Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,848)

Search Parameters:
Keywords = agricultural economic analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 610 KiB  
Article
The Effectiveness of Subsidizing Investments in Polish Agriculture: A Propensity Score Matching Approach
by Cezary Klimkowski
Agriculture 2025, 15(15), 1708; https://doi.org/10.3390/agriculture15151708 (registering DOI) - 7 Aug 2025
Abstract
Evaluation of the effectiveness of state policy instruments is a permanent element of economic science. This paper addresses the issue of investment support under the Common Agricultural Policy (CAP). Using data on Polish farms from 2015–2023, a Propensity Score Matching–Difference in Differences (PSM-DiD) [...] Read more.
Evaluation of the effectiveness of state policy instruments is a permanent element of economic science. This paper addresses the issue of investment support under the Common Agricultural Policy (CAP). Using data on Polish farms from 2015–2023, a Propensity Score Matching–Difference in Differences (PSM-DiD) analysis was conducted to assess changes in the economic results of agricultural producers that invest using this support. The comparison of the economic results achieved by supported investors with both non-investing agricultural producers and unsupported investors is a distinguishing element of this study. The relatively rarely used Competitivness Index (CI), which measures the ratio of earned income to the sum of the alternative use of the owned means of production, was used. The positive change in the CI during the analyzed period was 0.14 higher for supported investors than non-investors. No statistically significant change was found were compared to unsupported investors. A clear increase in income, total fixed assets, liabilities, and the level of production in the population of producers using support in relation to non-investors and investing without CAP support was also observed. However, in relationships with investors using their own funds, these differences were mainly due to the difference in the level of investments and were not statistically significant when introducing a correction regarding the scale of the investment. The obtained results remain in line with the results of research shown by a significant part of economists undertaking a similar issue. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

47 pages, 11661 KiB  
Article
Reintegrating Marginalized Rural Heritage: The Adaptive Potential of Barn Districts in Central Europe’s Cultural Landscapes
by Elżbieta Komarzyńska-Świeściak and Anna Alicja Wancel
Sustainability 2025, 17(15), 7166; https://doi.org/10.3390/su17157166 (registering DOI) - 7 Aug 2025
Abstract
Barn districts—ensembles of agricultural buildings situated at the edges of rural settlements—once played a key role in the spatial and economic organization of agrarian communities in Central Europe. Today, many of these structures remain marginalized and underexplored in contemporary landscape and heritage planning. [...] Read more.
Barn districts—ensembles of agricultural buildings situated at the edges of rural settlements—once played a key role in the spatial and economic organization of agrarian communities in Central Europe. Today, many of these structures remain marginalized and underexplored in contemporary landscape and heritage planning. This paper presents a comparative study of six barn districts in Poland’s Kraków-Częstochowa Upland, where vernacular construction, ecological adaptation, and local tradition shaped distinctive rural–urban interfaces. We applied a mixed-methods approach combining cartographic and archival analysis, field surveys, and interviews with residents and experts. The research reveals consistent patterns of landscape transformation, functional decline, and latent adaptive potential across varied morphological and material typologies. Despite differing levels of preservation, barn districts retain symbolic, spatial, and socio-cultural value for communities and local landscapes. The study emphasizes the importance of reintegrating these marginal heritage structures through adaptive reuse strategies rooted in the values of the New European Bauhaus—sustainability, aesthetics, and inclusion. The findings contribute to broader discussions on rural socio-ecological resilience and landscape-based development, highlighting how place-based strategies can bridge past identities with future-oriented spatial planning. Full article
23 pages, 7494 KiB  
Article
Temporal and Spatial Evolution of Grey Water Footprint in the Huai River Basin and Its Influencing Factors
by Xi Wang, Yushuo Zhang, Qi Wang, Jing Xu, Fuju Xie and Weiying Xu
Sustainability 2025, 17(15), 7157; https://doi.org/10.3390/su17157157 (registering DOI) - 7 Aug 2025
Abstract
To evaluate water pollution status and sustainable development potential in the Huai River Basin, this study focused on the spatiotemporal evolution and influencing factors of the grey water footprint (GWF) across 35 cities in the basin from 2005 to 2020. This study quantifies [...] Read more.
To evaluate water pollution status and sustainable development potential in the Huai River Basin, this study focused on the spatiotemporal evolution and influencing factors of the grey water footprint (GWF) across 35 cities in the basin from 2005 to 2020. This study quantifies the GWF from agricultural, industrial, and domestic perspectives and analyzes its spatial disparities by incorporating spatial autocorrelation analysis. The Tapio decoupling model was applied to explore the relationship between pollution and economic growth, and geographic detectors along with the STIRPAT model were utilized to identify driving factors. The results revealed no significant global spatial clustering of GWF in the basin, but a pattern of “high in the east and west, low in the north and south” emerged, with high-value areas concentrated in southern Henan and northern Jiangsu. By 2020, 85.7% of cities achieved strong decoupling, indicating improved coordination between the environment and economy. Key driving factors included primary industry output, crop sown area, and grey water footprint intensity, with a notable interaction between agricultural output and grey water footprint intensity. The quantitative analysis based on the STIRPAT model demonstrated that seven factors, including grey water footprint intensity and total crop sown area, exhibited significant contributions to influencing variations. Ranked by importance, these factors were grey water footprint intensity > total crop sown area > urbanization rate > population size > secondary industry output > primary industry output > industrial wastewater discharge, collectively explaining 90.2% of the variability in GWF. The study provides a robust scientific basis for water pollution control and differentiated management in the river basin and holds significant importance for promoting sustainable development of the basin. Full article
Show Figures

