Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (415)

Search Parameters:
Keywords = agricultural land investment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 11555 KiB  
Article
Impacts of Land Use and Hydrological Regime on the Spatiotemporal Distribution of Ecosystem Services in a Large Yangtze River-Connected Lake Region
by Ying Huang, Xinsheng Chen, Ying Zhuo and Lianlian Zhu
Water 2025, 17(15), 2337; https://doi.org/10.3390/w17152337 - 6 Aug 2025
Abstract
In river-connected lake regions, both land use and hydrological regime changes may affect the ecosystem services; however, few studies have attempted to elucidate their complex influences. In this study, the spatiotemporal dynamics of eight ecosystem services (crop production, aquatic production, water yield, soil [...] Read more.
In river-connected lake regions, both land use and hydrological regime changes may affect the ecosystem services; however, few studies have attempted to elucidate their complex influences. In this study, the spatiotemporal dynamics of eight ecosystem services (crop production, aquatic production, water yield, soil retention, flood regulation, water purification, net primary productivity, and habitat quality) were investigated through remote-sensing images and the InVEST model in the Dongting Lake Region during 2000–2020. Results revealed that crop and aquatic production increased significantly from 2000 to 2020, particularly in the northwestern and central regions, while soil retention and net primary productivity also improved. However, flood regulation, water purification, and habitat quality decreased, with the fastest decline in habitat quality occurring at the periphery of the Dongting Lake. Land-use types accounted for 63.3%, 53.8%, and 40.3% of spatial heterogeneity in habitat quality, flood regulation, and water purification, respectively. Land-use changes, particularly the expansion of construction land and the conversion of water bodies to cropland, led to a sharp decline in soil retention, flood regulation, water purification, net primary productivity, and habitat quality. In addition, crop production and aquatic production were higher in cultivated land and residential land, while the accompanying degradation of flood regulation, water purification, and habitat quality formed a “production-pollution-degradation” spatial coupling pattern. Furthermore, hydrological fluctuations further complicated these dynamics; wet years amplified agricultural outputs but intensified ecological degradation through spatial spillover effects. These findings underscore the need for integrated land-use and hydrological management strategies that balance human livelihoods with ecosystem resilience. Full article
(This article belongs to the Section Ecohydrology)
Show Figures

Figure 1

22 pages, 764 KiB  
Article
An Integrated Entropy–MAIRCA Approach for Multi-Dimensional Strategic Classification of Agricultural Development in East Africa
by Chia-Nan Wang, Duy-Oanh Tran Thi, Nhat-Luong Nhieu and Ming-Hsien Hsueh
Mathematics 2025, 13(15), 2465; https://doi.org/10.3390/math13152465 - 31 Jul 2025
Viewed by 244
Abstract
Agricultural development is vital for East Africa’s economic growth, yet the region faces significant disparities and systemic barriers. A critical problem exists due to the lack of an integrated quantitative framework to systematically comparing agricultural capacities and facilitate optimal resource allocation, as existing [...] Read more.
Agricultural development is vital for East Africa’s economic growth, yet the region faces significant disparities and systemic barriers. A critical problem exists due to the lack of an integrated quantitative framework to systematically comparing agricultural capacities and facilitate optimal resource allocation, as existing studies often overlook combined internal and external factors. This study proposes a comprehensive multi-criteria decision-making (MCDM) model to assess, categorize, and strategically profile the agricultural development capacity of 18 East African countries. The method employed is an integrated Entropy-MAIRCA model, which objectively weighs six criteria (the food production index, arable land, production fluctuation, food export/import ratios, and the political stability index) and ranks countries by their distance from an ideal development state. The experiment applied this framework to 18 East African nations using official data. The results revealed significant differences, forming four distinct strategic groups: frontier, emerging, trade-dependent, and high risk. The food export index (C4) and production volatility (C3) were identified as the most influential criteria. This model’s contribution is providing a science-based, transparent decision support tool for designing sustainable agricultural policies, aiding investment planning, and promoting regional cooperation, while emphasizing the crucial role of institutional factors. Full article
Show Figures

