Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (796)

Search Parameters:
Keywords = aerodynamic design optimization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3841 KB  
Article
Performance Optimization of Vertical Axis Wind Turbines Through Passive Flow Control and Material Selection: A Dynamic Mesh Study
by Ioana-Octavia Bucur, Daniel-Eugeniu Crunțeanu and Mădălin-Constantin Dombrovschi
Appl. Sci. 2025, 15(20), 11251; https://doi.org/10.3390/app152011251 - 21 Oct 2025
Viewed by 152
Abstract
Vertical axis wind turbines (VAWTs) have significant potential for renewable energy generation, yet their operational efficiency is often limited by reduced aerodynamic performance and difficulties during start-up. This study investigates the effect of passive flow control and material selection on the performance of [...] Read more.
Vertical axis wind turbines (VAWTs) have significant potential for renewable energy generation, yet their operational efficiency is often limited by reduced aerodynamic performance and difficulties during start-up. This study investigates the effect of passive flow control and material selection on the performance of H-Darrieus VAWT blades, with the aim of identifying design solutions that enhance start-up dynamics and overall efficiency. Two-dimensional numerical simulations were conducted using the Dynamic Mesh method with six degrees of freedom (6DOF) in ANSYS 19.2 Fluent, enabling a time-resolved assessment of rotor behavior under constant wind velocities. Two blade configurations were analyzed: a baseline NACA0012 geometry and a modified profile with inclined cavities on the extrados. In addition, the influence of blade material was examined by comparing 3D-printed resin blades with lighter 3D-printed polycarbonate blades. The results demonstrate that cavity-modified blades provide superior performance compared to the baseline, showing faster acceleration, higher tip speed ratios, and improved power coefficients, particularly at higher wind velocities. Furthermore, polycarbonate blades achieved more efficient energy conversion than resin blades, highlighting the importance of material properties in turbine optimization. These findings confirm that combining passive flow control strategies with advanced lightweight materials can significantly improve the aerodynamic and dynamic performance of VAWTs, offering valuable insights for future experimental validation and prototype development. Full article
Show Figures

Figure 1

24 pages, 6693 KB  
Article
A Study on Reduced Wind Drag Acting on the Hull of a River Ship in Headwind Using CFD
by Ngo Van He, Le Duy An, Bui Thanh Danh and Hoang Cong Liem
Appl. Sci. 2025, 15(20), 11225; https://doi.org/10.3390/app152011225 - 20 Oct 2025
Viewed by 132
Abstract
The aerodynamic performance of a ship plays a crucial role in determining its efficiency, safety, and economic viability. While traditional ship design has primarily focused on optimizing hull forms to minimize water resistance acting on the hull, recent research highlights the growing importance [...] Read more.
The aerodynamic performance of a ship plays a crucial role in determining its efficiency, safety, and economic viability. While traditional ship design has primarily focused on optimizing hull forms to minimize water resistance acting on the hull, recent research highlights the growing importance of aerodynamic performances and wind drag acting on the ships, especially for ships with large accommodation above the water surface. In this study, aerodynamic performances of a cargo river ship were investigated using Computational Fluid Dynamics (CFD). From the results of the analysis of aerodynamic performance and wind drag acting on the original ship, several accommodation shapes were proposed for the ship to improve aerodynamic performance and reduce wind drag. The results show that the proposed accommodation shape for the ship, which includes a bow cover, a modified hatch cover, and accommodation, makes a small change to the ship’s structure, but it can improve aerodynamic performances and drastically reduce wind drag acting on the ship. An up to 42.82% reduction in total wind drag acting on the new ship can be reached. A study on reducing wind drag acting on the can lead to lower fuel consumption, saving energy, and improving economic efficiency. Full article
Show Figures

