Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (78)

Search Parameters:
Keywords = advanced scatterometer (ASCAT)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 6561 KiB  
Article
Correction of ASCAT, ESA–CCI, and SMAP Soil Moisture Products Using the Multi-Source Long Short-Term Memory (MLSTM)
by Qiuxia Xie, Yonghui Chen, Qiting Chen, Chunmei Wang and Yelin Huang
Remote Sens. 2025, 17(14), 2456; https://doi.org/10.3390/rs17142456 - 16 Jul 2025
Viewed by 401
Abstract
The Advanced Scatterometer (ASCAT), Soil Moisture Active Passive (SMAP), and European Space Agency-Climate Change Initiative (ESA–CCI) soil moisture (SM) products are widely used in agricultural drought monitoring, water resource management, and climate analysis applications. However, the performance of these SM products varies significantly [...] Read more.
The Advanced Scatterometer (ASCAT), Soil Moisture Active Passive (SMAP), and European Space Agency-Climate Change Initiative (ESA–CCI) soil moisture (SM) products are widely used in agricultural drought monitoring, water resource management, and climate analysis applications. However, the performance of these SM products varies significantly across regions and environmental conditions, due to in sensor characteristics, retrieval algorithms, and the lack of localized calibration. This study proposes a multi-source long short-term memory (MLSTM) for improving ASCAT, ESA–CCI, and SMAP SM products by combining in-situ SM measurements and four key auxiliary variables: precipitation (PRE), land surface temperature (LST), fractional vegetation cover (FVC), and evapotranspiration (ET). First, the in-situ measured data from four in-situ observation networks were corrected using the LSTM method to match the grid sizes of ASCAT (0.1°), ESA–CCI (0.25°), and SMAP (0.1°) SM products. The RPE, LST, FVC, and ET were used as inputs to the LSTM to obtain loss data against in-situ SM measurements. Second, the ASCAT, ESA–CCI, and SMAP SM datasets were used as inputs to the LSTM to generate loss data, which were subsequently corrected using LSTM-derived loss data based on in-situ SM measurements. When the mean squared error (MSE) loss values were minimized, the improvement for ASCAT, ESA–CCI, and SMAP products was considered the best. Finally, the improved ASCAT, ESA–CCI, and SMAP were produced and evaluated by the correlation coefficient (R), root mean square error (RMSE), and standard deviation (SD). The results showed that the RMSE values of the improved ASCAT, ESA–CCI, and SMAP products against the corrected in-situ SM data in the OZNET network were lower, i.e., 0.014 cm3/cm3, 0.019 cm3/cm3, and 0.034 cm3/cm3, respectively. Compared with the ESA–CCI and SMAP products, the ASCAT product was greatly improved, e.g., in the SNOTEL network, the Root Mean-Square Deviation (RMSD) values of 0.1049 cm3/cm3 (ASCAT) and 0.0662 cm3/cm3 (improved ASCAT). Overall, the MLSTM-based algorithm has the potential to improve the global satellite SM product. Full article
(This article belongs to the Special Issue Remote Sensing for Terrestrial Hydrologic Variables)
Show Figures

Figure 1

25 pages, 5080 KiB  
Article
Study on 2007–2021 Drought Trends in Basilicata Region Based on the AMSU-Based Soil Wetness Index
by Raffaele Albano, Meriam Lahsaini, Arianna Mazzariello, Binh Pham-Duc and Teodosio Lacava
Land 2025, 14(6), 1239; https://doi.org/10.3390/land14061239 - 9 Jun 2025
Viewed by 474
Abstract
Soil moisture (SM) plays a fundamental role in the water cycle and is an important variable for all processes occurring at the lithosphere–atmosphere interface, which are strongly affected by climate change. Among the different fields of application, accurate SM measurements are becoming more [...] Read more.
Soil moisture (SM) plays a fundamental role in the water cycle and is an important variable for all processes occurring at the lithosphere–atmosphere interface, which are strongly affected by climate change. Among the different fields of application, accurate SM measurements are becoming more relevant for all studies related to extreme event (e.g., floods, droughts, and landslides) mitigation and assessment. In this study, data acquired by the advanced microwave sounding unit (AMSU) onboard the European Meteorological Operational Satellite Program (MetOP) satellites were used for the first time to extract information on the variability of SM by implementing the original soil wetness index (SWI). Long-term monthly SWI time series collected for the Basilicata region (southern Italy) were analyzed for drought assessment during the period 2007–2021. The accuracy of the SWI product was tested through a comparison with SM products derived by the Advanced SCATterometer (ASCAT) over the 2013–2016 period, while the Standardized Precipitation-Evapotranspiration Index (SPEI) was used to assess the relevance of the long-term achievements in terms of drought analysis. The results indicate a satisfactory accuracy of the SWI, with the mean correlation coefficient values with ASCAT higher than 0.7 and a mean normalized root mean square error less than 0.155. A negative trend in SWI during the 15-year period was found using both the original and deseasonalized series (linear and Sen’s slope ~−0.00525), confirmed by SPEI (linear and Sen’s slope ~−0.00293), suggesting the occurrence of a marginal long-term dry phase in the region. Although further investigations are needed to better assess the intensity and main causes of the phenomena, this result indicates the contribution that satellite data/products can offer in supporting drought assessment. Full article
(This article belongs to the Section Land – Observation and Monitoring)
Show Figures