Figure 1

24 pages, 2710 KiB  
Article
Spatial and Economic-Based Clustering of Greek Irrigation Water Organizations: A Data-Driven Framework for Sustainable Water Pricing and Policy Reform
by Dimitrios Tsagkoudis, Eleni Zafeiriou and Konstantinos Spinthiropoulos
Water 2025, 17(15), 2242; https://doi.org/10.3390/w17152242 - 28 Jul 2025
Viewed by 338
Abstract
This study employs k-means clustering to analyze local organizations responsible for land improvement in Greece, identifying four distinct groups with consistent geographic patterns but divergent financial and operational characteristics. By integrating unsupervised machine learning with spatial analysis, the research offers a novel perspective [...] Read more.
This study employs k-means clustering to analyze local organizations responsible for land improvement in Greece, identifying four distinct groups with consistent geographic patterns but divergent financial and operational characteristics. By integrating unsupervised machine learning with spatial analysis, the research offers a novel perspective on irrigation water pricing and cost recovery. The findings reveal that organizations located on islands, despite high water costs due to limited rainfall and geographic isolation, tend to achieve relatively strong financial performance, indicating the presence of adaptive mechanisms that could inform broader policy strategies. In contrast, organizations managing extensive irrigable land or large volumes of water frequently show poor cost recovery, challenging assumptions about economies of scale and revealing inefficiencies in pricing or governance structures. The spatial coherence of the clusters underscores the importance of geography in shaping institutional outcomes, reaffirming that environmental and locational factors can offer greater explanatory power than algorithmic models alone. This highlights the need for water management policies that move beyond uniform national strategies and instead reflect regional climatic, infrastructural, and economic variability. The study suggests several policy directions, including targeted infrastructure investment, locally calibrated water pricing models, and performance benchmarking based on successful organizational practices. Although grounded in the Greek context, the methodology and insights are transferable to other European and Mediterranean regions facing similar water governance challenges. Recognizing the limitations of the current analysis—including gaps in data consistency and the exclusion of socio-environmental indicators—the study advocates for future research incorporating broader variables and international comparative approaches. Ultimately, it supports a hybrid policy framework that combines data-driven analysis with spatial intelligence to promote sustainability, equity, and financial viability in agricultural water management. Full article
(This article belongs to the Special Issue Balancing Competing Demands for Sustainable Water Development)
Show Figures

Figure 1

24 pages, 32703 KiB  
Article
Spatiotemporal Evolution of Carbon Storage and Driving Factors in Major Sugarcane-Producing Regions of Guangxi, China
by Jianing Ma, Jun Wen, Shirui Du, Chuanmin Yan and Chuntian Pan
Agronomy 2025, 15(8), 1817; https://doi.org/10.3390/agronomy15081817 - 27 Jul 2025
Viewed by 231
Abstract
Objectives: The major sugarcane-producing regions of Guangxi represent a critical agricultural zone in China. Investigating the mechanisms of land use change and carbon storage dynamics in this area is essential for optimizing regional ecological security and promoting sustainable development. Methods: Employing the land [...] Read more.
Objectives: The major sugarcane-producing regions of Guangxi represent a critical agricultural zone in China. Investigating the mechanisms of land use change and carbon storage dynamics in this area is essential for optimizing regional ecological security and promoting sustainable development. Methods: Employing the land use transfer matrix, the InVEST model and the Geodetector model to analyze carbon storage changes and identify key driving factors and their interactive effects. Results: (1) From 2011 to 2022, Guangxi’s major sugarcane-producing regions experienced significant land use changes: reductions in cultivated land, grassland and water bodies alongside expansions of forest, bare land and construction land. (2) The total carbon storage in Guangxi’s major sugarcane-producing regions has increased from 2011 to 2018 by 0.99%, representing 1627.03 and 1643.10 million tons, while it has decreased by 0.1% in 2022 (1641.47 million tons) compared to 2018. (3) Cultivated land proportion and forest coverage rate were the primary drivers of spatial heterogeneity, followed by average slope and land urbanization rate. (4) Interaction analysis revealed strong synergistic effects among cultivated land proportion, forest coverage rate, NDVI and average slope, confirming multi-factor control over carbon storage changes. Conclusions: Carbon storage in the Guangxi sugarcane-producing regions is shaped by land use patterns and multi-factor interactions. Future strategies should optimize land use structures and balance urbanization with ecological protection to enhance regional carbon sequestration. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

