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Abstract: In this work, Advanced SCATterometer (ASCAT) backscatter data are directly assimilated
into the interactions between soil, biosphere, and atmosphere (ISBA) land surface model using Meteo-
France’s global Land Data Assimilation System (LDAS-Monde) tool in order to jointly analyse soil
moisture and leaf area index (LAI). For the first time, observation operators based on neural networks
(NNs) are trained with ISBA simulations and LAI observations from the PROBA-V satellite to predict
the ASCAT backscatter signal. The trained NN-based observation operators are implemented in
LDAS-Monde, which allows the sequential assimilation of backscatter observations. The impact of
the assimilation is evaluated over southwestern France. The simulated and analysed backscatter
signal, surface soil moisture, and LAI are evaluated using satellite observations from ASCAT and
PROBA-V as well as in situ soil moisture observations. An overall improvement in the variables is
observed when comparing the analysis with the open-loop simulation. The impact of the assimilation
is greater over agricultural areas.

Keywords: ASCAT; data assimilation; soil moisture; leaf area index

1. Introduction

In the context of global warming, the frequency and intensity of extreme events
such as agricultural droughts and heatwaves are increasing [1,2]. These events have
significant environmental, economic, and social impacts, with droughts affecting more than
2 billion people and causing an estimated 11 million deaths in the 20th century [3]. Land
surface variables (LSVs), such as soil moisture, soil temperature, and vegetation leaf area
index (LAI) control terrestrial carbon, water, and energy fluxes at the interface with the
atmosphere. Monitoring and prediction of LSVs is needed to better understand the impacts
of extreme weather events [4,5].

A common method of monitoring LSVs is through Earth observation (EO). Observa-
tions from the fleet of Earth observation satellites allow LSVs to be tracked on a global
scale. Satellite instruments provide measurements, such as radiance or reflectance, that
must be processed to obtain retrievals such as surface soil moisture (SSM) [6] or leaf area
index (LAI). The spatial and temporal resolution of these retrieval products is limited, and
land surface models (LSMs) are often used operationally to produce continuous simula-
tions [7]. LSMs were originally developed to provide boundary conditions for atmospheric
models, but are now used for the monitoring and forecasting of LSVs [8–10]. They can be
coupled with other components of Earth system models, such as atmospheric and oceanic
models [9,11,12].

The integration of EOs into LSMs can be achieved by data assimilation (DA) using
a land data assimilation system (LDAS). The DA methods allow to constrain the LSMs
and to improve their performance [13,14]. LDAS-Monde [15–18] has been developed by
the Centre National de Recherches Météorologiques (CNRM). LDAS-monde is an offline
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system (not coupled with the atmosphere) that allows the sequential joint assimilation of
SSM and LAI at different spatial scales (from local to global). It uses a simplified extended
Kalman filter (EKF) to constrain the LSVs of the ISBA (interactions between soil, biosphere,
and atmosphere) LSM [19,20]. Several studies have shown the benefit of assimilating
SSM products derived from either active or passive microwave sensors to improve the
representation of soil moisture in LSMs [21–24]. More recently, there has been increased
interest in the assimilation of vegetation-related variables such as LAI and microwave
vegetation optical depth (VOD) [15,25–27].

The advantage of assimilating SSM and LAI retrievals is that these quantities are simu-
lated by ISBA. For other observations, such as radar backscatter and microwave brightness
temperatures, specific observation operators must be coupled with ISBA. The rationale for
moving toward the assimilation of satellite radiance products is that
(1) they may contain useful information that is lost in the production of retrievals and
(2) the characterization of observational errors is easier. For example, the C-band radar
backscatter coefficients from the Advanced SCATterometer (ASCAT) are used to produce
SSM products [6]. During the SSM retrieval process, the vegetation information content of
the backscatter signal can be retrieved, e.g., [28]. Direct assimilation of ASCAT backscatter
observations instead of SSM retrievals could prove advantageous as it could provide in-
formation on (1) SSM, (2) vegetation stress related to drought soil conditions in the root
zone, and (3) vegetation dynamics through the microwave vegetation optical depth [29,30].
Since ASCAT backscatter is not simulated by ISBA, an observation operator is needed to
link the ISBA simulations to these observations. Typically, observation operators are based
on physical equations using radiative transfer algorithms. Due to their computational
cost, semi-empirical models can be used instead [31–33]. Several studies have shown
that the use of neural networks (NNs) in retrieval algorithms is an efficient way to pro-
cess radiance. SSM can be retrieved using microwave brightness temperatures using this
method [11,34–36].

