Institutional Change and Agricultural Modernization: The Impact of Land Certification on Agricultural Technology Adoption
Abstract
1. Introduction
2. Institutional Background and Theoretical Analysis
2.1. Institutional Background of China’s Rural Land Certification
2.2. Theoretical Analysis of Land Certification’s Impact on Agricultural Technology Adoption Behavior
2.2.1. Land Certification and Agricultural Technology Adoption
2.2.2. The Mechanism of Land Certification on Agricultural Technology Adoption
- (1)
- Land Certification, Credit Acquisition Capacity, and Agricultural Technology Adoption Behavior
- (2)
- Land Certification, Long-Term Investment Willingness, and Agricultural Technology Adoption Behavior
- (3)
- Land Certification, Production and Operational Scale, and Agricultural Technology Adoption Behavior
3. Research Design
3.1. Data Source
3.2. Variables Description
- (1)
- Dependent Variable
- (2)
- Explanatory Variable
- (3)
- Mechanism Variables
- (4)
- Instrumental Variable
- (5)
- Control Variables
3.3. Model Construction
4. Results
4.1. Baseline Regression Results
4.2. Robustness Tests
4.3. Endogeneity Analysis
4.4. Heterogeneity Analysis
5. Mechanism Analysis
6. Discussion
7. Conclusions
- (1)
- Establish a diversified policy-supported financing system: The central and local governments should jointly establish a risk compensation fund to reimburse financial institutions for a portion of the losses incurred from agricultural technology loans, thereby effectively mitigating lenders’ risks.
- (2)
- Optimize agricultural technology subsidy policies: Design differentiated subsidies for technologies requiring long-term investment (e.g., soil improvement and smart agriculture) via direct subsidies and tax incentives to mitigate farmers’ investment risks and enhance their propensity to adopt long-term technologies.
- (3)
- Fortify land circulation service systems: Invest in land circulation service platforms to improve the information dissemination, price evaluation, and contract management. Establish incentive mechanisms for land circulation, such as policy support for households achieving technology-adaptive operational scales, to facilitate a large-scale technology application.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- World Resources Institute. Available online: https://research.wri.org/wrr-food (accessed on 25 May 2025).
- The Economic Lives of Smallholder Farmers. Available online: https://www.fao.org/agrifood-economics/publications/detail/en/c/358044 (accessed on 25 May 2025).
- Yigezu, Y.A.; Mugera, A.; El-Shater, T.; Aw-Hassan, A.; Piggin, C.; Haddad, A.; Khalil, A.; Loss, S. Enhancing adoption of agricultural technologies requiring high initial investment among smallholders. Technol. Forecast. Soc. Change 2018, 134, 199–206. [Google Scholar] [CrossRef]
- Rashid, S.; Tefera, N.; Minot, N.; Ayele, G. Can modern input use be promoted without subsidies? An analysis of fertilizer in Ethiopia. Agric. Econ. 2013, 44, 595–611. [Google Scholar] [CrossRef]
- India Briefing. India’s Farm Mechanization Sector: Opportunities and Challenges. Available online: https://www.india-briefing.com/news/india-farm-mechanization-sector-opportunities-challenges-31243.html (accessed on 25 May 2025).