Figure 1

23 pages, 5897 KiB  
Article
Evaluating the Performance of Satellite-Derived Soil Moisture Products Across South America Using Minimal Ground-Truth Assumptions in Spatiotemporal Statistical Analysis
by B. G. Mousa, Alim Samat and Hong Shu
Remote Sens. 2025, 17(5), 753; https://doi.org/10.3390/rs17050753 - 21 Feb 2025
Viewed by 801
Abstract
South America (SA) features diverse land cover types and varied climate conditions, both of which significantly influence the variability of soil moisture (SMO). Obtaining ground-truth measurements for SMO is often costly and labor-intensive, and the limited number of ground SMO stations in SA [...] Read more.
South America (SA) features diverse land cover types and varied climate conditions, both of which significantly influence the variability of soil moisture (SMO). Obtaining ground-truth measurements for SMO is often costly and labor-intensive, and the limited number of ground SMO stations in SA further complicates the evaluation of satellite-derived SMO products. In this work, we proposed an approach that integrates some statistical methods to assess the reliability of Soil Moisture Active Passive (SMAP), the H113 dataset from the Advanced Scatterometer (ASCAT), and Soil Moisture and Ocean Salinity (SMOS) satellite-derived SMO products in SA from 14 May 2015 to 31 December 2016. The integrated methods are error metrics (correlation (R), bias, and ubiased root mean square error (ubRMSE)), Triple Collocation Method (TCM), and Hovmöller diagrams. ERA5 and GLDAS-Noah SM products were used as references for validation. The quality of SMO products was assessed by considering environmental variables, including land cover, vegetation density, and precipitation, within the different climate zones of SA. The results presented that SMAP overall outperforms SMOS and ASCAT, with the highest average correlation (0.55 with GLDAS and 0.61 with ERA5), slight average bias (−0.058 with GLDAS and −0.014 with ERA5), and lowest average ubRMSE (0.045 with GLDAS and 0.041 with ERA5). In arid, semi-arid, and moderate vegetation regions, the SMAP satellite outperforms SMOS and ASCAT, achieving better statistics values with GLDAS and ERA5 datasets, and achieving low error variance and high S/N in the TCM analysis. While the ASCAT H113 product showed good performance, which makes it a good alternative to SMAP, it still has limitations in more dense vegetation regions. SMOS showed the lowest performance across SA, especially in the Amazon basin. The Amazon basin emerges as a critical region where all SMO products displayed a significant SMO variability; however, SMAP showed slightly better results than ASCAT and SMOS. In the absence of ground truths, the proposed approach provides a better evaluation of satellite SMO products. Meanwhile, it provides new spatiotemporal statistical insights into satellite SMO retrieval performance evaluation within diverse climate zones of SA. This research provides valuable guidance for improving SMO monitoring and agricultural management in tropical and semi-arid ecosystems. Full article
(This article belongs to the Special Issue Advances in Remote Sensing for Regional Soil Moisture Monitoring)
Show Figures