20 pages, 485 KiB  
Article
Impact of Digital Infrastructure on Farm Households’ Scale Management
by Yangbin Liu, Gaoyan Liu, Longjunjiang Huang, Hui Xiao and Xiaojin Liu
Sustainability 2025, 17(15), 6788; https://doi.org/10.3390/su17156788 - 25 Jul 2025
Viewed by 354
Abstract
The construction and development of digital infrastructure have emerged as a crucial indicator of national competitiveness, which holds significant importance in driving the sustained growth of the national economy and the comprehensive advancement of society. This paper explores the impact of digital infrastructure [...] Read more.
The construction and development of digital infrastructure have emerged as a crucial indicator of national competitiveness, which holds significant importance in driving the sustained growth of the national economy and the comprehensive advancement of society. This paper explores the impact of digital infrastructure on farm households’ scale management, aiming to reveal the role and potential of digital technology in agricultural modernization. Additionally, it seeks to offer a scientific foundation for the government to formulate agricultural policies and advance agricultural modernization. Using the OLS (Ordinary Least Squares) model, moderating effect model, and other methods, this study investigates how digital infrastructure affects farm households’ scale management based on micro-level research data of 2510 farm households from the CRRS (China Rural Revitalization Survey). The following conclusions are drawn: Firstly, the enhancement of digital infrastructure can motivate farm households to expand the land management area and increase the unit output of land. Secondly, farm households’ digital literacy positively moderates the effect of digital infrastructure on their land unit output; moreover, digital skills training for farm households exhibits a positive moderating effect on the influence of digital infrastructure on their management area. Finally, there is a heterogeneity in the impact of digital infrastructure on farm households’ scale management. Specifically, the promotion of farm households’ scale management is stronger in plain areas and weaker in hilly and mountainous areas; stronger for middle-aged and older and small-scale farm households; and weaker for youth groups and large-scale farm households. Based on this, this paper suggests increasing the investment in digital infrastructure construction, improving farm households’ digital literacy, carrying out digital skills training, and formulating differentiated regional policies for reference. Full article
Show Figures

Figure 1

25 pages, 147691 KiB  
Article
Optimizing Landscape Patterns for Tea Plantation Agroecosystems: A Case Study of an Important Agricultural Heritage System in Enshi, China
by Jiaqian Wu, Chunyang Li and Tong Wang
Land 2025, 14(7), 1491; https://doi.org/10.3390/land14071491 - 18 Jul 2025
Viewed by 405
Abstract
The agroecosystems of tea plantations play a significant role in regional ecosystem services, with some recognized as Important Agricultural Heritage Systems. Despite notable progress in conserving these unique agricultural landscapes, systematic approaches to delineating the core conservation zone and establishing robust ecological networks [...] Read more.
The agroecosystems of tea plantations play a significant role in regional ecosystem services, with some recognized as Important Agricultural Heritage Systems. Despite notable progress in conserving these unique agricultural landscapes, systematic approaches to delineating the core conservation zone and establishing robust ecological networks for agricultural heritage systems remain insufficient. This study employed the Enshi Yulu Tea Agricultural Heritage System as a case study, integrating the MaxEnt model, InVEST model, and circuit theory to quantitatively assess landscape connectivity and prioritize conservation efforts. The analysis delineated a core conservation zone of 718.04 km2 for tea plantations, identified 77 ecological corridors, and pinpointed 104 critical ecological nodes. The results indicate 43.96 km2 of synergistic areas between tea plantations and ecological sources, demonstrating that the agroecosystems of tea plantations provide higher ESs values compared to monoculture plantations and farmlands. In addition, an ecological optimization framework featuring a “four belts and four zones” spatial configuration was proposed, aimed at enhancing connectivity and promoting the sustainable development of tea plantation agricultural heritage. The proposed framework can provide evidence-based references for future policy formulation, and deliver actionable insights for land-use planning, habitat restoration, and infrastructure mitigation. Full article
(This article belongs to the Section Landscape Ecology)
Show Figures