- Tufa, A.H.; Alene, A.D.; Cole, S.M.; Manda, J.; Feleke, S.; Abdoulaye, T.; Chikoye, D.; Manyong, V. Gender differences in technology adoption and agricultural productivity: Evidence from Malawi. World Dev. 2022, 159, 106027. [Google Scholar] [CrossRef]
- Kebede, H.A. Risk aversion and gender gaps in technology adoption by smallholder farmers: Evidence from Ethiopia. J. Dev. Stud. 2022, 58, 1668–1692. [Google Scholar] [CrossRef]
- Hailemariam, A.; Kalsi, J.; Mavisakalyan, A. Gender gaps in the adoption of climate-smart agricultural practices: Evidence from sub-S aharan A frica. J. Agric. Econ. 2024, 75, 764–793. [Google Scholar] [CrossRef]
- Barnes, A.P.; Soto, I.; Eory, V.; Beck, B.; Balafoutis, A.; Sánchez, B.; Vangeyte, J.; Gómez-Barbero, M. Exploring the adoption of precision agricultural technologies: A cross regional study of EU farmers. Land Use Policy 2019, 80, 163–174. [Google Scholar] [CrossRef]
- Giua, C.; Materia, V.C.; Camanzi, L. Smart farming technologies adoption: Which factors play a role in the digital transition? Technol. Soc. 2022, 68, 101869. [Google Scholar] [CrossRef]
- Ersado, L.; Amacher, G.; Alwang, J. Productivity and land enhancing technologies in northern Ethiopia: Health, public investments, and sequential adoption. Am. J. Agric. Econ. 2004, 86, 321–331. [Google Scholar] [CrossRef]
- Han, H.; Zou, K.; Yuan, Z. Capital endowments and adoption of agricultural green production technologies in China: A meta-regression analysis review. Sci. Total Environ. 2023, 897, 165175. [Google Scholar] [CrossRef]
- Mohammed, K.; Batung, E.; Saaka, S.A.; Kansanga, M.M.; Luginaah, I. Determinants of mechanized technology adoption in smallholder agriculture: Implications for agricultural policy. Land Use Policy 2023, 129, 106666. [Google Scholar] [CrossRef]
- Shang, L.; Heckelei, T.; Gerullis, M.K.; Börner, J.; Rasch, S. Adoption and diffusion of digital farming technologies-integrating farm-level evidence and system interaction. Agric. Syst. 2021, 190, 103074. [Google Scholar] [CrossRef]
- Curry, G.N.; Nake, S.; Koczberski, G.; Oswald, M.; Rafflegeau, S.; Lummani, J.; Peter, E.; Nailina, R. Disruptive innovation in agriculture: Socio-cultural factors in technology adoption in the developing world. J. Rural Stud. 2021, 88, 422–431. [Google Scholar] [CrossRef]
- Mgendi, G.; Mao, S.; Qiao, F. Does agricultural training and demonstration matter in technology adoption? The empirical evidence from small rice farmers in Tanzania. Technol. Soc. 2022, 70, 102024. [Google Scholar] [CrossRef]
- Feder, G.; Umali, D.L. The adoption of agricultural innovations: A review. Technol. Forecast. Soc. Change 1993, 43, 215–239. [Google Scholar] [CrossRef]
- Li, J.; Liu, G.; Chen, Y.; Li, R. Study on the influence mechanism of adoption of smart agriculture technology behavior. Sci. Rep. 2023, 13, 8554. [Google Scholar] [CrossRef]
- Omotilewa, O.J.; Ricker-Gilbert, J.; Ainembabazi, J.H. Subsidies for agricultural technology adoption: Evidence from a randomized experiment with improved grain storage bags in Uganda. Am. J. Agric. Econ. 2019, 101, 753–772. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Liu, R.; Ma, H.; Zhong, K.; Wang, J.; Xu, Y. The Impact of Social Capital on Farmers’ Willingness to Adopt New Agricultural Technologies: Empirical Evidence from China. Agriculture 2022, 12, 1368. [Google Scholar] [CrossRef]
- Gao, X.; Shi, X.; Fang, S. Property rights and misallocation: Evidence from land certification in China. World Dev. 2021, 147, 105632. [Google Scholar] [CrossRef]
- Bohn, H.; Deacon, R.T. Ownership risk, investment, and the use of natural resources. Am. Econ. Rev. 2000, 90, 526–549. [Google Scholar] [CrossRef]
- Lemley, M.A. Property, Intellectual Property, and Free Riding. Tex. Law Rev. 2005, 83, 1031. [Google Scholar] [CrossRef]
- Pan, L.; Wan, H.; Cui, X. Exploring the Impact of Land Certification on Centralized Transfer in Rural China: The Roles of Timing, Inequality, and Governance. Land 2024, 13, 2022. [Google Scholar] [CrossRef]