Figure 1

17 pages, 2727 KiB  
Article
Local Perspectives on the Role of Dams in Altering River Ecosystem Services in West Africa
by Jean Hounkpe, Yaovi Aymar Bossa, Félicien Djigbo Badou, Flaurine Nouasse, Koupamba Gisèle Sanni Sinasson, Issoufou Yangouliba, Afissétou L. D. Bio Salifou, Irette Kodjogbe, Yacouba Yira, Ozias Hounkpatin, Luc O. C. Sintondji and Daouda Mama
Earth 2025, 6(3), 93; https://doi.org/10.3390/earth6030093 - 7 Aug 2025
Abstract
Water-related ecosystem services provide a broad range of benefits, including the mitigation of extreme hydrometeorological events, the provision of water for various uses, the support of tourism, and the provision of cultural services. This study assesses the perceptions and accessibility of these services [...] Read more.
Water-related ecosystem services provide a broad range of benefits, including the mitigation of extreme hydrometeorological events, the provision of water for various uses, the support of tourism, and the provision of cultural services. This study assesses the perceptions and accessibility of these services among communities located near the Alafiarou and Okpara dams in Benin and the Bagré dam in Burkina Faso. The methodology involved designing and implementing a questionnaire in KoboCollect, with trained agents deployed to conduct data collection at each of the three sites. Data analysis indicates that respondents identified biodiversity conservation and the provision of drinking water as the most crucial ecosystem services. Over two-thirds of participants reported observing both positive and negative changes in the services provided by rivers and in socio-economic activities since the construction of the dams. While the majority noted improvements in agriculture, irrigation, water quality, fisheries, and flow rates, other changes included biodiversity loss, a decrease in vegetation cover (notably trees and shrubs), an increase in the population of mosquitoes and other insects, and a decline in fishery resources downstream. Despite these challenges, local communities were strongly willing to participate in initiatives aimed at protecting and restoring river ecosystems and their related services. Full article
Show Figures

Figure 1

18 pages, 1891 KiB  
Systematic Review
Circular Agriculture Models: A Systematic Review of Academic Contributions
by Wilma Guerrero-Villegas, Maribel Rosero-Rosero, Eleonora-Melissa Layana-Bajana and Héctor Villares-Villafuerte
Sustainability 2025, 17(15), 7146; https://doi.org/10.3390/su17157146 - 7 Aug 2025
Abstract
This study contributes to scientific theory by analyzing the models proposed within the framework of circular agriculture to determine how the three dimensions of sustainability—environmental, economic, and social—are integrated into their implementation. A systematic review was conducted on articles published between 2016 and [...] Read more.
This study contributes to scientific theory by analyzing the models proposed within the framework of circular agriculture to determine how the three dimensions of sustainability—environmental, economic, and social—are integrated into their implementation. A systematic review was conducted on articles published between 2016 and 2025, indexed in the Scopus and Web of Science databases, as well as the relevant grey literature. The methodology employed an extensive content analysis designed to minimize bias, applying filters related to specific knowledge areas to delimitate the search scope and enhance the precision of the research. The findings reveal that the research on circular agriculture models is predominantly grounded in the principles of the circular economy and its associated indicators. Moreover, these models tend to focus on environmental metrics, often neglecting a comprehensive exploration of the social and economic dimensions of sustainable development. It can be concluded that a significant gap persists in the literature regarding the circularity of agriculture and its socio-economic impacts and the role of regulatory frameworks, aspects that future research must address in order to achieve sustainability in circular agriculture. Full article
(This article belongs to the Special Issue Resource Management and Circular Economy Sustainability)
Show Figures