Figure 1

15 pages, 2158 KiB  
Article
How Can Seasonality Influence the Performance of Recent Microwave Satellite Soil Moisture Products?
by Raffaele Albano, Teodosio Lacava, Arianna Mazzariello, Salvatore Manfreda, Jan Adamowski and Aurelia Sole
Remote Sens. 2024, 16(16), 3044; https://doi.org/10.3390/rs16163044 - 19 Aug 2024
Cited by 4 | Viewed by 1166
Abstract
In addition to technical issues related to the instruments used, differences between soil moisture (SM) measured using ground-based methods and microwave remote sensing (RS) can be related to the main features of the study areas, which are intricately connected to hydraulic–hydrological conditions and [...] Read more.
In addition to technical issues related to the instruments used, differences between soil moisture (SM) measured using ground-based methods and microwave remote sensing (RS) can be related to the main features of the study areas, which are intricately connected to hydraulic–hydrological conditions and soil properties. When long-term analysis is performed, these discrepancies are mitigated by the contribution of SM seasonality and are only evident when high-frequency variations (i.e., signal anomalies) are investigated. This study sought to examine the responsiveness of SM to seasonal variations in terrestrial ecoregions located in areas covered by the in situ Romanian Soil Moisture Network (RSMN). To achieve this aim, several remote sensing-derived retrievals were considered: (i) NASA’s Soil Moisture Active and Passive (SMAP) L4 V5 model assimilated product data; (ii) the European Space Agency’s Soil Moisture and Ocean Salinity INRA–CESBIO (SMOS-IC) V2.0 data; (iii) time-series data extracted from the H115 and H116 SM products, which are derived from the analysis of Advanced Scatterometer (ASCAT) data acquired via MetOp satellites; (iv) Copernicus Global Land Service SSM 1 km data; and (v) the “combined” European Space Agency’s Climate Change Initiative for Soil Moisture (ESA CCI SM) product v06.1. An initial assessment of the performance of these products was conducted by checking the anomaly of long-term fluctuations, quantified using the Absolute Variation of Local Change of Environment (ALICE) index, within a time frame spanning 2015 to 2020. These correlations were then compared with those based on raw data and anomalies computed using a moving window of 35 days. Prominent correlations were observed with the SMAP L4 dataset and across all ecoregions, and the Balkan mixed forests (646) exhibited strong concordance regardless of the satellite source (with a correlation coefficient RALICE > 0.5). In contrast, neither the Central European mixed forests (No. 654) nor the Pontic steppe (No. 735) were adequately characterized by any satellite dataset (RALICE < 0.5). Subsequently, the phenological seasonality and dynamic behavior of SM were computed to investigate the effects of the wetting and drying processes. Notably, the Central European mixed forests (654) underwent an extended dry phase (with an extremely low p-value of 2.20 × 10−16) during both the growth and dormancy phases. This finding explains why the RSMN showcases divergent behavior and underscores why no satellite dataset can effectively capture the complexities of the ecoregions covered by this in situ SM network. Full article
(This article belongs to the Special Issue Remote Sensing of Climate-Related Hazards)
Show Figures

Graphical abstract

22 pages, 14452 KiB  
Article
Detecting Melt Pond Onset on Landfast Arctic Sea Ice Using a Dual C-Band Satellite Approach
by Syeda Shahida Maknun, Torsten Geldsetzer, Vishnu Nandan, John Yackel and Mallik Mahmud
Remote Sens. 2024, 16(12), 2091; https://doi.org/10.3390/rs16122091 - 9 Jun 2024
Viewed by 1709
Abstract
The presence of melt ponds on the surface of Arctic Sea ice affects its albedo, thermal properties, and overall melting rate; thus, the detection of melt pond onset is of significant importance for understanding the Arctic’s changing climate. This study investigates the utility [...] Read more.
The presence of melt ponds on the surface of Arctic Sea ice affects its albedo, thermal properties, and overall melting rate; thus, the detection of melt pond onset is of significant importance for understanding the Arctic’s changing climate. This study investigates the utility of a novel method for detecting the onset of melt ponds on sea ice using a satellite-based, dual-sensor C-band approach, whereby Sentinel-1 provides horizontally polarized (HH) data and Advanced SCATterometer (ASCAT) provides vertically polarized (VV) data. The co-polarized ratio (VV/HH) is used to detect the presence of melt ponds on landfast sea ice in the Canadian Arctic Archipelago in 2017 and 2018. ERA-5 air temperature and wind speed re-analysis datasets are used to establish the VV/HH threshold for pond onset detection, which have been further validated by Landsat-8 reflectance. The co-polarized ratio threshold of three standard deviations from the late winter season (April) mean co-pol ratio values are used for assessing pond onset detection associated with the air temperature and wind speed data, along with visual observations from Sentinel-1 and cloud-free Sentinel-2 imagery. In 2017, the pond onset detection rates were 70.59% for FYI and 92.3% for MYI. Results suggest that this method, because of its dual-platform application, has potential for providing large-area coverage estimation of the timing of sea ice melt pond onset using different earth observation satellites. Full article
Show Figures