Figure 1

29 pages, 8801 KB  
Article
Aerodynamic Performance Enhancement of Ram Air Turbine Blades with Different Tip Configurations
by Haoyu Li, Wei Zhong, Chunyu Ren, Jian Wang and Yilei Liu
Aerospace 2025, 12(10), 937; https://doi.org/10.3390/aerospace12100937 - 17 Oct 2025
Viewed by 236
Abstract
A ram air turbine serves as a critical emergency power system for aircraft. To mitigate aerodynamic losses from tip vortices, this study proposes three blade tip enhancement configurations: a tip plate, tip contraction, and winglet. Numerical results indicate that the tip plate slightly [...] Read more.
A ram air turbine serves as a critical emergency power system for aircraft. To mitigate aerodynamic losses from tip vortices, this study proposes three blade tip enhancement configurations: a tip plate, tip contraction, and winglet. Numerical results indicate that the tip plate slightly improves the power at low tip speed ratios (TSRs); however, at medium and high TSRs—typical of turbine operation—power gains turn negative, and thrust loads increase significantly, failing to balance the gain and load. In contrast, the tip contraction—applied to the outer 5% span—enhances the power output at medium to high TSRs, with a maximum power increase of 2.05%, and consistently reduces thrust loads across all TSRs. Its highest power–thrust net gain coefficient reaches 3.85%, indicating strong potential for optimizing power efficiency and load mitigation. The winglet achieves the greatest power enhancement, increasing the power across all TSRs, with a maximum power increase of 7.59%. However, its thrust load also increases accordingly, resulting in a power–thrust net gain coefficient lower than the tip contraction. Further optimization of the winglet parameters using an orthogonal experimental design revealed that the optimized winglet increased the power output by 8.69% compared to the baseline configuration, thereby increasing the maximum power–thrust net benefit coefficient from 1.72% before optimization to 3.95%. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

17 pages, 3079 KB  
Article
Reducing Aerodynamic Interference Through Layout Optimization of Symmetrically Cambered Wingsails: A Comparative Study of In-Line and Parallel Configurations
by Stephan van Reen, Jianfeng Lin, Jiqiang Niu, Peter Sharpe, Xiaodong Li and Hua-Dong Yao
J. Mar. Sci. Eng. 2025, 13(10), 1998; https://doi.org/10.3390/jmse13101998 - 17 Oct 2025
Viewed by 156
Abstract
Rigid wingsails are increasingly adopted for wind-assisted ship propulsion, with Symmetrically Cambered (SC) profiles identified as highly efficient for thrust generation. This study investigates installation layouts for multiple SC wingsails, focusing on aerodynamic interference that limits their performance. A fast 2D potential-flow panel [...] Read more.
Rigid wingsails are increasingly adopted for wind-assisted ship propulsion, with Symmetrically Cambered (SC) profiles identified as highly efficient for thrust generation. This study investigates installation layouts for multiple SC wingsails, focusing on aerodynamic interference that limits their performance. A fast 2D potential-flow panel method is employed and benchmarked against wind tunnel and 3D IDDES data. Two representative layouts are analyzed: triple-in-line (TL) and quad-in-parallel (QP). Layout optimization is performed using a genetic algorithm with distances between sails as design variables, constrained by the total installation span, at apparent wind angles (AWAs) of 60°, 90°, and 120°. Results show that thrust generation decreases progressively from upstream to downstream sails due to interference effects, with penalties of about 4–6% in the TL and up to 28% in the QP layout. The optimization improves performance only for the TL layout at 60°, while the QP layout shows negligible gains. Analysis of pressure distributions confirms that downstream sails suffer from reduced suction on the leading edge caused by upstream wakes. Overall, the TL layout demonstrates significantly higher aerodynamic reliability than the QP layout. These findings provide new insights into multi-sail configurations and highlight the importance of layout optimization in maximizing thrust efficiency. Full article
(This article belongs to the Special Issue Computational Fluid Dynamics and Acoustic Design Methods for Ship)
Show Figures