Figure 1

21 pages, 1788 KiB  
Article
Investigation, Prospects, and Economic Scenarios for the Use of Biochar in Small-Scale Agriculture in Tropical
by Vinicius John, Ana Rita de Oliveira Braga, Criscian Kellen Amaro de Oliveira Danielli, Heiriane Martins Sousa, Filipe Eduardo Danielli, Newton Paulo de Souza Falcão, João Guerra, Dimas José Lasmar and Cláudia S. C. Marques-dos-Santos
Agriculture 2025, 15(15), 1700; https://doi.org/10.3390/agriculture15151700 - 6 Aug 2025
Abstract
This study investigates the production and economic feasibility of biochar for smallholder and family farms in Central Amazonia, with potential implications for other tropical regions. The costs of construction of a prototype mobile kiln and biochar production were evaluated, using small-sized biomass from [...] Read more.
This study investigates the production and economic feasibility of biochar for smallholder and family farms in Central Amazonia, with potential implications for other tropical regions. The costs of construction of a prototype mobile kiln and biochar production were evaluated, using small-sized biomass from acai (Euterpe oleracea Mart.) agro-industrial residues as feedstock. The biochar produced was characterised in terms of its liming capacity (calcium carbonate equivalence, CaCO3eq), nutrient content via organic fertilisation methods, and ash analysis by ICP-OES. Field trials with cowpea assessed economic outcomes, as well scenarios of fractional biochar application and cost comparison between biochar production in the prototype kiln and a traditional earth-brick kiln. The prototype kiln showed production costs of USD 0.87–2.06 kg−1, whereas traditional kiln significantly reduced costs (USD 0.03–0.08 kg−1). Biochar application alone increased cowpea revenue by 34%, while combining biochar and lime raised cowpea revenues by up to 84.6%. Owing to high input costs and the low value of the crop, the control treatment generated greater net revenue compared to treatments using lime alone. Moreover, biochar produced in traditional kilns provided a 94% increase in net revenue compared to liming. The estimated externalities indicated that carbon credits represented the most significant potential source of income (USD 2217 ha−1). Finally, fractional biochar application in ten years can retain over 97% of soil carbon content, demonstrating potential for sustainable agriculture and carbon sequestration and a potential further motivation for farmers if integrated into carbon markets. Public policies and technological adaptations are essential for facilitating biochar adoption by small-scale tropical farmers. Full article
(This article belongs to the Special Issue Converting and Recycling of Agroforestry Residues)
Show Figures

Figure 1

22 pages, 10285 KiB  
Article
Biophysical and Social Constraints of Restoring Ecosystem Services in the Border Regions of Tibet, China
by Lizhi Jia, Silin Liu, Xinjie Zha and Ting Hua
Land 2025, 14(8), 1601; https://doi.org/10.3390/land14081601 - 6 Aug 2025
Abstract
Ecosystem restoration represents a promising solution for enhancing ecosystem services and environmental sustainability. However, border regions—characterized by ecological fragility and geopolitical complexity—remain underrepresented in ecosystem service and restoration research. To fill this gap, we coupled spatially explicit models (e.g., InVEST and RUSLE) with [...] Read more.
Ecosystem restoration represents a promising solution for enhancing ecosystem services and environmental sustainability. However, border regions—characterized by ecological fragility and geopolitical complexity—remain underrepresented in ecosystem service and restoration research. To fill this gap, we coupled spatially explicit models (e.g., InVEST and RUSLE) with scenario analysis to quantify the ecosystem service potential that could be achieved in China’s Tibetan borderlands under two interacting agendas: ecological restoration and border-strengthening policies. Restoration feasibility was evaluated through combining local biophysical constraints, economic viability (via restoration-induced carbon gains vs. opportunity costs), operational practicality, and simulated infrastructure expansion. The results showed that per-unit-area ecosystem services in border counties (particularly Medog, Cona, and Zayu) exceed that of interior Tibet by a factor of two to four. Combining these various constraints, approximately 4–17% of the border zone remains cost-effective for grassland or forest restoration. Under low carbon pricing (US$10 t−1 CO2), the carbon revenue generated through restoration is insufficient to offset the opportunity cost of agricultural production, constituting a major constraint. Habitat quality, soil conservation, and carbon sequestration increase modestly when induced by restoration, but a pronounced carbon–water trade-off emerges. Planned infrastructure reduces restoration benefits only slightly, whereas raising the carbon price to about US$50 t−1 CO2 substantially expands such benefits. These findings highlight both the opportunities and limits of ecosystem restoration in border regions and point to carbon pricing as the key policy lever for unlocking cost-effective restoration. Full article
(This article belongs to the Special Issue The Role of Land Policy in Shaping Rural Development Outcomes)
Show Figures

