change on the Sustainability of PGI Legume Cultivation: A Case Study from Spain
by Betty Carlini, Javier Velázquez, Derya Gülçin, Víctor Rincón, Cristina Lucini and Kerim Çiçek
Agriculture 2025, 15(15), 1628; https://doi.org/10.3390/agriculture15151628 - 27 Jul 2025
Viewed by 200
Abstract
Legume crops are sensitive to shifting environmental conditions, as they depend on a narrow range of climatic stability for growth and nitrogen fixation. This research sought to assess the sustainability of Faba Asturiana (FA) cultivation under current and future climatic scenarios by establishing [...] Read more.
Legume crops are sensitive to shifting environmental conditions, as they depend on a narrow range of climatic stability for growth and nitrogen fixation. This research sought to assess the sustainability of Faba Asturiana (FA) cultivation under current and future climatic scenarios by establishing generalized linear mixed models (GLMMs). Specifically, it aimed to (1) investigate the effects of significant climatic stressors, including higher nighttime temperatures and extended drought periods, on crop viability, (2) analyze future scenarios based on Representative Concentration Pathways (RCP 4.5 and RCP 8.5), and (3) recommend adaptive measures to mitigate threats. Six spatial GLMMs were developed, incorporating variables such as extreme temperatures, precipitation, and the drought duration. Under present-day conditions (1971–2000), all the models exhibited strong predictive performances (AUC: 0.840–0.887), with warm nights (tasminNa20) consistently showing a negative effect on suitability (coefficients: −0.58 to −1.16). Suitability projections under future climate scenarios revealed considerable variation among the developed models. Under RCP 4.5, Far Future, Model 1 projected a 7.9% increase in the mean suitability, while under RCP 8.5, Far Future, the same model showed a 78% decline. Models using extreme cold, drought, or precipitation as climatic stressors (e.g., Models 2–4) revealed the most significant suitability losses under RCP 8.5, with the reductions exceeding 90%. In contrast, comprising variables less affected by severe fluctuations, Model 6 showed relative stability in most of the developed scenarios. The model also produced the highest mean suitability (0.130 ± 0.207) in an extreme projective scenario. The results highlight that high night temperatures and prolonged drought periods are the most limiting factors for FA cultivation. ecological niche models (ENMs) performed well, with a mean AUC value of 0.991 (SD = 0.006) and a mean TSS of 0.963 (SD = 0.024). According to the modeling results, among the variables affecting the current distribution of Protected Geographical Indication-registered AF, prspellb1 (max consecutive dry days) had the highest effect of 28.3%. Applying advanced statistical analyses, this study provides important insights for policymakers and farmers, contributing to the long-term sustainability of PGI agroecosystems in a warming world. Full article
(This article belongs to the Special Issue Sustainable Management of Legume Crops)
Show Figures