- Rasul, G.; Thapa, G.B.; Zoebisch, M.A. Determinants of land-use changes in the Chittagong Hill Tracts of Bangladesh. Appl. Geogr. 2004, 24, 217–240. [Google Scholar] [CrossRef]
- Beg, S. Digitization and development: Property rights security, and land and labor markets. J. Eur. Econ. Assoc. 2022, 20, 395–429. [Google Scholar] [CrossRef]
- Galiani, S.; Schargrodsky, E. Land property rights and resource allocation. J. Law Econ. 2011, 54, S329–S345. [Google Scholar] [CrossRef]
- Alston, L.J.; Libecap, G.D.; Schneider, R. The determinants and impact of property rights: Land titles on the Brazilian frontier. J. Law Econ. Organ. 1996, 12, 25–61. [Google Scholar] [CrossRef]
- Besley, T. Property rights and investment incentives: Theory and evidence from Ghana. J. Political Econ. 1995, 103, 903–937. [Google Scholar] [CrossRef]
- Wang, H.; Riedinger, J.; Jin, S. Land documents, tenure security and land rental development: Panel evidence from China. China Econ. Rev. 2015, 36, 220–235. [Google Scholar] [CrossRef]
- Zheng, L.; Qian, W. The impact of land certification on cropland abandonment: Evidence from rural China. China Agric. Econ. Rev. 2021, 14, 509–526. [Google Scholar] [CrossRef]
- Feder, G.; Onchan, T. Land ownership security and farm investment in Thailand. Am. J. Agric. Econ. 1987, 69, 311–320. [Google Scholar] [CrossRef]
- Diendéré, A.A.; Wadio, J.P. Land tenure rights and short-and long-term agricultural practices: Empirical evidence from Burkina Faso. J. Agric. Appl. Econ. 2023, 55, 238–255. [Google Scholar] [CrossRef]
- Ma, X.; Heerink, N.; Van Ierland, E.; Van Den Berg, M.; Shi, X. Land tenure security and land investments in Northwest China. China Agric. Econ. Rev. 2013, 5, 281–307. [Google Scholar] [CrossRef]
- Deininger, K.; Ali, D.A.; Alemu, T. Impacts of land certification on tenure security, investment, and land market participation: Evidence from Ethiopia. Land Econ. 2011, 87, 312–334. [Google Scholar] [CrossRef]
- Ren, G.; Zhu, X.; Heerink, N.; Feng, S.; van Ierland, E. Perceptions of land tenure security in rural China: The impact of land reallocations and certification. Soc. Nat. Resour. 2019, 32, 1399–1415. [Google Scholar] [CrossRef]
- Williamson, O.E. The economics of organization: The transaction cost approach. Am. J. Sociol. 1981, 87, 548–577. [Google Scholar] [CrossRef]
- Fei, R.; Lin, Z.; Chunga, J. How land transfer affects agricultural land use efficiency: Evidence from China’s agricultural sector. Land Use Policy 2021, 103, 105300. [Google Scholar] [CrossRef]
- Hu, Y.; Li, B.; Zhang, Z.; Wang, J. Farm size and agricultural technology progress: Evidence from China. J. Rural Stud. 2022, 93, 417–429. [Google Scholar] [CrossRef]
- Xu, D.; Liu, Y.; Li, Y.; Liu, S.; Liu, G. Effect of farmland scale on agricultural green production technology adoption: Evidence from rice farmers in Jiangsu Province, China. Land Use Policy 2024, 147, 107381. [Google Scholar] [CrossRef]
- Huangfu, B.; Gao, X.; Shi, X.; Jin, S. Move out of the land: Certification and migration in China. Eur. Rev. Agric. Econ. 2024, 51, 927–966. [Google Scholar] [CrossRef]
- Strauss, J.; Barbosa, M.; Teixeira, S.; Thomas, D.; Junior, R.G. Role of education and extension in the adoption of technology: A study of upland rice and soybean farmers in Central-West Brazil. Agric. Econ. 1991, 5, 341–359. [Google Scholar] [CrossRef]
- Takahashi, K.; Muraoka, R.; Otsuka, K. Technology adoption, impact, and extension in developing countries’ agriculture: A review of the recent literature. Agric. Econ. 2020, 51, 31–45. [Google Scholar] [CrossRef]
- Li, F.; Zhang, J.; Ma, C. Does family life cycle influence farm households’ adoption decisions concerning sustainable agricultural technology? J. Appl. Econ. 2022, 25, 121–144. [Google Scholar] [CrossRef]
- Wang, X.; Huang, J.; Rozelle, S. Off-farm employment and agricultural specialization in China. China Econ. Rev. 2017, 42, 155–165. [Google Scholar] [CrossRef]