Figure 1

30 pages, 20256 KiB  
Article
From Fields to Finance: Dynamic Connectedness and Optimal Portfolio Strategies Among Agricultural Commodities, Oil, and Stock Markets
by Xuan Tu and David Leatham
Int. J. Financial Stud. 2025, 13(3), 143; https://doi.org/10.3390/ijfs13030143 - 6 Aug 2025
Abstract
In this study, we investigate the return propagation mechanism, hedging effectiveness, and portfolio performance across several common agricultural commodities, crude oil, and S&P 500 index, ranging from July 2000 to June 2024 by using a time-varying parameter vector autoregression (TVP-VAR) connectedness approach and [...] Read more.
In this study, we investigate the return propagation mechanism, hedging effectiveness, and portfolio performance across several common agricultural commodities, crude oil, and S&P 500 index, ranging from July 2000 to June 2024 by using a time-varying parameter vector autoregression (TVP-VAR) connectedness approach and three common multiple assets portfolio optimization strategies. The empirical results show that, the total connectedness peaked during the 2008 global financial crisis, followed by the European debt crisis and the COVID-19 pandemic, while it remained relatively lower at the onset of the Russia-Ukraine conflict. In the transmission mechanism, commodities and S&P 500 index exhibit distinct and dynamic characteristics as transmitters or receivers. Portfolio analysis reveals that, with exception of the COVID-19 pandemic, all three dynamic portfolios outperform the S&P 500 benchmark across major global crises. Additionally, the minimum correlation and minimum connectedness strategies are superior than transitional minimum variance method in most scenarios. Our findings have implications for policymakers in preventing systemic risk, for investors in managing portfolio risk, and for farmers and agribusiness enterprises in enhancing economic benefits. Full article
Show Figures

Figure 1

19 pages, 1551 KiB  
Article
Genome-Wide Association Study Reveals Key Genetic Loci Controlling Oil Content in Soybean Seeds
by Xueyang Wang, Min Zhang, Fuxin Li, Xiulin Liu, Chunlei Zhang, Fengyi Zhang, Kezhen Zhao, Rongqiang Yuan, Sobhi F. Lamlom, Honglei Ren, Hongmei Qiu and Bixian Zhang
Agronomy 2025, 15(8), 1889; https://doi.org/10.3390/agronomy15081889 - 5 Aug 2025
Abstract
Seed oil represents a key trait in soybeans, which holds substantial economic significance, contributing to roughly 60% of global oilseed production. This research employed genome-wide association mapping to identify genetic loci associated with oil content in soybean seeds. A panel comprising 341 soybean [...] Read more.
Seed oil represents a key trait in soybeans, which holds substantial economic significance, contributing to roughly 60% of global oilseed production. This research employed genome-wide association mapping to identify genetic loci associated with oil content in soybean seeds. A panel comprising 341 soybean accessions, primarily sourced from Northeast China, was assessed for seed oil content at Heilongjiang Province in three replications over two growing seasons (2021 and 2023) and underwent genotyping via whole-genome resequencing, resulting in 1,048,576 high-quality SNP markers. Phenotypic analysis indicated notable variation in oil content, ranging from 11.00% to 21.77%, with an average increase of 1.73% to 2.28% across all growing regions between 2021 and 2023. A genome-wide association study (GWAS) analysis revealed 119 significant single-nucleotide polymorphism (SNP) loci associated with oil content, with a prominent cluster of 77 SNPs located on chromosome 8. Candidate gene analysis identified four key genes potentially implicated in oil content regulation, selected based on proximity to significant SNPs (≤10 kb) and functional annotation related to lipid metabolism and signal transduction. Notably, Glyma.08G123500, encoding a receptor-like kinase involved in signal transduction, contained multiple significant SNPs with PROVEAN scores ranging from deleterious (−1.633) to neutral (0.933), indicating complex functional impacts on protein function. Additional candidate genes include Glyma.08G110000 (hydroxycinnamoyl-CoA transferase), Glyma.08G117400 (PPR repeat protein), and Glyma.08G117600 (WD40 repeat protein), each showing distinct expression patterns and functional roles. Some SNP clusters were associated with increased oil content, while others correlated with decreased oil content, indicating complex genetic regulation of this trait. The findings provide molecular markers with potential for marker-assisted selection (MAS) in breeding programs aimed at increasing soybean oil content and enhancing our understanding of the genetic architecture governing this critical agricultural trait. Full article
Show Figures