Figure 1

18 pages, 9257 KiB  
Article
Polarized Bidirectional Reflectance Distribution Function Matrix Derived from Two-Scale Roughness Theory and Its Applications in Active Remote Sensing
by Lingli He, Fuzhong Weng, Jinghan Wen and Tong Jia
Remote Sens. 2024, 16(9), 1551; https://doi.org/10.3390/rs16091551 - 26 Apr 2024
Cited by 4 | Viewed by 1461
Abstract
A polarized bidirectional reflectance distribution function (pBRDF) matrix was developed based on the two-scale roughness theory to provide consistent simulations of fully polarized microwave emission and scattering, required for the ocean–atmosphere-coupled radiative transfer model. In this study, the potential of the two-scale pBRDF [...] Read more.
A polarized bidirectional reflectance distribution function (pBRDF) matrix was developed based on the two-scale roughness theory to provide consistent simulations of fully polarized microwave emission and scattering, required for the ocean–atmosphere-coupled radiative transfer model. In this study, the potential of the two-scale pBRDF matrix was explored for simulating ocean full-polarization backscattering and bistatic-scattering normalized radar cross sections (NRCSs). Comprehensive numerical simulations of the two-scale pBRDF matrix across the L-, C-, X-, and Ku-bands were carried out, and the simulations were compared with experimental data, classical electromagnetic, and GMFs. The results show that the two-scale pBRDF matrix demonstrates reasonable dependencies on ocean surface wind speeds, relative wind direction (RWD), geometries, and frequencies and has a reliable accuracy in general. In addition, the two-scale pBRDF matrix simulations were compared with the observations from the advanced scatterometer (ASCAT) onboard MetOP-C satellites, with a correlation coefficient of 0.9634 and a root mean square error (RMSE) of 2.5083 dB. In the bistatic case, the two-scale pBRDF matrix simulations were compared with Cyclone Global Navigation Satellite System (CYGNSS) observations, demonstrating a good correlation coefficient of 0.8480 and an RMSE of 1.2859 dB. In both cases, the two-scale pBRDF matrix produced fairly good simulations at medium-to-high wind speeds. The relatively large differences at low wind speeds (<5 m/s) were due probably to the swell effects. This study proves that the two-scale pBRDF matrix is suitable for the applications of multiple types of active instruments and can consistently simulate the ocean surface passive and active signals. Full article
Show Figures

Figure 1

20 pages, 10265 KiB  
Article
Sea Ice Extent Retrieval Using CSCAT 12.5 km Sampling Data
by Liling Liu, Xiaolong Dong, Liqing Yang, Wenming Lin and Shuyan Lang
Remote Sens. 2024, 16(4), 700; https://doi.org/10.3390/rs16040700 - 16 Feb 2024
Cited by 1 | Viewed by 1394
Abstract
Polar sea ice extent exhibits a highly dynamic nature. This paper investigates the sea ice extent retrieval on a fine (6.25 km) grid based on the 12.5 km sampling data from the China France Ocean Satellite Scatterometer (CSCAT), which is generated by an [...] Read more.
Polar sea ice extent exhibits a highly dynamic nature. This paper investigates the sea ice extent retrieval on a fine (6.25 km) grid based on the 12.5 km sampling data from the China France Ocean Satellite Scatterometer (CSCAT), which is generated by an adapted Bayesian sea ice detection algorithm. The CSCAT 12.5 km sampling data are analyzed, a corresponding sea ice GMF model is established, and the important calculation procedures and parameter settings of the adapted Bayesian algorithm for CSCAT 12.5 km sampling data are elaborated on. The evolution of the sea ice edge and extent based on CSCAT 12.5 km sampling data from 2020 to 2022 is introduced and quantitatively compared with sea ice extent products of Advanced Microwave Scanning Radiometer 2 (AMSR2) and the Advanced Scatterometer onboard MetOp-C (ASCAT-C). The results suggest the sea ice extent of CSCAT 12.5 km sampling data has good consistency with AMSR2 at 15% sea ice concentration. The sea ice edge accuracy between them is about 7 km and 10 km for the Arctic and Antarctic regions, and their sea ice extent difference is 0.25 million km2 in 2020 and 0.5 million km2 in 2021 and 2022. Compared to ASCAT-C 12.5 km sampling data, the sea ice edge Euclidean distance (ED) of CSCAT 12.5 km data is 14 km (2020 and 2021) and 12.5 km (2022) for the Arctic region and 14 km for the Antarctic region. The sea ice extent difference between them is small except for January to May 2020 and 2021 for the Arctic region. There are significant deviations in the sea ice extents of CSCAT 12.5 km and 25 km sampling data, and their sea ice extent difference is 0.3–1.0 million km2. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