Figure 1

26 pages, 1501 KiB  
Article
How Can Forestry Carbon Sink Projects Increase Farmers’ Willingness to Produce Forestry Carbon Sequestration?
by Yi Hou, Anni He, Hongxiao Zhang, Chen Hu and Yunji Li
Forests 2025, 16(7), 1135; https://doi.org/10.3390/f16071135 - 10 Jul 2025
Viewed by 324
Abstract
The development of a forestry carbon sink project is an important way to achieve carbon neutrality and carbon reduction, and the collective forest carbon sink project is an important part of China’s forestry carbon sink project. As the main management entity of collective [...] Read more.
The development of a forestry carbon sink project is an important way to achieve carbon neutrality and carbon reduction, and the collective forest carbon sink project is an important part of China’s forestry carbon sink project. As the main management entity of collective forests, whether farmers are willing to produce forestry carbon sinks is directly related to the implementation effect of the project. In this paper, a partial equilibrium model of farmers’ forestry production behavior was established based on production function and utility function, and the path to enhance farmers’ willingness to produce forestry carbon sink through forestry carbon sink projects was analyzed in combination with forest ecological management theory. In terms of empirical analysis, the PSM-DID econometric model was established based on the survey data of LY in Zhejiang Province, China, and the following conclusions were drawn: (1) With the receipt of revenues from forestry carbon sequestration projects and partial cost-sharing by the government, farmers’ participation in forestry carbon sink projects can save investment in forest land management. (2) The saved forestry production costs and forestry carbon sink project subsidies can make up for the loss of farmers’ timber income, so that the net income of forestry will not be significantly reduced. (3) The forestry production factors saved by farmers can be transferred to non-agricultural sectors and increase non-agricultural net income, so that the net income of rural households participating in forestry carbon sink projects will increase. The forestry carbon sink project can improve the utility level of farmers and increase the willingness of farmers to produce forestry carbon sinks by delivering income to farmers and saving forestry production factors. This study demonstrates that a well-designed forestry carbon sink compensation mechanism, combined with an optimized allocation of production factors, can effectively enhance farmers’ willingness to participate. This insight is also applicable to countries or regions that rely on small-scale forestry operations. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
Show Figures

Figure 1

19 pages, 2271 KiB  
Article
A Sustainable Solution for High-Standard Farmland Construction—NGO–BP Model for Cost Indicator Prediction in Fertility Enhancement Projects
by Xuenan Li, Kun Han, Jiaze Li and Chunsheng Li
Sustainability 2025, 17(14), 6250; https://doi.org/10.3390/su17146250 - 8 Jul 2025
Viewed by 267
Abstract
High-standard farmland fertility enhancement projects can lead to the sustainable utilization of arable land resources. However, due to difficulties in project implementation and uncertainties in costs, resource allocation efficiency is constrained. To address these challenges, this study first analyzes the impact of geography [...] Read more.
High-standard farmland fertility enhancement projects can lead to the sustainable utilization of arable land resources. However, due to difficulties in project implementation and uncertainties in costs, resource allocation efficiency is constrained. To address these challenges, this study first analyzes the impact of geography and engineering characteristics on cost indicators and applies principal component analysis (PCA) to extract key influencing factors. A hybrid prediction model is then constructed by integrating the Northern Goshawk Optimization (NGO) algorithm with a Backpropagation Neural Network (BP). The NGO–BP model is compared with the RF, XGBoost, standard BP, and GA–BP models. Using data from China’s 2025 high-standard farmland fertility enhancement projects, empirical validation shows that the NGO–BP model achieves a maximum RMSE of only CNY 98.472 across soil conditioning, deep plowing, subsoiling, and fertilization projects—approximately 30.74% lower than those of other models. The maximum MAE is just CNY 88.487, a reduction of about 32.97%, and all R2 values exceed 0.914, representing an improvement of roughly 5.83%. These results demonstrate that the NGO–BP model offers superior predictive accuracy and generalization ability compared to other approaches. The findings provide a robust theoretical foundation and technical support for agricultural resource management, the construction of projects, and project investment planning. Full article
Show Figures

Figure 1

20 pages, 393 KiB  
Article
Institutional Change and Agricultural Modernization: The Impact of Land Certification on Agricultural Technology Adoption
by Yong Zhan, Xiaoyi Zhan and Min Wu
Land 2025, 14(7), 1420; https://doi.org/10.3390/land14071420 - 7 Jul 2025
Viewed by 413
Abstract
The adoption of agricultural technologies is paramount for enhancing global agricultural productivity and sustainability. However, widespread implementation faces significant challenges, particularly in developing regions. Using data from the China Land Economic Survey (CLES), this study examines how land certification reform affects farmers’ technology [...] Read more.
The adoption of agricultural technologies is paramount for enhancing global agricultural productivity and sustainability. However, widespread implementation faces significant challenges, particularly in developing regions. Using data from the China Land Economic Survey (CLES), this study examines how land certification reform affects farmers’ technology adoption behavior from an institutional perspective. Results demonstrate that land certification significantly increases agricultural technology adoption rates, with more pronounced effects observed among households possessing greater human and physical capital. A mechanistic analysis reveals that land certification facilitates technology adoption through three pathways: (1) improving credit accessibility, (2) strengthening long-term investment incentives, and (3) expanding the production and operational scale. These findings highlight land tenure security as a fundamental institutional driver of agricultural modernization, deepen the understanding of the interaction between institutions and innovation in agriculture, and offer actionable insights for integrating property rights reforms with technological advancements. Full article
Show Figures