Figure 1

20 pages, 4055 KiB  
Article
Biphasic Salt Effects on Lycium ruthenicum Germination and Growth Linked to Carbon Fixation and Photosynthesis Gene Expression
by Xinmeng Qiao, Ruyuan Wang, Lanying Liu, Boya Cui, Xinrui Zhao, Min Yin, Pirui Li, Xu Feng and Yu Shan
Int. J. Mol. Sci. 2025, 26(15), 7537; https://doi.org/10.3390/ijms26157537 - 4 Aug 2025
Viewed by 166
Abstract
Since the onset of industrialization, the safety of arable land has become a pressing global concern, with soil salinization emerging as a critical threat to agricultural productivity and food security. To address this challenge, the cultivation of economically valuable salt-tolerant plants has been [...] Read more.
Since the onset of industrialization, the safety of arable land has become a pressing global concern, with soil salinization emerging as a critical threat to agricultural productivity and food security. To address this challenge, the cultivation of economically valuable salt-tolerant plants has been proposed as a viable strategy. In the study, we investigated the physiological and molecular responses of Lycium ruthenicum Murr. to varying NaCl concentrations. Results revealed a concentration-dependent dual effect: low NaCl levels significantly promoted seed germination, while high concentrations exerted strong inhibitory effects. To elucidate the mechanisms underlying these divergent responses, a combined analysis of metabolomics and transcriptomics was applied to identify key metabolic pathways and genes. Notably, salt stress enhanced photosynthetic efficiency through coordinated modulation of ribulose 5-phosphate and erythrose-4-phosphate levels, coupled with the upregulation of critical genes encoding RPIA (Ribose 5-phosphate isomerase A) and RuBisCO (Ribulose-1,5-bisphosphate carboxylase/oxygenase). Under low salt stress, L. ruthenicum maintained intact cellular membrane structures and minimized oxidative damage, thereby supporting germination and early growth. In contrast, high salinity severely disrupted PS I (Photosynthesis system I) functionality, blocking energy flow into this pathway while simultaneously inducing membrane lipid peroxidation and triggering pronounced cellular degradation. This ultimately suppressed seed germination rates and impaired root elongation. These findings suggested a mechanistic framework for understanding L. ruthenicum adaptation under salt stress and pointed out a new way for breeding salt-tolerant crops and understanding the mechanism. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

17 pages, 3208 KiB  
Article
The Spatiotemporal Evolution Characteristics of the Water Use Structure in Shandong Province, Northern China, Based on the Gini Coefficient
by Caihong Liu, Mingyuan Fan, Yongfeng Yang, Kairan Wang and Haijiao Liu
Water 2025, 17(15), 2315; https://doi.org/10.3390/w17152315 - 4 Aug 2025
Viewed by 164
Abstract
The spatiotemporal evolution of the regional water use structure holds significant theoretical value for optimizing regional water resource allocation, adjusting industrial structures, and achieving sustainable water resource development. Shandong Province, located at the lowest reach of the Yellow River Basin in China, is [...] Read more.
The spatiotemporal evolution of the regional water use structure holds significant theoretical value for optimizing regional water resource allocation, adjusting industrial structures, and achieving sustainable water resource development. Shandong Province, located at the lowest reach of the Yellow River Basin in China, is a major economic, agricultural, and populous province, as well as a region with one of the most prominent water supply–demand imbalances in the country. As a result, exploring how water use patterns change over time and space in this region has become crucial. Using analytical methods like the Lorenz curve, Gini coefficient, cluster analysis, and spatial statistics, we examine shifts in Shandong’s water use structure from 2001 to 2023. We find that while agriculture remained the largest water consumer over this period, industrial, household, and ecological water use steadily increased, signaling a move toward more balanced resource distribution. Across Shandong’s 16 regions (cities), the water use patterns varied considerably, particularly in terms of agriculture, industry, and ecological needs. Among these, agricultural, industrial, and domestic water use were distributed relatively evenly, whereas ecological water use showed greater regional disparities. These results may have the potential to guide policymakers in refining water allocation strategies, improving industrial planning, and boosting the water use efficiency in Shandong and the country ore broadly. Full article
(This article belongs to the Section Water Use and Scarcity)
Show Figures