- Wu, F. Adoption and income effects of new agricultural technology on family farms in China. PLoS ONE 2022, 17, e0267101. [Google Scholar] [CrossRef]
- Gebresilasse, M. Rural roads, agricultural extension, and productivity. J. Dev. Econ. 2023, 162, 103048. [Google Scholar] [CrossRef]
- Snapp, S.S.; Rohrbach, D.D.; Simtowe, F.; Freeman, H.A. Sustainable soil management options for Malawi: Can smallholder farmers grow more legumes? Agric. Ecosyst. Environ. 2002, 91, 159–174. [Google Scholar] [CrossRef]
- Bigot, Y.; Bigot, Y.; Binswanger, H.P. Agricultural Mechanization and the Evolution of Farming Systems in Sub-Saharan Africa; Johns Hopkins University Press: Baltimore, MD, USA, 1987. [Google Scholar]
- Wooldridge, J.M. Econometric Analysis of Cross Section and Panel Data; MIT Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Feder, G.; Just, R.E.; Zilberman, D. Adoption of agricultural innovations in develop countries: A survey. Econ. Dev. Cult. Change 1985, 33, 255–298. [Google Scholar] [CrossRef]
- Abate, G.T.; Rashid, S.; Borzaga, C.; Getnet, K. Rural finance and agricultural technology adoption in Ethiopia: Does the institutional design of lending organizations matter? World Dev. 2016, 84, 235–253. [Google Scholar] [CrossRef]
- Ma, G.; Lv, D.; Jiang, T.; Luo, Y. Can Land Transfer Promote Agricultural Green Transformation? The Empirical Evidence from China. Sustainability 2023, 15, 13570. [Google Scholar] [CrossRef]
- Chen, S.; Lan, X. Tractor vs. animal: Rural reforms and technology adoption in China. J. Dev. Econ. 2020, 147, 102536. [Google Scholar] [CrossRef]
- Abdulai, A.; Owusu, V.; Goetz, R. Land tenure differences and investment in land improvement measures: Theoretical and empirical analyses. J. Dev. Econ. 2011, 96, 66–78. [Google Scholar] [CrossRef]
- Lawry, S.; Samii, C.; Hall, R.; Leopold, A.; Hornby, D.; Mtero, F. The impact of land property rights interventions on investment and agricultural productivity in developing countries: A systematic review. J. Dev. Eff. 2017, 9, 61–81. [Google Scholar] [CrossRef]
- Li, G.; Rozelle, S.; Brandt, L. Tenure, land rights, and farmer investment incentives in China. Agric. Econ. 1998, 19, 63–71. [Google Scholar] [CrossRef]
- Jiang, M.; Paudel, K.P.; Peng, D.; Mi, Y. Financial inclusion, land title and credit: Evidence from China. China Agric. Econ. Rev. 2020, 12, 257–273. [Google Scholar] [CrossRef]
- Ma, X.; Heerink, N.; Feng, S.; Shi, X. Land tenure security and technical efficiency: New insights from a case study in Northwest China. Environ. Dev. Econ. 2017, 22, 305–327. [Google Scholar] [CrossRef]
- Yan, Z.; Wei, F.; Deng, X.; Li, C.; Qi, Y. Does land expropriation experience increase farmers’ farmland value expectations? Empirical evidence from the People’s Republic of China. Land 2021, 10, 646. [Google Scholar] [CrossRef]
- Kan, K. Creating land markets for rural revitalization: Land transfer, property rights and gentrification in China. J. Rural Stud. 2021, 81, 68–77. [Google Scholar] [CrossRef]
- North, D.C. Institutions, Institutional Change and Economic Performance; Cambridge University Press: New York, NY, USA, 1990. [Google Scholar]
- Holden, S.T.; Ghebru, H. Land tenure reforms, tenure security and food security in poor agrarian economies: Causal linkages and research gaps. Glob. Food Secur. 2016, 10, 21–28. [Google Scholar] [CrossRef]
Variables | Define | Mean | Std |
---|---|---|---|
ATA | Number of ATA adopted by farmers | 0.44 | 0.94 |
LC | 0 = not certified, 1 = certified | 0.93 | 0.25 |
CAC | Logarithm of bank loans in the past year (yuan) | 2.86 | 5.11 |
LIW | 1 = Support land reallocation 2 = Support maintaining current allocation | 0.51 | 0.5 |
POS | Total area of production and operation scale (mu) | 18.24 | 67.04 |
VCD | Village certification duration (year) | 3.59 | 1.63 |
Gender | 0 = Female, 1 = Male | 0.72 | 0.45 |
Age | Age | 61.33 | 11.32 |
