Enhanced Airfoil Design Optimization Using Hybrid Geometric Neural Networks and Deep Symbiotic Genetic Algorithms
Abstract
1. Introduction
- Hybrid Geometric-Aerodynamic Neural Architecture: Novel integration of graph neural networks for spatial geometric relationship processing with traditional deep networks for global aerodynamic parameter handling, enabling simultaneous local-global feature extraction;
- Symbiotic Evolutionary Optimization: Revolutionary implementation of biological symbiotic principles where design parameters achieve superior performance through mutual enhancement rather than independent optimization, fundamentally transforming traditional genetic operators;
- Neural-Guided Genetic Operations: Intelligence-enhanced crossover and mutation operators that leverage neural network predictions to guide evolutionary processes, replacing random operations with performance-informed decisions;
- Dominant Feature Phenotyping: Automated identification and preservation of geometric features that consistently contribute to superior aerodynamic performance across multiple design scenarios.
- Mutation rates are dynamically adjusted based on neural network performance predictions and population diversity metrics. Regions of the design space with high predicted improvement potential receive increased mutation attention.
- Local performance gradients and feature importance rankings influence mutation directions. This intelligent guidance reduces the computational waste associated with random mutations while maintaining the exploratory capability essential for genetic algorithms.
- The GEO-DSGA integrates multi-objective optimization capabilities, maintaining Pareto-optimal solution sets while exploring trade-offs between competing aerodynamic objectives. The algorithm is designed for efficient parallel execution, with sub-populations distributed across available computational resources. Load balancing mechanisms ensure optimal resource utilization while maintaining algorithmic integrity.
2. Materials and Methods
2.1. Airfoil Optimization
2.1.1. Historical Development and Theoretical Foundations
2.1.2. Theoretical Aerodynamics and Design Principles
2.1.3. Experimental Methods and Wind Tunnel Development
2.2. Geometric Parameterization Methods
2.2.1. NACA Geometric Construction Method
2.2.2. Class-Shape Transformation (CST) Method
2.2.3. PARSEC Method
- rLE: Leading edge radius—influences stagnation point behavior and pressure recovery characteristics
- Xup, Zup: Upper surface crest location coordinates—control upper surface pressure distribution and maximum velocity regions
- ZXX,up: Upper surface curvature at crest—influences adverse pressure gradient development and boundary layer behavior
- Xlow, Zlow: Lower surface crest location coordinates—determine lower surface loading distribution and pressure gradients
- ZXX,low: Lower surface curvature at crest—affects lower surface boundary layer development and separation characteristics
- αTE: Trailing edge direction angle—influences Kutta condition satisfaction and circulation establishment
- ΔzTE: Trailing edge thickness—affects base pressure coefficients and wake development
- βTE: Trailing edge wedge angle—controls trailing edge flow behavior and pressure recovery.
2.2.4. Hybrid Bézier-PARSEC Method
2.2.5. Improved Geometric Parameter (IGP) Method
2.3. Graph Neural Network Architecture
Traditional Neural Network Integration
2.4. Optimization Algorithm
Deep Symbiotic Genetic Algorithm
2.5. Validation and Performance Assessment
2.5.1. Computational Fluid Dynamics Validation
2.5.2. Uncertainty Quantification
3. Proposed GEO-DSGA Framework
3.1. Methodology
- Graph-Based Neural Processing → Performance Prediction;
- Evolutionary Optimization → Design Space Exploration;
- Empirical Validation → Feedback Integration.
3.1.1. Stage 1: Parametric Geometry Modeling and Graph Construction
Theoretical Framework for Parametric Representation
- Closure constraint: Ensuring the airfoil forms a closed contour;
- Self-intersection prevention: Mathematical conditions preventing curve self-intersection;
- Thickness distribution bounds: Maintaining realistic thickness-to-chord ratios;
- Leading edge smoothness: Enforcing appropriate curvature at the leading edge.
- Minimum manufacturable thickness tolerances;
- Maximum curvature limitations for conventional manufacturing processes;
- Material stress concentration factors at geometric discontinuities.
Class-Shape Transformation (CST) Method
- η(ψ) represents the airfoil ordinate at chordwise position ψ;
- C(ψ) is the class function defining basic airfoil characteristics;
- S(ψ) is the shape function controlling detailed geometric variations;
- ΔTE accounts for finite trailing edge thickness.
Bézier Curve Parameterization
- Initial and final control points define curve endpoints.
- Intermediate control points influence curve curvature and local shape characteristics.
- Control point positioning directly correlates with geometric features.