Figure 1

28 pages, 4794 KB  
Article
Aircraft Propeller Design Technology Based on CST Parameterization, Deep Learning Models, and Genetic Algorithm
by Evgenii I. Kurkin, Jose Gabriel Quijada Pioquinto, Oleg E. Lukyanov, Vladislava O. Chertykovtseva and Artem V. Nikonorov
Technologies 2025, 13(10), 469; https://doi.org/10.3390/technologies13100469 - 16 Oct 2025
Viewed by 248
Abstract
This article presents aircraft propeller optimal design technology; including an algorithm and OpenVINT 5 code. To achieve greater geometric flexibility, the proposed technique implements Class-Shape Transformation (CST) parameterization combined with Bézier curves, replacing the previous fully Bézier-based system. Performance improvements in the optimization [...] Read more.
This article presents aircraft propeller optimal design technology; including an algorithm and OpenVINT 5 code. To achieve greater geometric flexibility, the proposed technique implements Class-Shape Transformation (CST) parameterization combined with Bézier curves, replacing the previous fully Bézier-based system. Performance improvements in the optimization process are accomplished through deep learning models and a genetic algorithm, which substitute XFOIL and Differential Evolution-based approaches, respectively. The scientific novelty of the article lies in the application of a neural network to predict the aerodynamic characteristics of profiles in the form of contour diagrams, rather than scalar values, which execute the neural network repeatedly per ISM algorithm iteration and speed up the design time of propeller blades by 32 times as much. A propeller for an aircraft-type UAV was designed using the proposed methodology and OpenVINT 5. A comparison was made with the results to solve a similar problem using numerical mathematical models and experimental studies in a wind tunnel. Full article
(This article belongs to the Special Issue Aviation Science and Technology Applications)
Show Figures

Figure 1

16 pages, 1850 KB  
Article
Rapid Optimal Matching Design of Heterogeneous Propeller Propulsion Systems for High-Altitude Unmanned Airships
by Miao Zhang, Xiangyu Wang, Zhiwei Zhang, Bo Wang, Junjie Cheng and Jian Zhang
Drones 2025, 9(10), 718; https://doi.org/10.3390/drones9100718 - 16 Oct 2025
Viewed by 236
Abstract
In order to enhance the wind-resistance capability and achieve a lightweight design of high-altitude unmanned airships, this study proposes a rapid optimization method for a heterogeneous propeller propulsion system. This system integrates contra-rotating and ducted propellers to exploit their respective aerodynamic advantages. First, [...] Read more.
In order to enhance the wind-resistance capability and achieve a lightweight design of high-altitude unmanned airships, this study proposes a rapid optimization method for a heterogeneous propeller propulsion system. This system integrates contra-rotating and ducted propellers to exploit their respective aerodynamic advantages. First, surrogate models of the contra-rotating propeller, contra-rotating motor, ducted propeller, and ducted motor were constructed using an optimal Latin hypercube sampling method based on the max–min criterion. Then, within the optimization framework, propeller–motor matching principles and energy balance constraints were incorporated to minimize the total weight of the propulsion and energy systems. A case study on a conventional high-altitude unmanned airship demonstrates that, under the same wind-resistance capability, the adoption of the heterogeneous propeller electric propulsion system reduces the total propulsion-and-energy system weight by 24.94%. This method integrates the advantages of contra-rotating and ducted propellers, thereby overcoming the limitations of conventional propulsion architectures. It provides a new approach for designing lightweight, efficient, and long-endurance propulsion systems for near-space high-altitude platforms. Full article
(This article belongs to the Special Issue Design and Flight Control of Low-Speed Near-Space Unmanned Systems)
Show Figures