Hukou | 0 = Non-agricultural hukou, 1 = Agricultural hukou | 0.96 | 0.2 |
Education | Years of education | 7.13 | 3.98 |
Health | 1 = Disabled, 2 = Poor, 3 = Fair, 4 = Good, 5 = Excellent | 3.98 | 1.07 |
Days | Days engaged in agricultural labor in the past year | 74.83 | 98.32 |
Agrilabor | Number of family members engaged in agricultural labor | 1.43 | 1.02 |
In_income | Logarithm of household non-farm wage income (yuan) | 4.68 | 5.09 |
In_deposits | Logarithm of household deposits (yuan) | 6.31 | 5.26 |
Assets | Number of productive assets | 0.61 | 2.26 |
Slope | 1 = Depression land, 2 = Flat land, 3 = Slope land, 4 = Other | 2.02 | 0.43 |
Span | Distance to nearest road (km) | 1.55 | 16.33 |
Soil | 1 = Sandy soil; 2 = Loam; 3 = Clay soil; 4 = Other | 2.67 | 20.09 |
Fertility | 1 = Poor, 2 = Fair, 3 = Good | 2.43 | 0.62 |
Variables | (1) | (2) | (3) |
---|---|---|---|
ATA | ATA | ATA | |
LC | 0.194 ** | 0.207 ** | 0.217 ** |
(0.079) | (0.098) | (0.100) | |
Gender | 0.308 *** | 0.292 *** | |
(0.067) | (0.068) | ||
Age | −0.001 | −0.002 | |
(0.003) | (0.003) | ||
Hukou | 0.029 | 0.052 | |
(0.135) | (0.137) | ||
Education | 0.048 *** | 0.043 *** | |
(0.008) | (0.008) | ||
Health | −0.001 | −0.008 | |
(0.029) | (0.029) | ||
Days | 0.001 ** | 0.001 * | |
(0.0004) | (0.0004) | ||
Agrilabor | 0.126 *** | 0.117 *** | |
(0.027) | (0.027) | ||
In_income | 0.019 *** | 0.032 *** | |
(0.006) | (0.007) | ||
In_deposits | 0.095 *** | 0.091 *** | |
(0.011) | (0.011) | ||
Slope | −0.058 | −0.070 | |
(0.085) | (0.096) | ||
Span | −0.003 | −0.003 | |
(0.003) | (0.003) | ||
Soil | −0.038 | −0.022 | |
(0.030) | (0.030) | ||
Fertility | 0.047 | 0.062 | |
(0.044) | (0.045) | ||
Fixed effects | No | No | Yes |
Observations | 4936 | 4936 | 4936 |
Variables | (1) | (2) | (3) |
---|---|---|---|
ATA | ATA | ATA | |
LC | 0.217 * | 0.079 ** | 0.313 ** |
(0.113) | (0.036) | (0.126) | |
Control variables | control | control | control |
Fixed effects | Yes | Yes | Yes |
Observations | 4936 | 4936 | 3798 |
Variables | (1) | (2) |
---|---|---|
LC | ATA | |
2SLS—First Stage | 2SLS—Second Stage | |
LC | 0.133 * | |
(0.069) | ||
VCD | 0.031 ** (0.014) | |
Control variables | Yes | Yes |
F-statistic in the first stage | 53.1 *** | |
Observations | 4936 | 4936 |
Variables | (1) | (2) |
---|---|---|
ATA | ATA | |
LC | 0.105 *** | 0.026 *** |
(0.008) | (0.007) | |
Education | 0.024 * | |
(0.011) | ||
In_deposits | 0.019 *** | |
(0.003) | ||
LC*Education | 0.071 *** | |
(0.013) | ||
LC * In_deposits | 0.013 * | |
(0.008) | ||
Control variables | control | control |
Fixed effects | Yes | Yes |
Observations | 4936 | 4936 |
Variables | (1) | (2) | (3) | (4) |
---|---|---|---|---|
ATA | CAC | LIW | POS | |
LC | 0.420 ** (0.206) | 1.617 *** (0.569) | 0.059 ** (0.029) | |
CAC | 0.021 ** (0.010) | |||
LIW | 0.014 ** (0.006) | |||
POS | 0.012 *** (0.004) | |||
Control variables | Control | Control | Control | Control |
Fixed effects | Yes | Yes | Yes | Yes |
Observations | 4936 | 4936 | 4936 | 4936 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhan, Y.; Zhan, X.; Wu, M. Institutional Change and Agricultural Modernization: The Impact of Land Certification on Agricultural Technology Adoption. Land 2025, 14, 1420. https://doi.org/10.3390/land14071420
Zhan Y, Zhan X, Wu M. Institutional Change and Agricultural Modernization: The Impact of Land Certification on Agricultural Technology Adoption. Land. 2025; 14(7):1420. https://doi.org/10.3390/land14071420
Chicago/Turabian StyleZhan, Yong, Xiaoyi Zhan, and Min Wu. 2025. "Institutional Change and Agricultural Modernization: The Impact of Land Certification on Agricultural Technology Adoption" Land 14, no. 7: 1420. https://doi.org/10.3390/land14071420
APA StyleZhan, Y., Zhan, X., & Wu, M. (2025). Institutional Change and Agricultural Modernization: The Impact of Land Certification on Agricultural Technology Adoption. Land, 14(7), 1420. https://doi.org/10.3390/land14071420