Figure 1

24 pages, 3629 KiB  
Article
The Current Status of Irrigated Agriculture in Cape Verde and Its Link to Water Scarcity
by Erik Sequeira, Pedro Leão de Sousa, Augusto Manuel Correia and João Rolim
Agronomy 2025, 15(7), 1625; https://doi.org/10.3390/agronomy15071625 - 3 Jul 2025
Viewed by 478
Abstract
In arid regions with low precipitation, like most of the Cape Verde islands, irrigation is essential for maintaining agricultural production and food security. However, due to significant investment needs, it is critical to improve irrigation efficiency and reduce water losses. The aim of [...] Read more.
In arid regions with low precipitation, like most of the Cape Verde islands, irrigation is essential for maintaining agricultural production and food security. However, due to significant investment needs, it is critical to improve irrigation efficiency and reduce water losses. The aim of this study is to evaluate irrigated agriculture in Cape Verde and its relationship with water scarcity through the calculation of key indicators and the analysis of statistical and remote sensing data. Crop production data were collected from the Ministry of Agriculture and Environment, and climatic data from the National Institute of Meteorology and Geophysics of Cape Verde (INMG) and FAO’s WaPOR platform. The aridity index was calculated using the UNEP method based on data from INMG. The island of Sal showed the lowest aridity index value (0.07), while Cachaço (São Nicolau island) had the highest (0.41). Sugarcane is currently the dominant irrigated crop, covering over 3000 hectares, about 62% of irrigated land, despite its high water demands. The expansion of sugarcane threatens long-term water sustainability and food production. Promoting crops with higher water productivity and technical training are key actions to ensure the sustainability of irrigated agriculture in Cape Verde. Findings point to the urgent need to improve irrigation infrastructure, maintenance, and system design. Full article
(This article belongs to the Special Issue Crop Management in Water-Limited Cropping Systems)
Show Figures

Figure 1

21 pages, 1044 KiB  
Article
Container Traffic in the Colombian Caribbean: A Competitiveness Analysis of the Port of Santa Marta Through a Technical–Economic Combination Framework
by Adriana del Socorro Pabón Noguera, María del Mar Cerbán Jiménez and Juan Jesús Ruiz Aguilar
Logistics 2025, 9(3), 84; https://doi.org/10.3390/logistics9030084 - 27 Jun 2025
Viewed by 573
Abstract
Background: The Port of Santa Marta, located on Colombia’s northern Caribbean coast, plays a vital role in the country’s maritime trade, particularly in the export of agricultural and perishable goods. This raises the question: how competitive is Santa Marta’s container terminal compared to [...] Read more.
Background: The Port of Santa Marta, located on Colombia’s northern Caribbean coast, plays a vital role in the country’s maritime trade, particularly in the export of agricultural and perishable goods. This raises the question: how competitive is Santa Marta’s container terminal compared to national and regional ports, and what strategic factors shape its performance within the Colombia and Latin American maritime logistics system? Methods: This study evaluates the port’s competitiveness by applying Porter’s Extended Diamond Model. A mixed-methods ap-proach was employed, combining structured surveys and interviews with port stakeholders and operational data analysis. A competitiveness matrix was developed and examined using standardized residuals and L1 regression to identify critical performance gaps and strengths. Results: The analysis reveals several competitive advantages, including the port’s strategic location, natural deep-water access, and advanced infrastructure for refrigerated cargo. It also benefits from skilled labour and proximity to global shipping routes, such as the Panama Canal. Nonetheless, challenges remain in storage capacity, limited road connectivity, and insufficient public investment in hinterland infrastructure. Conclusions: While the Port of Santa Marta shows strong maritime capabilities and spe-cialized services, addressing its land-side and institutional constraints is essential for positioning it as a resilient, competitive logistics hub in the Latin American and Caribbean region. Full article
Show Figures