Figure 1

17 pages, 4511 KB  
Article
CFD-Driven Design of an Air-Cooling System for Lithium-Ion Battery Packs in a Formula Student Car
by Filipe Vaz, João Vasconcelos Silva, Vítor Monteiro and Francisco P. Brito
Energies 2025, 18(20), 5436; https://doi.org/10.3390/en18205436 - 15 Oct 2025
Viewed by 334
Abstract
In the high-performance environment of Formula Student Car racing, effective battery thermal management is crucial for safety, reliability, and performance. This work presents the design and validation of a lightweight, air-based Battery Cooling System (BCS) developed for a Formula Student vehicle. The system [...] Read more.
In the high-performance environment of Formula Student Car racing, effective battery thermal management is crucial for safety, reliability, and performance. This work presents the design and validation of a lightweight, air-based Battery Cooling System (BCS) developed for a Formula Student vehicle. The system addresses the significant thermal loads generated by 528 Molicel P45B lithium-ion cells, arranged in a constrained U-shaped module layout. Using Computational Fluid Dynamics (CFD), the airflow geometry was optimized to deliver uniform cooling across all modules while minimizing aerodynamic drag. Simulations evaluated the system’s performance under various ambient temperatures (25 °C and 30 °C) and airflow velocities (from 16 m/s to 18 m/s), identifying the impact of duct geometry, internal air guides, and airflow distribution on thermal regulation. Results showed that, at nominal ambient temperature (25 °C), all monitored cells stayed below the 60 °C threshold required by FS regulations. At elevated ambient conditions (30 °C), regions above 60 °C appeared within the pack, revealing non-uniform cooling and reduced safety margin. These findings suggest that, while the system complies with current rules, additional design refinements are needed to enhance robustness under harsher conditions. Additionally, these results are specific to a Formula Student application under competition constraints and are not intended to be generalized to production EVs. Full article
(This article belongs to the Special Issue Advanced Thermal Management in Electric Vehicles)
Show Figures

Figure 1

9 pages, 2371 KB  
Proceeding Paper
Advanced Tolerance Optimization for Freeform Geometries Using Particle Swarm Optimization: A Case Study on Aeronautical Turbine Blades
by Oubrek Mohamed, Bellat Abdelouahad, Salih Abdelouahab and Jalid Abdelilah
Eng. Proc. 2025, 112(1), 20; https://doi.org/10.3390/engproc2025112020 - 14 Oct 2025
Viewed by 181
Abstract
This study introduces a novel approach to optimizing geometric tolerances on freeform surfaces, specifically turbine blades, by leveraging a global tolerance framework. Unlike traditional methods that rely on multiple local tolerances, this research proposes a unified model to streamline design complexity while maintaining [...] Read more.
This study introduces a novel approach to optimizing geometric tolerances on freeform surfaces, specifically turbine blades, by leveraging a global tolerance framework. Unlike traditional methods that rely on multiple local tolerances, this research proposes a unified model to streamline design complexity while maintaining functional integrity and cost efficiency. A turbine blade, reconstructed from 3D-scanned point cloud data, serves as the basis for this investigation. The reconstructed geometry was analyzed to define deviation distributions, followed by the application of a global tolerance model. Using genetic algorithms, the tolerances were optimized to balance manufacturing costs and performance penalties. Results demonstrate a substantial simplification in quality control processes, with a reduction in manufacturing costs by up to 20%, while preserving aerodynamic and structural performance. The study highlights the potential of global tolerance strategies to transform tolerance allocation in industries such as aerospace and energy, where freeform surfaces are prevalent. The integration of optimization techniques and advanced surface analysis offers a forward-looking perspective on enhancing manufacturing precision and efficiency. Full article
Show Figures

Figure 1

12 pages, 1854 KB  
Article
Flow Stabilization and Velocity Uniformity in a Göttingen-Type Closed-Circuit Subsonic Wind Tunnel with an Expanded Test Section
by Justas Šereika, Paulius Vilkinis, Agnė Bertašienė and Edgaras Misiulis
Appl. Sci. 2025, 15(20), 11021; https://doi.org/10.3390/app152011021 - 14 Oct 2025
Viewed by 210
Abstract
Flow stabilization and velocity uniformity in a Göttingen-type closed-circuit subsonic aerodynamic wind tunnel with an expanded test section are investigated in this study. Both experimental and numerical approaches were employed. The experiments were performed by using Laser Doppler Anemometry, Pitot tubes, and thermal [...] Read more.
Flow stabilization and velocity uniformity in a Göttingen-type closed-circuit subsonic aerodynamic wind tunnel with an expanded test section are investigated in this study. Both experimental and numerical approaches were employed. The experiments were performed by using Laser Doppler Anemometry, Pitot tubes, and thermal anemometry. For numerical simulations, Reynolds-averaged Navier–Stokes simulations with a standard k-ε turbulence model were employed to evaluate flow characteristics in the velocity range of 0.05–20 m/s. The study shows that a properly contoured contraction nozzle suppresses inlet turbulence and ensures stable Reynolds-independent core flow. The contraction nozzle significantly accelerates and redistributes the flow, allowing rapid hydrodynamic stabilization and ensuring velocity measurements with high repeatability. These characteristics are inherent in a benchmark facility. Additionally, the study shows that the outlet-to-inlet diameter has the most prominent role in longitudinal velocity distribution in the test section. An optimal ratio of 1.10 was identified, stabilizing the pressure distribution and providing the most uniform longitudinal velocity profile. These findings offer geometry-dependent design guidelines for achieving high-quality measurements in Göttingen-type wind tunnels with expanded test sections and support accurate velocity measurement instrument calibration and aerodynamic testing. Full article
Show Figures