15 pages, 5229 KiB  
Article
Super Resolution Mapping of Scatterometer Ocean Surface Wind Speed Using Generative Adversarial Network: Experiments in the Southern China Sea
by Xianci Wan, Baojian Liu, Zhizhou Guo, Zhenghuan Xia, Tao Zhang, Rui Ji and Wei Wan
J. Mar. Sci. Eng. 2024, 12(2), 228; https://doi.org/10.3390/jmse12020228 - 27 Jan 2024
Cited by 2 | Viewed by 1794
Abstract
This paper designed a Generative Adversarial Network (GAN)-based super-resolution framework for scatterometer ocean surface wind speed (OSWS) mapping. An improved GAN, WSGAN, was well-trained to generate high-resolution OSWS (~1/64 km) from low-resolution OSWS (~12.5 km) retrieved from scatterometer observations. The generator of GAN [...] Read more.
This paper designed a Generative Adversarial Network (GAN)-based super-resolution framework for scatterometer ocean surface wind speed (OSWS) mapping. An improved GAN, WSGAN, was well-trained to generate high-resolution OSWS (~1/64 km) from low-resolution OSWS (~12.5 km) retrieved from scatterometer observations. The generator of GAN incorporated Synthetic Aperture Radar (SAR) information in the training phase. Therefore, the pre-trained model could reconstruct high-resolution OSWS with historical local spatial and texture information. The training experiments were executed in the South China Sea using the OSWS generated from the Advanced SCATterometer (ASCAT) scatterometer and Sentinel-1 SAR OSWS set. Several GAN-based methods were compared, and WSGAN performed the best in most sea states, enabling more detail mining with fewer checkerboard artifacts at a scale factor of eight. The model reaches an overall root mean square error (RMSE) of 0.81 m/s and an overall mean absolute error (MAE) of 0.68 m/s in the collocation region of ASCAT and Sentinel-1. The model also exhibits excellent generalization capability in another scatterometer with an overall RMSE of 1.11 m/s. This study benefits high-resolution OSWS users when no SAR observation is available. Full article
Show Figures

Figure 1

18 pages, 6810 KiB  
Article
The Impact of Satellite Soil Moisture Data Assimilation on the Hydrological Modeling of SWAT in a Highly Disturbed Catchment
by Yongwei Liu, Wei Cui, Zhe Ling, Xingwang Fan, Jianzhi Dong, Chengmei Luan, Rong Wang, Wen Wang and Yuanbo Liu
Remote Sens. 2024, 16(2), 429; https://doi.org/10.3390/rs16020429 - 22 Jan 2024
Cited by 2 | Viewed by 2561
Abstract
The potential of satellite soil moisture (SM) in improving hydrological modeling has been addressed in synthetic experiments, but it is less explored in real data cases. Here, we investigate the added value of Soil Moisture and Passive (SMAP) and Advanced Scatterometer (ASCAT) SM [...] Read more.
The potential of satellite soil moisture (SM) in improving hydrological modeling has been addressed in synthetic experiments, but it is less explored in real data cases. Here, we investigate the added value of Soil Moisture and Passive (SMAP) and Advanced Scatterometer (ASCAT) SM data to distributed hydrological modeling with the soil and water assessment tool (SWAT) in a highly human disturbed catchment (126, 486 km2) featuring a network of SM and streamflow observations. The investigation is based on the ensemble Kalman filter (EnKF) considering SM errors from satellite data using the triple collocation. The assimilation of SMAP and ASCAT SM improved the surface (0–10 cm) and rootzone (10–30 cm) SM at >70% and > 50% stations of the basin, respectively. However, the assimilation effects on distributed streamflow simulation of the basin are un-significant and not robust. SM assimilation improved the simulated streamflow at two upstream stations, while it deteriorated the streamflow at the remaining stations. This can be largely attributed to the poor vertical soil water coupling of SWAT, suboptimal model parameters, satellite SM data quality, humid climate, and human disturbance to rainfall-runoff processes. This study offers strong evidence of integrating satellite SM into hydrological modeling in improving SM estimation and provides implications for achieving the added value of remotely sensed SM in streamflow improvement. Full article
Show Figures