Figure 1

18 pages, 3621 KiB  
Review
‘Land Maxing’: Regenerative, Remunerative, Productive and Transformative Agriculture to Harness the Six Capitals of Sustainable Development
by Roger R. B. Leakey and Paul E. Harding
Sustainability 2025, 17(13), 5876; https://doi.org/10.3390/su17135876 - 26 Jun 2025
Cited by 1 | Viewed by 574
Abstract
After decades of calls for more sustainable land use systems, there is still a lack of consensus on an appropriate way forward, especially for tropical and subtropical agroecosystems. Land Maxing utilises appropriate, community-based interventions to fortify and maximise the multiple, long-term benefits and [...] Read more.
After decades of calls for more sustainable land use systems, there is still a lack of consensus on an appropriate way forward, especially for tropical and subtropical agroecosystems. Land Maxing utilises appropriate, community-based interventions to fortify and maximise the multiple, long-term benefits and interest flows from investments that rebuild all six essential capitals of sustainable development (natural, social, human, physical, financial and political/corporate will) for resource-poor smallholder communities in tropical and subtropical countries. Land Maxing adds domestication of overlooked indigenous food tree species, and the commercialization of their marketable products, to existing land restoration efforts while empowering local communities, enhancing food sovereignty, and boosting the local economy and overall production. These agroecological and socio-economic interventions sustainably restore and intensify subsistence agriculture replacing conventional negative trade-offs with fortifying ‘trade-ons’. Land Maxing is therefore productive, regenerative, remunerative and transformative for farming communities in the tropics and sub-tropics. Through the development of resilience at all levels, Land Maxing uniquely addresses the big global issues of environmental degradation, hunger, malnutrition, poverty and social injustice, while mitigating climate change and restoring wildlife habitats. This buffers subsistence farming from population growth and poor international governance. The Tropical Agricultural Association International is currently planning a programme to up-scale and out-scale Land Maxing in Africa. Full article
Show Figures

Figure 1

26 pages, 3626 KiB  
Article
Spatiotemporal Patterns of Cropland Sustainability in Black Soil Zones Based on Multi-Source Remote Sensing: A Case Study of Heilongjiang, China
by Jing Yang, Li Wang, Jinqiu Zou, Lingling Fan and Yan Zha
Remote Sens. 2025, 17(12), 2044; https://doi.org/10.3390/rs17122044 - 13 Jun 2025
Viewed by 377
Abstract
Sustainable cropland management is essential in maintaining national food security. In the black soil regions of China, which are key areas for commercial grain production, sustainable land use must be achieved urgently. To address the absence of integrated, large-scale, remote sensing-based sustainability frameworks [...] Read more.
Sustainable cropland management is essential in maintaining national food security. In the black soil regions of China, which are key areas for commercial grain production, sustainable land use must be achieved urgently. To address the absence of integrated, large-scale, remote sensing-based sustainability frameworks in China’s black soil zones, we developed a comprehensive evaluation system with 13 indicators from four dimensions: the soil capacity, the natural capacity, the management level, and crop productivity. With this system and the entropy weight method, we systematically analyzed the spatiotemporal patterns of cropland sustainability in the selected black soil regions from 2010 to 2020. Additionally, a diagnostic model was applied to identify the key limiting factors constraining improvements in cropland sustainability. The results revealed that cropland sustainability in Heilongjiang Province has increased by 7% over the past decade, largely in the central and northeastern regions of the study area, with notable gains in soil capacity (+15.6%), crop productivity (+22.4%), and the management level (+4.8%). While the natural geographical characteristics show no obvious improvement in the overall score, they display significant spatial heterogeneity (with better conditions in the central/eastern regions than in the west). Sustainability increased the most in sloping dry farmland and paddy fields, followed by plain dry farmland and arid windy farmland areas. The soil organic carbon content and effective irrigation amount were the main obstacles affecting improvements in cropland sustainability in black soil regions. Promoting the implementation of technical models, strengthening investment in cropland infrastructure, and enhancing farmer engagement in black soil conservation are essential in ensuring long-term cropland sustainability. These findings provide a solid foundation for sustainable agricultural development, contributing to global food security and aligning with SDG 2 (zero hunger). Full article
(This article belongs to the Special Issue Advances in Remote Sensing for Soil Property Mapping)
Show Figures