Figure 1

17 pages, 5201 KB  
Article
Equivalent Stress Model-Assisted Aero-Structural Optimization of a Compressor Rotor Using an Adjoint Method
by Jiaxing Li, Zhen Fu and Jiaqi Luo
Modelling 2025, 6(4), 125; https://doi.org/10.3390/modelling6040125 - 11 Oct 2025
Viewed by 171
Abstract
To meet the stringent reliability requirements of rotor blades in turbomachines, greater effort should be devoted to improving both aerodynamic and structural performance in blade design. This paper introduces an aero-structural multi-disciplinary design optimization (MDO) method for compressor rotor blades using a discrete [...] Read more.
To meet the stringent reliability requirements of rotor blades in turbomachines, greater effort should be devoted to improving both aerodynamic and structural performance in blade design. This paper introduces an aero-structural multi-disciplinary design optimization (MDO) method for compressor rotor blades using a discrete adjoint method and an equivalent stress model (ESM). The principles of the ESM are firstly introduced, and its accuracy in calculating equivalent stress is validated through comparison with a commercial program. Both the aerodynamic performance and the maximum equivalent stress (MES) are selected as optimization objectives. To modify the blade profile, the steepest descent optimization method is utilized, in which the necessary sensitivities of the cost function to the design parameters are calculated by solving the adjoint equations. Finally, the aero-structural MDO of a transonic compressor rotor, NASA Rotor 67, is conducted, and the Pareto solutions are obtained. The optimization results demonstrate that the adiabatic efficiency and the MES are competitive in improving multi-disciplinary performance. For most of the Pareto solutions, the MES can be considerably reduced with increased adiabatic efficiency. Full article
Show Figures

Figure 1

38 pages, 18471 KB  
Article
Bend–Twist Coupling for Small Wind Turbines: A Blade Design Methodology to Enhance Power Generation
by Juan Pablo Vanegas-Alzate, María Antonia Restrepo-Madrigal, José Luis Torres-Madroñero, César Nieto-Londoño, Germán Alberto Barragán de los Rios, Jorge Mario Tamayo-Avendaño, Julián Sierra-Pérez, Joham Alvarez-Montoya and Daniel Restrepo-Montoya
Energies 2025, 18(20), 5353; https://doi.org/10.3390/en18205353 - 11 Oct 2025
Viewed by 315
Abstract
Small-scale wind turbines (SWTs) represent a promising solution for the energy transition and the decentralization of electricity generation in non-interconnected areas. Conventional strategies to improve SWT performance often rely on active pitch control, which, while effective at rated conditions, is too costly and [...] Read more.
Small-scale wind turbines (SWTs) represent a promising solution for the energy transition and the decentralization of electricity generation in non-interconnected areas. Conventional strategies to improve SWT performance often rely on active pitch control, which, while effective at rated conditions, is too costly and complex for small systems. An alternative is passive pitch control through bend–twist coupling in the blade structure, which enables self-regulation and improved power generation. This work proposes a novel blade design methodology for a 5 kW SWT that integrates passive bend–twist coupling with conventional pitch adjustment, thereby creating a hybrid passive–active control strategy. The methodology encompasses the definition of aerodynamic blade geometry, laminate optimization via genetic algorithms combined with finite element analysis, and experimental characterization of composite materials. Aerodynamic–structural interactions are studied using one-way fluid–structure simulations, with responses analyzed through the blade element momentum method to assess turbine performance. The results indicate that the proposed design enhances power generation by about 4%. The study’s originality lies in integrating optimization, structural tailoring, and material testing, offering one of the first demonstrations of combined passive–active pitch control in SWTs, and providing a cost-effective route to improve efficiency and reliability in decentralized renewable energy systems. Full article
Show Figures