Figure 1

15 pages, 5152 KiB  
Article
Assessment of Emergy, Environmental and Economic Sustainability of the Mango Orchard Production System in Hainan, China
by Yali Lei, Xiaohui Zhou and Hanting Cheng
Sustainability 2025, 17(15), 7030; https://doi.org/10.3390/su17157030 - 2 Aug 2025
Viewed by 252
Abstract
Mangoes are an important part of Hainan’s tropical characteristic agriculture. In response to the requirements of building an ecological civilization pilot demonstration zone in Hainan, China, green and sustainable development will be the future development trend of the mango planting system. However, the [...] Read more.
Mangoes are an important part of Hainan’s tropical characteristic agriculture. In response to the requirements of building an ecological civilization pilot demonstration zone in Hainan, China, green and sustainable development will be the future development trend of the mango planting system. However, the economic benefits and environmental impact during its planting and management process remain unclear. This paper combines emergy, life cycle assessment (LCA), and economic analysis to compare the system sustainability, environmental impact, and economic benefits of the traditional mango cultivation system (TM) in Dongfang City, Hainan Province, and the early-maturing mango cultivation system (EM) in Sanya City. The emergy evaluation results show that the total emergy input of EM (1.37 × 1016 sej ha−1) was higher than that of TM (1.32 × 1016 sej ha−1). From the perspective of the emergy index, compared with TM, EM exerted less pressure on the local environment and has better stability and sustainability. This was due to the higher input of renewable resources in EM. The LCA results showed that based on mass as the functional unit, the potential environmental impact of the EM is relatively high, and its total environmental impact index was 18.67–33.19% higher than that of the TM. Fertilizer input and On-Farm emissions were the main factors causing environmental consequences. Choosing alternative fertilizers that have a smaller impact on the environment may effectively reduce the environmental impact of the system. The economic analysis results showed that due to the higher selling price of early-maturing mango, the total profit and cost–benefit ratio of the EM have increased by 55.84% and 36.87%, respectively, compared with the TM. These results indicated that EM in Sanya City can enhance environmental sustainability and boost producers’ annual income, but attention should be paid to the negative environmental impact of excessive fertilizer input. These findings offer insights into optimizing agricultural inputs for Hainan mango production to mitigate multiple environmental impacts while enhancing economic benefits, aiming to provide theoretical support for promoting the sustainable development of the Hainan mango industry. Full article
Show Figures

Graphical abstract

20 pages, 7986 KiB  
Article
Investigating the Gender-Climate Nexus: Strengthening Women’s Roles in Adaptation and Mitigation in the Sidi Bouzid Region
by Houda Mazhoud, Arij Boucif, Abir Ouhibi, Lobna Hajji-Hedfi and Fraj Chemak
Climate 2025, 13(8), 164; https://doi.org/10.3390/cli13080164 - 1 Aug 2025
Viewed by 273
Abstract
Tunisia faces significant challenges related to climate change, which deeply affect its natural and agricultural resources. This reality threatens not only food security but also the economic stability of rural communities and mainly rural women. This research aims to assess the impact of [...] Read more.
Tunisia faces significant challenges related to climate change, which deeply affect its natural and agricultural resources. This reality threatens not only food security but also the economic stability of rural communities and mainly rural women. This research aims to assess the impact of climate change on rural women in the agricultural development group in Sidi Bouzid, focusing on the strategies adopted and the support provided by various stakeholders to mitigate this impact. To achieve this, we developed a rigorous methodology that includes structured questionnaires, focus group discussions, and topological analysis through Multiple Correspondence Analysis (MCA). The results revealed that rural women were categorized into three groups based on their vulnerability to climate change: severely vulnerable, vulnerable, and adaptive. The findings highlighted the significant impact of climate change on water resources, which has increased family tensions and reduced agricultural incomes, making daily life more challenging for rural women. Furthermore, a deeper analysis of interactions with external stakeholders emphasized the important role of civil society, public organizations, and research institutions in strengthening the climate resilience of rural women. Given these findings, strategic recommendations aim to enhance stakeholder coordination, expand partnerships, and improve access to essential technologies and resources for women in agricultural development groups. Full article
Show Figures