Figure 1

20 pages, 13232 KiB  
Article
Evaluation of Satellite-Derived Precipitation Products for Streamflow Simulation of a Mountainous Himalayan Watershed: A Study of Myagdi Khola in Kali Gandaki Basin, Nepal
by Aashutosh Aryal, Thanh-Nhan-Duc Tran, Brijesh Kumar and Venkataraman Lakshmi
Remote Sens. 2023, 15(19), 4762; https://doi.org/10.3390/rs15194762 - 28 Sep 2023
Cited by 33 | Viewed by 3931
Abstract
This study assesses four Satellite-derived Precipitation Products (SPPs) that are corrected and validated against gauge data such as Soil Moisture to Rain—Advanced SCATterometer V1.5 (SM2RAIN-ASCAT), Multi-Source Weighted-Ensemble Precipitation V2.8 (MSWEP), Global Precipitation Measurement Integrated Multi-satellitE Retrievals for GPM Final run V6 (GPM IMERGF), [...] Read more.
This study assesses four Satellite-derived Precipitation Products (SPPs) that are corrected and validated against gauge data such as Soil Moisture to Rain—Advanced SCATterometer V1.5 (SM2RAIN-ASCAT), Multi-Source Weighted-Ensemble Precipitation V2.8 (MSWEP), Global Precipitation Measurement Integrated Multi-satellitE Retrievals for GPM Final run V6 (GPM IMERGF), and Climate Hazards Group InfraRed Precipitation with Station (CHIRPS). We evaluate the performance of these SPPs in Nepal’s Myagdi Khola watershed, located in the Kali Gandaki River basin, for the period 2009–2019. The SPPs are evaluated by validating the gridded precipitation products using the hydrological model, Soil and Water Assessment Tool (SWAT). The results of this study show that the SM2RAIN-ASCAT and GPM IMERGF performed better than MSWEP and CHIRPS in accurately simulating daily and monthly streamflow. GPM IMERGF and SM2RAIN-ASCAT are found to be the better-performing models, with higher NSE values (0.63 and 0.61, respectively) compared with CHIRPS and MSWEP (0.45 and 0.41, respectively) after calibrating the model with monthly data. Moreover, SM2RAIN-ASCAT demonstrated the best performance in simulating daily and monthly streamflow, with NSE values of 0.57 and 0.63, respectively, after validation. This study’s findings support the use of satellite-derived precipitation datasets as inputs for hydrological models to address the hydrological complexities of mountainous watersheds. Full article
(This article belongs to the Topic Hydrology and Water Resources Management)
Show Figures

Graphical abstract

19 pages, 18560 KiB  
Article
Characterizing the Effect of Ocean Surface Currents on Advanced Scatterometer (ASCAT) Winds Using Open Ocean Moored Buoy Data
by Tianyi Cheng, Zhaohui Chen, Jingkai Li, Qing Xu and Haiyuan Yang
Remote Sens. 2023, 15(18), 4630; https://doi.org/10.3390/rs15184630 - 21 Sep 2023
Cited by 1 | Viewed by 2480
Abstract
The ocean surface current influences the roughness of the sea surface, subsequently affecting the scatterometer’s measurement of wind speed. In this study, the effect of surface currents on ASCAT-retrieved winds is investigated based on in-situ observations of both surface winds and currents from [...] Read more.
The ocean surface current influences the roughness of the sea surface, subsequently affecting the scatterometer’s measurement of wind speed. In this study, the effect of surface currents on ASCAT-retrieved winds is investigated based on in-situ observations of both surface winds and currents from 40 open ocean moored buoys in the tropical and mid-latitude oceans. A total of 28,803 data triplets, consisting of buoy-observed wind vectors, current vectors, and ASCAT Level 2 wind vectors, were collected from the dataset spanning over 10 years. It is found that the bias between scatterometer-retrieved wind speed and buoy-observed wind speed is negatively correlated with the ocean surface current speed. The wind speed bias is approximately 0.96 times the magnitude of the downwind surface current. The root-mean-square error between the ASCAT wind speeds and buoy observations is reduced by about 15% if rectification with ocean surface currents is involved. Therefore, it is essential to incorporate surface current information into wind speed calibration, particularly in regions with strong surface currents. Full article
Show Figures