Figure 1

21 pages, 4328 KB  
Article
Design and Optimization of Lightweight Electromagnetic Valves for High-Altitude Latex Balloons
by Xiaoran Li, Donghui Zhang, Qiguang Yang, Zihao Wang and Chen Chen
Machines 2025, 13(10), 934; https://doi.org/10.3390/machines13100934 - 10 Oct 2025
Viewed by 312
Abstract
To address the altitude control requirements of high-altitude latex balloons, this paper proposes a novel lightweight electromagnetically actuated valve design. The valve employs a permanent magnet–electromagnet–spring composite structure to achieve rapid opening/closing motions through electromagnetic force control, enabling precise regulation of balloon gas [...] Read more.
To address the altitude control requirements of high-altitude latex balloons, this paper proposes a novel lightweight electromagnetically actuated valve design. The valve employs a permanent magnet–electromagnet–spring composite structure to achieve rapid opening/closing motions through electromagnetic force control, enabling precise regulation of balloon gas venting. 3D electromagnetic field simulations were conducted to validate the magnetic flux density distribution, while computational fluid dynamics (CFD) simulations based on the Reynolds-averaged Navier–Stokes equations were employed to evaluate the valve’s aerodynamic characteristics. The CFD results confirmed stable venting performance, with near-linear flow–pressure relationships and localized jet structures that support reliable operation under stratospheric conditions. A multidisciplinary optimization framework was further applied to achieve a lightweight structural design of critical components. Experimental results demonstrate that the optimized valve achieves a total mass of 984.69 g with an actuation force of 15.263 N, maintaining stable performance across a temperature range of −60 °C to 25 °C. This study provides an innovative and systematically validated solution for micro-valve design in lighter-than-air vehicles. Full article
Show Figures

Figure 1

34 pages, 2719 KB  
Article
Enhanced Airfoil Design Optimization Using Hybrid Geometric Neural Networks and Deep Symbiotic Genetic Algorithms
by Özlem Batur Dinler
Appl. Sci. 2025, 15(20), 10882; https://doi.org/10.3390/app152010882 - 10 Oct 2025
Viewed by 189
Abstract
Optimal airfoil design remains a critical challenge in aerodynamic engineering, with traditional methods requiring extensive computational resources and iterative processes. This paper presents GEO-DSGA, a novel framework integrating hybrid geometric neural networks with deep symbiotic genetic algorithms for enhanced airfoil optimization. The methodology [...] Read more.
Optimal airfoil design remains a critical challenge in aerodynamic engineering, with traditional methods requiring extensive computational resources and iterative processes. This paper presents GEO-DSGA, a novel framework integrating hybrid geometric neural networks with deep symbiotic genetic algorithms for enhanced airfoil optimization. The methodology employs graph-based representations of airfoil geometries through a hybrid architecture combining graph convolutional networks with traditional deep learning, enabling precise capture of spatial geometric relationships. The parametric modeling stage utilizes CST, Bézier curves, and PARSEC methods to generate mathematically robust airfoil representations, subsequently transformed into graph structures preserving local and global shape characteristics. The optimization framework incorporates a deep symbiotic genetic algorithm enhanced with dominant feature phenotyping, applying biological symbiotic principles where design parameters achieve superior performance through mutual enhancement rather than independent optimization. This systematic exploration maintains geometric feasibility and aerodynamic validity throughout the design space. Experimental results demonstrate an 88.6% reduction in computational time while maintaining prediction accuracy within 1.5% error margin for aerodynamic coefficients across diverse operating conditions. The methodology successfully identifies airfoil geometries outperforming baseline NACA profiles by up to 12% in lift-to-drag ratio while satisfying manufacturing and structural constraints, establishing GEO-DSGA as a significant advancement in computational aerodynamic design optimization. Full article
Show Figures