Geometric Graph Construction
- Sequential edges: Connect adjacent points along the airfoil surface;
- Proximity edges: Connect geometrically proximate points regardless of surface position;
- Feature edges: Connect points with similar geometric characteristics;
- Curvature edges: Connect points with correlated curvature properties.
3.1.2. Stage 2: Hybrid Neural Network Processing
Architectural Framework and Design
Graph Neural Network Component
Traditional Neural Network Integration
Performance Prediction Networks
Training Strategies and Optimization
3.1.3. Stage 3: Deep Symbiotic Genetic Algorithm Optimization
Dominant Feature Phenotyping
Population Dynamics and Diversity
3.1.4. Empirical Validation
Computational Fluid Dynamics (CFD) Validation
Performance Assessment and Benchmarking
4. Results and Discussion
4.1. Experimental Setup
4.2. Performance Results
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Shen, J.; Yang, P.; Yang, X. A CNN-PINN-DRL driven method for shape optimization of airfoils. Eng. Appl. Comput. Fluid Mech. 2024, 19, 2445144. [Google Scholar] [CrossRef]
- Minaev, E.Y.; Quijada Pioquinto, J.G.; Shakhov, V.; Kurkin, E.; Lukyanov, O. Airfoil Optimization Using Deep Learning Models and Evolutionary Algorithms for the Case of Large-Endurance UAVs Design. Drones 2024, 8, 570. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, H.; Xu, X.; Duan, Y.; Wang, G. Aerodynamic shape optimization using a physics-informed hot-start method combined with modified metric-based proper orthogonal decomposition. Phys. Fluids 2024, 36, 084106. [Google Scholar] [CrossRef]
- Wu, M.-Y.; He, X.; Sun, X.-H.; Tong, T.-S.; Chen, Z.-H.; Zheng, C. Efficient aerodynamic shape optimization using transfer learning based multi-fidelity deep neural network. Phys. Fluids 2024, 36, 116109. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, B.; Huang, H.; Xie, Z.; Wang, J.; Dehong, M.; Yue, H.; Lei, L. A multi-task learning framework for aerodynamic computation of two-dimensional airfoils. Phys. Fluids 2024, 36, 117141. [Google Scholar] [CrossRef]
- Yan, G.; Wu, G.; Tao, J. Application of a Dirichlet Distribution-Based Ensemble Surrogate Model in Aerodynamic Optimization. AIAA J. 2024, 62, 3424–3435. [Google Scholar] [CrossRef]
- Wang, X.; Qian, W.; Zhao, T.; He, L.; Chen, H.; Sun, H.; Tian, Y.; Cui, J. Fast Prediction of Airfoil Aerodynamic Characteristics Based on a Combined Autoencoder. Symmetry 2024, 16, 791. [Google Scholar] [CrossRef]
- Wu, H.; Chen, R.; Lou, J.; You, Y.; Huang, L.; Xu, M.; Ruan, Y. A gradient aerodynamic optimization method based on deep learning. Phys. Fluids 2024, 36, 057117. [Google Scholar] [CrossRef]
- Guo, C.; Xu, Z.; Wang, J.; Li, H. Aerodynamic Optimization Method for Propeller Airfoil Based on DBO-BP and NSWOA. Aerospace 2024, 11, 931. [Google Scholar] [CrossRef]
- Negoita, M.-F.; Hothazie, M.-V. A Machine Learning-Based Approach for Predicting Aerodynamic Coefficients Using Deep Neural Networks and CFD Data. INCAS Bul. 2024, 16, 91–104. [Google Scholar] [CrossRef]
- Unlusoy, C.; Maier, B.; Handawi, K.; Mathew, T.; Srinivasan, R.; Salz, M.; Kokkolaras, M. Advancing Airfoil Design: A Physics-Inspired Neural Network Model. In Proceedings of the ASME Turbo Expo 2024: Turbomachinery Technical Conference and Exposition, London, UK, 24–28 June 2024. [Google Scholar] [CrossRef]