Figure 1

17 pages, 4495 KiB  
Article
Assimilation of ASCAT Radar Backscatter Coefficients over Southwestern France
by Timothée Corchia, Bertrand Bonan, Nemesio Rodríguez-Fernández, Gabriel Colas and Jean-Christophe Calvet
Remote Sens. 2023, 15(17), 4258; https://doi.org/10.3390/rs15174258 - 30 Aug 2023
Cited by 1 | Viewed by 1807
Abstract
In this work, Advanced SCATterometer (ASCAT) backscatter data are directly assimilated into the interactions between soil, biosphere, and atmosphere (ISBA) land surface model using Meteo-France’s global Land Data Assimilation System (LDAS-Monde) tool in order to jointly analyse soil moisture and leaf area index [...] Read more.
In this work, Advanced SCATterometer (ASCAT) backscatter data are directly assimilated into the interactions between soil, biosphere, and atmosphere (ISBA) land surface model using Meteo-France’s global Land Data Assimilation System (LDAS-Monde) tool in order to jointly analyse soil moisture and leaf area index (LAI). For the first time, observation operators based on neural networks (NNs) are trained with ISBA simulations and LAI observations from the PROBA-V satellite to predict the ASCAT backscatter signal. The trained NN-based observation operators are implemented in LDAS-Monde, which allows the sequential assimilation of backscatter observations. The impact of the assimilation is evaluated over southwestern France. The simulated and analysed backscatter signal, surface soil moisture, and LAI are evaluated using satellite observations from ASCAT and PROBA-V as well as in situ soil moisture observations. An overall improvement in the variables is observed when comparing the analysis with the open-loop simulation. The impact of the assimilation is greater over agricultural areas. Full article
(This article belongs to the Special Issue Remote Sensing for Soil Moisture and Vegetation Parameters Retrieval)
Show Figures

Graphical abstract

18 pages, 10213 KiB  
Article
Can Sea Surface Waves Be Simulated by Numerical Wave Models Using the Fusion Data from Remote-Sensed Winds?
by Jian Shi, Weizeng Shao, Shaohua Shi, Yuyi Hu, Tao Jiang and Youguang Zhang
Remote Sens. 2023, 15(15), 3825; https://doi.org/10.3390/rs15153825 - 31 Jul 2023
Cited by 7 | Viewed by 1806
Abstract
The purpose of our work is to investigate the performance of fusion wind from multiple remote-sensed data in forcing numeric wave models, and the experiment is described herein. In this study, 0.125° gridded wind fields at 12 h intervals were fused by using [...] Read more.
The purpose of our work is to investigate the performance of fusion wind from multiple remote-sensed data in forcing numeric wave models, and the experiment is described herein. In this study, 0.125° gridded wind fields at 12 h intervals were fused by using swath products from an advanced scatterometer (ASCAT) (a Haiyang-2B (HY-2B) scatterometer) and a spaceborne polarimetric microwave radiometer (WindSAT) during the period November 2019 to October 2020. The daily average wind speeds were compared with observations from National Data Buoy Center (NDBC) buoys from the National Oceanic and Atmospheric Administration (NOAA), yielding a 1.66 m/s root mean squared error (RMSE) with a 0.81 correlation (COR). This suggests that fusion wind was reliable for our work. The fusion winds were used for hindcasting sea surface waves by using two third-generation numeric wave models, denoted as WAVEWATCH-III (WW3) and Simulation Wave Nearshore (SWAN). The WW3-simulated waves in the North Pacific Ocean and the SWAN-simulated waves in the Gulf of Mexico were validated against the measurements from the NDBC buoys and the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA-5) for the period June−September 2020. The analysis of significant wave heights (SWHs) up to 9 m yielded a < 0.5 m RMSE with a > 0.8 COR for the WW3 and SWAN models. Therefore, it was believed that the accuracy of the simulation using the two numeric models was comparable with that forced by a numeric atmospheric model. An error analysis was systematically conducted by comparing the modeled WW3-simulated SWHs with the monthly average products from the HY-2B and a Jason-3 altimeter over global seas. The seasonal analysis showed that the differences in the SWHs (i.e., altimeter minus the WW3) were within ±1.5 m in March and June; however, the difference was quite significant in December. It was concluded that remote-sensed fusion wind can serve as a driving force for hindcasting waves using numeric wave models. Full article
(This article belongs to the Special Issue Radar Signal Processing and Imaging for Ocean Remote Sensing)
Show Figures