Figure 1

28 pages, 2970 KiB  
Article
Sowing Uncertainty: Assessing the Impact of Economic Policy Uncertainty on Agricultural Land Conversion in China
by Kerun He, Zhixiong Tan and Zhaobo Tang
Systems 2025, 13(6), 466; https://doi.org/10.3390/systems13060466 - 13 Jun 2025
Viewed by 1100
Abstract
This study examines the impact of economic policy uncertainty (EPU) on agricultural land conversion. Using a newspaper-based index of EPU and a comprehensive panel dataset covering 270 prefecture-level cities in China, we estimate a city fixed effects model to explore this relationship. Our [...] Read more.
This study examines the impact of economic policy uncertainty (EPU) on agricultural land conversion. Using a newspaper-based index of EPU and a comprehensive panel dataset covering 270 prefecture-level cities in China, we estimate a city fixed effects model to explore this relationship. Our results indicate that a one-standard-deviation increase in EPU leads to a 22.2% increase in the conversion of agricultural land to urban residential, commercial, and industrial uses. This finding suggests that the surge in EPU triggered by the global financial crisis accounts for approximately 45% of the increase in agricultural land conversion. The adverse effect on agricultural land preservation mainly stems from intensified fiscal pressures and heightened demands on local governments to meet economic growth targets. To address potential endogeneity concerns, we employ the one-period lagged U.S. EPU index and its temporal variations as an instrument for China’s EPU, leveraging cross-country spillover effects. Our instrumental variable estimates confirm the validity of the land conversion effect and its underlying mechanisms. Furthermore, we find that the effects of EPU are particularly pronounced in cities located in non-eastern China and those that depend heavily on fixed asset investment for local economic development. Finally, our analysis of potential policy interventions to mitigate EPU-induced agricultural land loss suggests that strengthening market-oriented reforms and reducing province-level quotas on agricultural land conversion can effectively offset the impact of rising EPU. Full article
(This article belongs to the Section Systems Practice in Social Science)
Show Figures

Figure 1

20 pages, 2309 KiB  
Article
Climate Change Impacts on Agricultural Infrastructure and Resources: Insights from Communal Land Farming Systems
by Bonginkosi E. Mthembu, Thobani Cele and Xolile Mkhize
Land 2025, 14(6), 1150; https://doi.org/10.3390/land14061150 - 26 May 2025
Cited by 1 | Viewed by 713
Abstract
Climate change significantly impacts agricultural infrastructure, particularly in communal land farming systems, where socio-economic vulnerabilities intersect with environmental stressors. This study examined the effects of extreme weather events (floods, droughts, strong winds, frost, and hail) on various agricultural infrastructures—including bridges, arable land, soil [...] Read more.
Climate change significantly impacts agricultural infrastructure, particularly in communal land farming systems, where socio-economic vulnerabilities intersect with environmental stressors. This study examined the effects of extreme weather events (floods, droughts, strong winds, frost, and hail) on various agricultural infrastructures—including bridges, arable land, soil erosion control structures, dipping tanks, roads, and fences—using an ordered probit model. A survey was conducted using structured questionnaires between August and September 2023, collecting data from communal farmers (n = 60) in oKhahlamba Municipality, Bergville. Key results from respondents showed that roads (87%), bridges (85%), and both arable land and erosion structures were reported as highly affected by extreme weather events, especially flooding and frost. Gender, the type of farmer, access to climate information, and exposure to extreme weather significantly influenced perceived impact severity. The ordered probit regression model results reveal that drought (p = 0.05), floods (p = 0.1), strong winds (p = 0.05), and frost (p = 0.1) significantly influence the perceived impacts on infrastructure. Extreme weather events, including flooding (p = 0.012) and frost (p = 0.018), are critical drivers of infrastructure damage, particularly for smallholder farmers. Cumulative impacts—such as repeated infrastructure failure, access disruptions, and increased repair burdens—compound over time, further weakening resilience. The results underscore the urgent need for investments in flood-resilient roads and bridges, improved erosion control systems, and livestock water infrastructure. Support should also include gender-sensitive adaptation strategies, education on climate risk, and dedicated financial mechanisms for smallholder farmers. These findings contribute to global policy discourses on climate adaptation, aligning with SDGs 2 (Zero Hunger), 9 (Industry, Innovation, and Infrastructure), and 13 (Climate Action), and offer actionable insights for building infrastructure resilience in vulnerable rural contexts. Full article
Show Figures

Figure 1

Back to TopTop