- Jin, S.-Y.; Chen, S.; Feng, C.; Gao, Z. Deep learning for airfoil aerodynamic-electromagnetic coupling optimization with random forest. Phys. Fluids 2024, 36, 17110. [Google Scholar] [CrossRef]
- Tian, J.; Qu, F.; Sun, D.; Wang, Q. Novel Pressure-Based Optimization Method Using Deep Learning Techniques. AIAA J. 2024, 62, 708–724. [Google Scholar] [CrossRef]
- Tsunoda, Y.; Oyama, A. Evolutionary Multi-Objective Aerodynamic Design Optimization Using CFD Simulation Incorporating Deep Neural Network. arXiv 2023, arXiv:2304.14973. [Google Scholar]
- Ruiling, L.; Chen, R.; Lou, J.; Hu, Y.; You, Y. Deep Learning Method for Airfoil Flow Field Simulation Based on Unet++. Int. J. Numer. Methods Fluids 2025, 97, e5375. [Google Scholar] [CrossRef]
- Cayley, G. On aerial navigation. Nicholson’s J. Nat. Philos. Chem. Arts 1810, 25, 81–87. [Google Scholar] [CrossRef]
- Lilienthal, O. Birdflight as the Basis of Aviation (Der Vogelflug als Grundlage der Fliegekunst); R. Gaertners Verlagsbuchhandlung: Berlin, Germany, 1889. [Google Scholar]
- Prandtl, L. Über Flüssigkeitsbewegung bei sehr kleiner Reibung. In Proceedings of the Third International Mathematical Congress, Heidelberg, Germany, 8–13 August 1904; Teubner: Heidelberg, Germany, 1904; pp. 484–491. [Google Scholar]
- Prandtl, L. Tragflügeltheorie. Nachrichten Ges. Wiss. Göttingen 1918, 1918, 451–477. [Google Scholar]
- Joukowski, N.E. Über die Konturen der Tragflächen der Drachenflieger. Z. Flugtech. Mot. 1906, 1, 281–284. [Google Scholar]
- Kutta, M.W. Auftriebskräfte in strömenden Flüssigkeiten. Illus. Aeronaut. Mitteilungen 1902, 6, 133–135. [Google Scholar]
- von Kármán, T. Über laminare und turbulente Reibung. Z. Angew. Math. Mech. 1921, 1, 233–252. [Google Scholar] [CrossRef]
- von Kármán, T. Mechanische Ähnlichkeit und Turbulenz. Nachrichten Ges. Wiss. Göttingen 1930, 5, 58–76. [Google Scholar]
- Leishman, J.G. Introduction to Aerospace Flight Vehicles; Copyright © 2022–2025 by, J. Gordon Leishman is licensed under a Creative Commons Attribution-Non Commercial-No Derivatives 4.0 International; Embry-Riddle Aeronautical University: Daytona Beach, FL, USA, 2023. [Google Scholar] [CrossRef]
- Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef]
- Langtry, R.B.; Menter, F.R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA J. 2009, 47, 2894–2906. [Google Scholar] [CrossRef]
- Spalart, P.; Allmaras, S. A one-equation turbulence model for aerodynamic flows. In Proceedings of the 30th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 6–9 January 1992; p. 439. [Google Scholar]
- Rumsey, C.L. Apparent transition behavior of widely-used turbulence models. Int. J. Heat Fluid Flow 2007, 28, 1460–1471. [Google Scholar] [CrossRef]
- Wu, M.-Y.; Yuan, X.-Y.; Chen, Z.-H.; Wu, W.-T.; Hua, Y.; Aubry, N. Airfoil shape optimization using genetic algorithm coupled deep neural networks. Phys. Fluids 2023, 35, 085140. [Google Scholar] [CrossRef]
- Chen, H.; He, X.; Huang, L.; Zhang, Y. Multiple Aerodynamic Coefficient Prediction of Airfoils Using a Convolutional Neural Network. Symmetry 2020, 12, 544. [Google Scholar] [CrossRef]
- Peng, W.; Zhang, Y.; Laurendeau, E.; Desmarais, M.C. Learning aerodynamics with neural network. Sci. Rep. 2022, 12, 6779. [Google Scholar] [CrossRef]
- Sharma, P.; Chung, W.T.; Akoush, B.; Ihme, M. Physics-Informed Neural Networks for Flow Around Airfoil. In Proceedings of the AIAA SciTech 2022 Forum 2022, San Diego, CA, USA, 3–7 January 2022; p. 0187. [Google Scholar] [CrossRef]