Figure 1

22 pages, 13555 KiB  
Article
Effects of Directional Wave Spectra on the Modeling of Ocean Radar Backscatter at Various Azimuth Angles by a Modified Two-Scale Method
by Qiushuang Yan, Yuqi Wu, Chenqing Fan, Junmin Meng, Tianran Song and Jie Zhang
Remote Sens. 2023, 15(8), 2191; https://doi.org/10.3390/rs15082191 - 20 Apr 2023
Viewed by 2315
Abstract
Knowledge of the ocean backscatter at various azimuth angles is critical to the radar detection of the ocean environment. In this study, the modified two-scale model (TSM), which introduces a correction term in the conventional TSM, is improved based on the empirical model, [...] Read more.
Knowledge of the ocean backscatter at various azimuth angles is critical to the radar detection of the ocean environment. In this study, the modified two-scale model (TSM), which introduces a correction term in the conventional TSM, is improved based on the empirical model, CMOD5.n. Then, the influences of different directional wave spectra on the prediction of azimuthal behavior of ocean radar backscatter are investigated by comparing the simulated results with CMOD5.n and the Advanced Scatterometer (ASCAT) measurements. The results show that the overall performance of the single spectra of D, A, E, and H18 and the composite spectra of AH18 and AEH18 in predicting ocean backscatter are different at different wind speeds and incidence angles. Generally, the AH18 spectrum has better performance at low and moderate wind speeds, while the A spectrum works better at high wind speed. Nevertheless, the wave spectra have little effect on the prediction of the azimuthal fluctuation of scattering, which is highly dependent on the directional spreading function. The relative patterns of azimuthal undulation produced by different spreading functions are rather different at different wind speeds, but similar under different incidence angles. The Gaussian spreading function generally has better performance in predicting the azimuthal fluctuation of scattering. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

31 pages, 14235 KiB  
Article
Effects of Wind Wave Spectra, Non-Gaussianity, and Swell on the Prediction of Ocean Microwave Backscatter with Facet Two-Scale Model
by Yuqi Wu, Chenqing Fan, Qiushuang Yan, Junmin Meng, Tianran Song and Jie Zhang
Remote Sens. 2023, 15(5), 1469; https://doi.org/10.3390/rs15051469 - 6 Mar 2023
Cited by 3 | Viewed by 2262
Abstract
The image intensity of high-resolution synthetic aperture radar (SAR) is closely related to the facet scattering distribution. In this paper, the effects of wind wave spectra, non-Gaussianity of the sea surface, and swell on the distribution of the facet normalized radar cross section [...] Read more.
The image intensity of high-resolution synthetic aperture radar (SAR) is closely related to the facet scattering distribution. In this paper, the effects of wind wave spectra, non-Gaussianity of the sea surface, and swell on the distribution of the facet normalized radar cross section (NRCS) simulated by the facet two-scale model (TSM) are analyzed by comparing the simulated results with the Sentinel-1 SAR data, the Advanced Scatterometer (ASCAT) data, and the geophysical model function (GMF) at the wind speed range of 3–16 m/s, the wind direction range of 0°–360°, and the incidence angle range of 30°–50° under VV and HH polarizations. The results show that the Apel spectrum achieves a more consistent mean NRCS and NRCS distribution with the reference data at low incidence angles, while the composite spectra perform better at high incidence angles under VV polarization. Under HH polarization, the Apel spectrum always has a better performance. The upwind–downwind asymmetry of backscattering can be predicted well by the modified TSM, which is constructed by incorporating bispectrum correction into the conventional TSM. The distribution of the scattering simulated by the modified TSM deviates from the Gaussian distribution significantly, which is in good agreement with the Sentinel-1 data. Additionally, the introduction of swell widens the spread of the NRCS distribution, and the fluctuation range of the NRCS profile considering swell is larger than that without swell. All these changes caused by the introduction of swell make the distribution of the facet scattering more consistent with the Sentinel-1 data. Moreover, the scattering image patterns and scattering image spectrum of the Sentinel-1 data can be successfully simulated at various sea states with the consideration of swell. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

Back to TopTop