Figure 1

17 pages, 587 KiB  
Review
Exploring the Potential of Biochar in Enhancing U.S. Agriculture
by Saman Janaranjana Herath Bandara
Reg. Sci. Environ. Econ. 2025, 2(3), 23; https://doi.org/10.3390/rsee2030023 - 1 Aug 2025
Viewed by 202
Abstract
Biochar, a carbon-rich material derived from biomass, presents a sustainable solution to several pressing challenges in U.S. agriculture, including soil degradation, carbon emissions, and waste management. Despite global advancements, the U.S. biochar market remains underexplored in terms of economic viability, adoption potential, and [...] Read more.
Biochar, a carbon-rich material derived from biomass, presents a sustainable solution to several pressing challenges in U.S. agriculture, including soil degradation, carbon emissions, and waste management. Despite global advancements, the U.S. biochar market remains underexplored in terms of economic viability, adoption potential, and sector-specific applications. This narrative review synthesizes two decades of literature to examine biochar’s applications, production methods, and market dynamics, with a focus on its economic and environmental role within the United States. The review identifies biochar’s multifunctional benefits: enhancing soil fertility and crop productivity, sequestering carbon, reducing greenhouse gas emissions, and improving water quality. Recent empirical studies also highlight biochar’s economic feasibility across global contexts, with yield increases of up to 294% and net returns exceeding USD 5000 per hectare in optimized systems. Economically, the global biochar market grew from USD 156.4 million in 2021 to USD 610.3 million in 2023, with U.S. production reaching ~50,000 metric tons annually and a market value of USD 203.4 million in 2022. Forecasts project U.S. market growth at a CAGR of 11.3%, reaching USD 478.5 million by 2030. California leads domestic adoption due to favorable policy and biomass availability. However, barriers such as inconsistent quality standards, limited awareness, high costs, and policy gaps constrain growth. This study goes beyond the existing literature by integrating market analysis, SWOT assessment, cost–benefit findings, and production technologies to highlight strategies for scaling biochar adoption. It concludes that with supportive legislation, investment in research, and enhanced supply chain transparency, biochar could become a pivotal tool for sustainable development in the U.S. agricultural and environmental sectors. Full article
Show Figures

Figure 1

25 pages, 4273 KiB  
Review
How Can Autonomous Truck Systems Transform North Dakota’s Agricultural Supply Chain Industry?
by Emmanuel Anu Thompson, Jeremy Mattson, Pan Lu, Evans Tetteh Akoto, Solomon Boadu, Herman Benjamin Atuobi, Kwabena Dadson and Denver Tolliver
Future Transp. 2025, 5(3), 100; https://doi.org/10.3390/futuretransp5030100 - 1 Aug 2025
Viewed by 165
Abstract
The swift advancements in autonomous vehicle systems have facilitated their implementation across various industries, including agriculture. However, studies primarily focus on passenger vehicles, with fewer examining autonomous trucks. Therefore, this study reviews autonomous truck systems implementation in North Dakota’s agricultural industry to develop [...] Read more.
The swift advancements in autonomous vehicle systems have facilitated their implementation across various industries, including agriculture. However, studies primarily focus on passenger vehicles, with fewer examining autonomous trucks. Therefore, this study reviews autonomous truck systems implementation in North Dakota’s agricultural industry to develop comprehensive technology readiness frameworks and strategic deployment approaches. The review integrates systematic literature review and event history analysis of 52 studies, categorized using Social–Ecological–Technological Systems framework across six dimensions: technological, economic, social change, legal, environmental, and implementation challenges. The Technology Readiness Level (TRL) analysis reveals 39.5% of technologies achieving commercial readiness (TRL 8–9), including GPS/RTK positioning and V2V communication demonstrated through Minn-Dak Farmers Cooperative deployments, while gaps exist in TRL 4–6 technologies, particularly cold-weather operations. Nonetheless, challenges remain, including legislative fragmentation, inadequate rural infrastructure, and barriers to public acceptance. The study provides evidence-based recommendations that support a strategic three-phase deployment approach for the adoption of autonomous trucks in agriculture. Full article
Show Figures

Figure 1

Back to TopTop