- Pȃrvu, A.E.; Diculescu, V.C.; Frȃncu, A.; Stoica, C.T. Machine Learning Prediction of Airfoil Aerodynamic Performance Using Neural Network Ensembles. Appl. Sci. 2025, 15, 7720. [Google Scholar] [CrossRef]







| Parameters | Specifications |
|---|---|
| Total Airfoil Geometries | 10,000 |
| Training Set | 7000 (70%) |
| Validation Set | 2000 (20%) |
| Test Set | 1000 (10%) |
| NASA Geometric Parameters | 11 (XLO, XUP, ZLO, ZTE, ZUP, ZCLO, ZCUP, αTE, βTE, ΔZTE, r) |
| Flow Conditions Range Re: | 103–108, M: 0.05–0.95, AoA: −20–20° |
| Airfoil Families | 15 (NACA 4-digit, 5-digit, 6-series, Supercritical, etc.) |
| Component | Parameter | Value |
|---|---|---|
| Graph Transformer Layers | Number of Layers | 6 |
| Hidden Dimension (d_model) | 512 | |
| Attention Heads | 16 | |
| Dropout Rate | 0.1 | |
| Node Features | Dimension | 8 |
| Edge Features | Dimension | 4 |
| Global Features | Dimension | 18 |
| Maximum Nodes | Nodes | 200 |
| Physics-Informed Layers | Hidden Layers | [256, 128, 64] |
| Fusion Mechanism | Attention Heads | 8 |
| Key Dimension | 64 |
| Parameter | Value | Description |
|---|---|---|
| Population Size (Haploid) | 100 | Single chromosome individual |
| Population Size (Diploid) | 100 | Dual chromosome individuals |
| Elite Rate | 0.1 | Fraction of elite individuals |
| Crossover Rate | 0.8 | Probability of crossover |
| Mutation Rate | 0.1 (adaptive) | Initial mutation probability |
| Generations | 100 | Maximum evolutionary cycles |
| Selection Method | Tournament | Tournament size: 3 |
| Parameter | Value |
|---|---|
| Optimizer | AdamW |
| Initial Learning Rate | 1 × 10−3 |
| Weight Decay | 1 × 10−4 |
| Learning Rate Schedule | Cosine Decay with Restarts |
| Batch Size | 32 |
| Training Epochs | 200 |
| Mixed Precision | FP16v |
| Gradient Clipping | 1.0 |
| Metric | Baseline Deep Neural Networks (DNN) | Standard GNN | Hybrid GNN (Proposed) | Improvement |
|---|---|---|---|---|
| Lift Coefficient (CL) | ||||
| RMSE | 0.0847 | 0.0421 | 0.0089 | 89.5% vs. Baseline |
| MAE | 0.0672 | 0.0334 | 0.0071 | 89.4% vs. Baseline |
| R2 Score | 0.923 | 0.967 | 0.9923 | 7.5% vs. Baseline |
| MAPE (%) | 8.34 | 4.12 | 0.89 | 89.3% vs. Baseline |
| Drag Coefficient (CD) | ||||
| RMSE | 0.00234 | 0.00156 | 0.000341 | 85.4% vs. Baseline |
| MAE | 0.00187 | 0.00124 | 0.000287 | 84.7% vs. Baseline |
| R2 Score | 0.887 | 0.934 | 0.9891 | 11.5% vs. Baseline |
| MAPE (%) | 12.67 | 8.43 | 1.94 | 84.7% vs. Baseline |
| Moment Coefficient (CP) | ||||
| RMSE | 0.0456 | 0.0298 | 0.00423 | 90.7% vs. Baseline |
| MAE | 0.0367 | 0.0241 | 0.00356 | 90.3% vs. Baseline |
| R2 Score | 0.856 | 0.912 | 0.9867 | 15.3% vs. Baseline |
| MAPE (%) | 15.23 | 9.87 | 1.87 | 87.7% vs. Baseline |
| Algorithm | Reference | Mean Generations to Convergence | Best Fitness Achieved | Convergence Rate | Success Rate (%) | Year |
|---|---|---|---|---|---|---|
| CNN-PINN-DRL | Liu et al. (2024) [1] | 76.8 ± 10.3 | 3.892 ± 0.145 | 0.0089 ± 0.0015 | 87.4 | 2024 |
| Deep Learning GA | Minaev et al. (2024) [2] | 72.5 ± 9.7 | 4.123 ± 0.134 | 0.0112 ± 0.0018 | 89.6 | 2024 |
| Multi-fidelity DNN-GA | Wu et al. (2024) [4] | 68.3 ± 8.9 | 4.287 ± 0.128 | 0.0145 ± 0.0021 | 91.2 | 2024 |
| DNN-Enhanced GA | Wu et al. (2023) [29] | 89.6 ± 12.4 | 3.521 ± 0.187 | 0.0067 ± 0.0012 | 82.7 | 2023 |
| Hybrid GEO-DSGA | (Our work) | 34.2 ± 7.8 | 4.896 ± 0.089 | 0.0234 ± 0.0031 | 96.8 | 2025 |