Figure 1

20 pages, 2984 KiB  
Article
Influence of Rice–Crayfish Co-Culture Systems on Soil Properties and Microbial Communities in Paddy Fields
by Dingyu Duan, Dingxuan He, Liangjie Zhao, Chenxi Tan, Donghui Yang, Wende Yan, Guangjun Wang and Xiaoyong Chen
Plants 2025, 14(15), 2320; https://doi.org/10.3390/plants14152320 - 27 Jul 2025
Viewed by 372
Abstract
Integrated rice–crayfish (Oryza sativaProcambarus clarkii) co-culture (RC) systems have gained prominence due to their economic benefits and ecological sustainability; however, the interactions between soil properties and microbial communities in such systems remain poorly understood. This study evaluated the effects [...] Read more.
Integrated rice–crayfish (Oryza sativaProcambarus clarkii) co-culture (RC) systems have gained prominence due to their economic benefits and ecological sustainability; however, the interactions between soil properties and microbial communities in such systems remain poorly understood. This study evaluated the effects of the RC systems on soil physicochemical characteristics and microbial dynamics in paddy fields of southern Henan Province, China, over the 2023 growing season and subsequent fallow period. Using a randomized complete design, rice monoculture (RM, as the control) and RC treatments were compared across replicated plots. Soil and water samples were collected post-harvest and pre-transplanting to assess soil properties, extracellular enzyme activity, and microbial community structure. Results showed that RC significantly enhanced soil moisture by up to 30.2%, increased soil porosity by 9.6%, and nearly tripled soil organic carbon compared to RM. The RC system consistently elevated nitrogen (N), phosphorus (P), and potassium (K) throughout both the rice growth and fallow stages, indicating improved nutrient availability and retention. Elevated extracellular enzyme activities linked to carbon, N, and P cycling were observed under RC, with enzymatic stoichiometry revealing increased microbial nutrient limitation intensity and a shift toward P limitation. Microbial community composition was significantly altered under RC, showing increased biomass, a higher fungi-to-bacteria ratio, and greater relative abundance of Gram-positive bacteria, reflecting enhanced soil biodiversity and ecosystem resilience. Further analyses using the Mantel test and Random Forest identified extracellular enzyme activities, PLFAs, soil moisture, and bulk density as major factors shaping microbial communities. Redundancy analysis (RDA) confirmed that total potassium (TK), vector length (VL), soil pH, and total nitrogen (TN) were the strongest environmental predictors of microbial variation, jointly explaining 74.57% of the total variation. Our findings indicated that RC improves soil physicochemical conditions and microbial function, thereby supporting sustainable nutrient cycling and offering a promising, environmentally sound strategy for enhancing productivity and soil health in rice-based agro-ecosystems. Full article
Show Figures

Figure 1

29 pages, 2060 KiB  
Review
Integrated Management Practices Foster Soil Health, Productivity, and Agroecosystem Resilience
by Xiongwei Liang, Shaopeng Yu, Yongfu Ju, Yingning Wang and Dawei Yin
Agronomy 2025, 15(8), 1816; https://doi.org/10.3390/agronomy15081816 - 27 Jul 2025
Viewed by 430
Abstract
Sustainable farmland management is vital for global food security and for mitigating environmental degradation and climate change. While individual practices such as crop rotation and no-tillage are well-documented, this review synthesizes current evidence to illuminate the critical synergistic effects of integrating four key [...] Read more.
Sustainable farmland management is vital for global food security and for mitigating environmental degradation and climate change. While individual practices such as crop rotation and no-tillage are well-documented, this review synthesizes current evidence to illuminate the critical synergistic effects of integrating four key strategies: crop rotation, conservation tillage, organic amendments, and soil microbiome management. Crop rotation enhances nutrient cycling and disrupts pest cycles, while conservation tillage preserves soil structure, reduces erosion, and promotes carbon sequestration. Organic amendments replenish soil organic matter and stimulate biological activity, and a healthy soil microbiome boosts plant resilience to stress and enhances nutrient acquisition through key functional groups like arbuscular mycorrhizal fungi (AMFs). Critically, the integration of these practices yields amplified benefits that far exceed their individual contributions. Integrated management systems not only significantly increase crop yields (by up to 15–30%) and soil organic carbon but also deliver profound global ecosystem services, with a potential to sequester 2.17 billion tons of CO2 and reduce soil erosion by 2.41 billion tons annually. Despite challenges such as initial yield variability, leveraging these synergies through precision agriculture represents the future direction for the field. This review concludes that a holistic, systems-level approach is essential for building regenerative and climate-resilient agroecosystems. Full article
(This article belongs to the Special Issue Advances in Tillage Methods to Improve the Yield and Quality of Crops)
Show Figures