Figure 1

24 pages, 10523 KB  
Article
Rapid and Accurate Airfoil Aerodynamic Prediction Using a Multi-Fidelity Transfer Learning Approach
by Yuxin Huo, Xue Che, Yiyu Wang, Qiang Jiang, Zhilong Zhong, Miao Zhang, Bo Wang and Xiaoping Ma
Appl. Sci. 2025, 15(19), 10820; https://doi.org/10.3390/app151910820 - 9 Oct 2025
Viewed by 364
Abstract
The high computational cost of high-fidelity CFD simulations forms a major bottleneck in aerodynamic design. This paper introduces a multi-fidelity transfer learning framework to rapidly predict airfoil aerodynamics with high accuracy. Our approach involves pre-training a deep fully connected neural network on a [...] Read more.
The high computational cost of high-fidelity CFD simulations forms a major bottleneck in aerodynamic design. This paper introduces a multi-fidelity transfer learning framework to rapidly predict airfoil aerodynamics with high accuracy. Our approach involves pre-training a deep fully connected neural network on a large dataset of low-fidelity Euler simulations. The pre-trained model is then fine-tuned using a limited set of high-fidelity RANS data, enabling efficient knowledge transfer from low- to high-fidelity domains. A specialized logarithmic-exponential normalization method is developed to handle the scale differences between aerodynamic coefficients. The framework demonstrates exceptional performance: after fine-tuning with only 700 high-fidelity samples, the model accurately predicts pressure distributions (lowest RMSE = 0.053) and force coefficients (R2 > 0.947 for lift and drag). This method successfully bridges the gap between computational efficiency and high accuracy, providing a powerful data-driven surrogate model that can significantly accelerate the aerodynamic design and optimization process. Full article
Show Figures

Figure 1

21 pages, 3933 KB  
Article
Mechanical Design and Experimental Study of a Small-Scale Wind Turbine Model
by Eduardo Muñoz-Palomeque, Segundo Esteban and Matilde Santos
Machines 2025, 13(10), 929; https://doi.org/10.3390/machines13100929 - 8 Oct 2025
Viewed by 538
Abstract
The advancement of onshore and offshore wind turbines depends on the experimental validation of new technologies, novel component designs, and innovative concepts. However, full-scale models are typically very expensive, have limited functionality, and are difficult to adapt to diverse research needs. To address [...] Read more.
The advancement of onshore and offshore wind turbines depends on the experimental validation of new technologies, novel component designs, and innovative concepts. However, full-scale models are typically very expensive, have limited functionality, and are difficult to adapt to diverse research needs. To address this shortcoming, this article presents the design of a low-cost, modular 3D-printed small prototype of a wind turbine. It includes a multi-hollow platform for marine environments configuration and stabilization, the turbine tower, and three blades with active pitch control, not always included in wind turbine prototypes. The modular tower design allows for easy height extensions, while the rotor incorporates custom blades optimized for the prototype geometry and experimental setup. Tests were conducted to evaluate the system’s operational response and verify the proper functioning of the assembled components at various wind speeds and blade pitch angles. The results confirm that the rotor speed with the prototype’s onshore configuration is highly pitch-dependent, reaching a maximum efficiency of approximately 5°. The tower displacement, measured with an IMU, remained within a narrow range, oscillating around 2° and reaching up to 4° at higher wind speeds due to elastic deflections of the PLA structure. These results, consistent with the prototype scale, validate its usefulness in capturing essential aerodynamic and structural behaviors of the wind turbine. They also demonstrate its relevance as a new tool for experimental studies of wind turbines and open up new research, validation, and control possibilities not considered in previous developments by incorporating blade pitch control. Full article
Show Figures

Figure 1

Back to TopTop