| Airfoil Family | Training Data (%) | Test Accuracy | Baseline | Improvement |
|---|---|---|---|---|
| NACA 4-digit | 25.0 | 98.7% | 89.3% | +10.5% |
| NACA 5-digit | 15.0 | 97.9% | 85.7% | +14.2% |
| NACA 6-series | 20.0 | 98.3% | 91.2% | +7.8% |
| Supercritical | 10.0 | 96.1% | 78.4% | +22.6% |
| Laminar Flow | 8.0 | 94.8% | 72.1% | +31.5% |
| Custom Profiles | 12.0 | 95.7% | 76.8% | +24.6% |
| Transonic | 10.0 | 96.4% | 81.3% | +18.6% |
| Metric | Baseline | Hybrid GEO-DSGA | Improvement |
|---|---|---|---|
| Training Time (hours) | 24.7 | 8.3 | 66.4% reduction |
| GPU Memory Usage (GB) | 11.2 | 6.8 | 39.3% reduction |
| FLOPs per Forward Pass | 2.34 × 109 | 1.67 × 109 | 28.6% reduction |
| Energy Consumption (kWh) | 45.6 | 18.9 | 58.6% reduction |
| NASA Parameter | Mean Attention Weight | Std Dev | Importance Rank |
|---|---|---|---|
| r (Leading Edge Radius) | 0.1847 | 0.0234 | 1 |
| ΔZTE (Trailing Edge Thickness) | 0.1623 | 0.0198 | 2 |
| XUP (Upper Crest Position) | 0.1456 | 0.0287 | 3 |
| ZUP (Upper Crest Ordinate) | 0.1289 | 0.0245 | 4 |
| XLO (Lower Crest Position) | 0.1134 | 0.0213 | 5 |
| ZLO (Lower Crest Ordinate) | 0.0987 | 0.0234 | 6 |
| βTE (Trailing Edge Wedge Angle) | 0.0834 | 0.0156 | 7 |
| ZCUP (Upper Crest Curvature) | 0.0567 | 0.0134 | 8 |
| αTE (Trailing Edge Direction) | 0.0523 | 0.0098 | 9 |
| ZCLO (Lower Crest Curvature) | 0.0456 | 0.0123 | 10 |
| ZTE (Trailing Edge Ordinate) | 0.0284 | 0.0087 | 11 |
| Turbulence Model | Cp Distribution RMSE | CL Error (%) | CD Error (%) | Separation Prediction |
|---|---|---|---|---|
| k-ω SST | 0.0234 | 1.2% | 3.4% | Excellent |
| Spalart–Allmaras | 0.0289 | 1.8% | 5.7% | Good (attached flows) |
| Method | Reference | CL-RMSE | CD-RMSE | CP-RMSE | Overall Score | Year |
|---|---|---|---|---|---|---|
| CNN-Based | Chen et al. (2020) [30] | 0.01450 | 0.00089 | 0.00789 | 96.2 | 2020 |
| Standard GNN | Peng et al. (2022) [31] | 0.0134 | 0.00076 | 0.0067 | 96.8 | 2022 |
| Physics-Informed NN | Sharma et al. (2022) [32] | 0.0125 | 0.00068 | 0.0059 | 97.1 | 2022 |
| Multi-fidelity DNN | Wu et al. (2024) [4] | 0.0115 | 0.00051 | 0.0048 | 97.8 | 2024 |
| Combined Autoencoder | Wang et al. (2024) [7] | 0.0112 | 0.00049 | 0.0046 | 98.0 | 2024 |
| Deep Learning GA | Minaev et al. (2024) [2] | 0.0103 | 0.00043 | 0.0040 | 98.4 | 2024 |
| Ensemble Networks | Pȃrvu et al. (2025) [33] | 0.0098 | 0.00040 | 0.0038 | 98.6 | 2025 |
| Hybrid GEO-DSGA (Ours) | This Work | 0.0089 | 0.000341 | 0.00423 | 98.7 | 2025 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dinler, Ö.B. Enhanced Airfoil Design Optimization Using Hybrid Geometric Neural Networks and Deep Symbiotic Genetic Algorithms. Appl. Sci. 2025, 15, 10882. https://doi.org/10.3390/app152010882
Dinler ÖB. Enhanced Airfoil Design Optimization Using Hybrid Geometric Neural Networks and Deep Symbiotic Genetic Algorithms. Applied Sciences. 2025; 15(20):10882. https://doi.org/10.3390/app152010882
Chicago/Turabian StyleDinler, Özlem Batur. 2025. "Enhanced Airfoil Design Optimization Using Hybrid Geometric Neural Networks and Deep Symbiotic Genetic Algorithms" Applied Sciences 15, no. 20: 10882. https://doi.org/10.3390/app152010882
APA StyleDinler, Ö. B. (2025). Enhanced Airfoil Design Optimization Using Hybrid Geometric Neural Networks and Deep Symbiotic Genetic Algorithms. Applied Sciences, 15(20), 10882. https://doi.org/10.3390/app152010882