Figure 1

13 pages, 264 KiB  
Article
Dynamic Relationship Between High D-Dimer Levels and the In-Hospital Mortality Among COVID-19 Patients: A Moroccan Study
by Bouchra Benfathallah, Abdellatif Boutagayout, Abha Cherkani Hassani, Hassan Ihazmade, Redouane Abouqal and Laila Benchekroun
COVID 2025, 5(8), 116; https://doi.org/10.3390/covid5080116 - 26 Jul 2025
Viewed by 196
Abstract
This study included 221 patients with COVID-19 who were admitted to the emergency department of Avicenne Hospital in Rabat between August 2020 and August 2021. Patients were divided into three groups according to their D-dimer levels (<1, 1–2, and >2 µg/mL). Adjusted and [...] Read more.
This study included 221 patients with COVID-19 who were admitted to the emergency department of Avicenne Hospital in Rabat between August 2020 and August 2021. Patients were divided into three groups according to their D-dimer levels (<1, 1–2, and >2 µg/mL). Adjusted and unadjusted logistic regression analyses were performed to assess the association between elevated D-dimer levels and in-hospital mortality. Pearson’s correlation analysis was performed to explore the relationship between D-dimer levels and various biological and clinical parameters. The results revealed a statistically significant difference in the mean (SD) age among the three groups (p = 0.006). Analysis showed a statistically significant difference in the means (SD) of oxygen saturation, duration of hospital stay, and breathing rate among the three independent groups of COVID-19 patients. Patients with elevated D-dimer levels (greater than 2 µg/mL) experienced worse outcomes than those in the other groups, with severity, transfer to intensive care, and in-hospital mortality of 55 (40.7%), 35 (16%), and 24 (11%) patients, respectively, with p-values of 0.048, 0.002, and 0.002, respectively. Patients in the D-dimer > 2 µg/mL group had significantly higher C-reactive protein (CRP), lactate dehydrogenase, urea, cardiac troponin, B-type natriuretic peptide, and ferritin levels than those in the other two groups. The p-value was significant among the three groups (p = 0.044, p = 0.001, and p < 0.001). Age and elevated D-dimer levels (greater than 2 µg/mL) were associated with mortality in patients diagnosed with COVID-19. Correlation analysis indicated that D-dimer in COVID-19 patients is associated with worsening respiratory, hepatic, cardiac, and coagulation parameters, suggesting their utility as an integrative marker of disease severity. D-dimer levels > 2 µg/mL were identified as an independent risk factor for COVID-19 in-hospital mortality. Measuring and monitoring D-dimer levels can assist clinicians in taking timely actions and predicting the prognosis of patients with COVID-19. Full article
(This article belongs to the Section COVID Clinical Manifestations and Management)
18 pages, 3186 KiB  
Article
Distribution, Characterization, and Pathogenicity of Entomopathogenic Nematodes in Agricultural Crops in Amazcala, Querétaro
by Gobinath Chandrakasan, Mariana Beatriz Ávila López, Markus Gastauer, Genaro Martin Soto Zarazua, Arantza Elena Sánchez Gutiérrez and Betsie Martinez Cano
Agriculture 2025, 15(15), 1603; https://doi.org/10.3390/agriculture15151603 - 25 Jul 2025
Viewed by 285
Abstract
This study investigates the potential of entomopathogenic nematodes (EPNs) as biological control agents by exploring their occurrence and diversity in Amazcala, Querétaro. The aim was to characterise their distribution and evaluate their pathogenicity against insect pests. Soil samples were collected from various agricultural [...] Read more.
This study investigates the potential of entomopathogenic nematodes (EPNs) as biological control agents by exploring their occurrence and diversity in Amazcala, Querétaro. The aim was to characterise their distribution and evaluate their pathogenicity against insect pests. Soil samples were collected from various agricultural lands, followed by laboratory isolation and the molecular identification of EPN species. Morphological and genetic analyses confirmed the presence of several species with distinct pathogenic profiles. Pathogenicity assays using the larval stages of Galleria mellonella and Tenebrio molitor revealed that Heterorhabditis bacteriophora and Heterorhabditis atacamensis exhibited significant virulence, with Galleria mellonella being more susceptible. Among the 12 recovered EPN isolates, three strains—AMZX05 (Heterorhabditis atacamensis), AMZX10 (Heterorhabditis bacteriophora), and AMZX13 (Heterorhabditis atacamensis)—demonstrated particularly high pathogenic potential. These strains represent promising candidates for biological control and could contribute to sustainable integrated pest management (IPM) strategies. Further research is recommended to optimise their application across diverse agroecosystems. Full article
(This article belongs to the Special Issue Advances in Biological Pest Control in Agroecosystems)
Show Figures

Figure 1

Back to TopTop