The main objectives of this study were to (1) develop a novel approach to simulate
ASCAT backscatter observations using NNs as observation operators, (2) couple the obser-
vations operators with the ISBA LSM, (3) analyse soil moisture and LAI by assimilating
ASCAT backscatter observations, and (4) evaluate the analysis. After a training phase of the
NNs, the NN-based observation operator is implemented in LDAS-Monde and the impact
of assimilating ASCAT backscatter observations in ISBA is evaluated over southwestern
France.

The paper is organized as follows. Section 2 presents the different components of
LDAS-Monde, starting with the interactive vegetation version of the ISBA LSM, as well as
the data and methods used for NN training and assimilation. Details of the experimental
setup and the specifics of the study area are also given in this section. Section 3 presents
the results of the calibration of the NN hyperparameters and of the validation of the NN
outputs. The impact of the assimilation on the ISBA simulations is shown. The results are
discussed in Section 4. Section 5 summarizes the conclusions of this work.

2. Materials and Methods
2.1. The ISBA LSM

ISBA is an LSM that includes several options of varying complexity. It simulates the
evolution of LSVs such as soil moisture, soil temperature or vegetation biomass within
the SURFEX (SURface Externalisée) modelling platform [37] developed by the CNRM
(http://www.umr-cnrm.fr/surfex, accessed on 2 August 2023). It calculates the transfer of
water, carbon and energy between the land surface and the atmosphere. A simple version
of ISBA is used for operational numerical weather prediction at Meteo-France [38,39].
For climate modelling, a more sophisticated version capable of representing the carbon
cycle is used [40,41]. The version of the model that is used for this study is ISBA-A-gs,
a CO2-responsive version of ISBA capable of representing photosynthesis, plant growth
and senescence. Phenology is driven entirely by photosynthesis, using a simple allocation

http://www.umr-cnrm.fr/surfex
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scheme. Net leaf CO2 assimilation is used to represent the incoming carbon flux for leaf
biomass growth. A photosynthesis-dependent leaf mortality rate is calculated. The balance
between the leaf carbon uptake and the leaf mortality rate results in an increase or a
decrease in leaf biomass [15]. Leaf biomass is converted to LAI using a fixed value of
specific leaf area (SLA) per plant functional type. The biochemical A-gs model described
in [42] is used, together with advanced representations of the photosynthesis response to
drought for low vegetation and for trees ([43] and [44], respectively). The evolution of the
vertical soil moisture and soil temperature profiles is calculated using a multilayer diffusion
scheme [45,46]. The soil is discretized in:

• 14 layers for soil temperature, down to 12 m (0–0.01 m, 0.01–0.04 m, 0.04–0.10 m,
0.1–0.2 m, 0.2–0.4 m), 0.4–0.6 m, 0.6–0.8 m, 0.8–1.0 m, 1.0–1.5 m, 1.5–2.0 m, 2–3 m,
3–5 m, 5–8 m and 8–12 m)

• 8 to 10 layers for soil moisture (same depths as for soil temperature), down to 1 m and
2 m depending on vegetation characteristics.

Surface soil evaporation is represented along with root water uptake related to leaf
transpiration. A root density profile is used to calculate the water uptake and to calculate a
weighted average soil water stress index. This index is then used to represent the effect of
drought on photosynthesis. Agricultural practices such as irrigation and crop rotation are
not represented in this version of the model

In ISBA, each grid cell is composed of four tiles (city, ocean, lake, and land). The
diversity of land surfaces is represented by combining 12 generic surface patches: bare soil
and deserts, rocks and urban areas, permanent snow and ice, broadleaf trees, coniferous
trees, tropical broadleaf evergreen trees, C3 crops, C4 crops, irrigated crops, C3 grasslands,
C4 grasslands, and wetlands. The global database ECOCLIMAP-II provides the information
for each patch [47]. The grid cell LAI simulated by ISBA-A-gs is calculated by averaging
the LAI of the different vegetation types weighted by the fractional area they cover. The
model can be operated at different spatial scales, from local to global, and at different
spatial resolutions.

2.2. LDAS-Monde

LDAS-Monde [15] is a sequential data assimilation system embedded in the SURFEX
modelling platform in an offline configuration (without interaction with the atmosphere).
It allows the joint assimilation of global satellite SSM and LAI products into ISBA-A-gs.
The assimilation of satellite products with LDAS-Monde is performed using an EKF [48]
and allows the direct update of eight control variables of the ISBA model, including
soil moisture from 1 to 100 cm depth (corresponding to layers 2 to 8) and LAI, with a
24 h assimilation window [26]. Data assimilation is performed independently for each
grid cell, and no spatial covariance is considered. A two-step sequential approach is
used: a prior forecast step and an analysis step. The initial states are propagated using
ISBA during the prior forecast step. The forecast is then corrected during the analysis
step by assimilating the observations. The dynamic link between the observations and
the prognostic variables is established by the observation operator. The Jacobian of the
observation operator propagates the information from the observations to the control
variables via finite difference calculations.

2.3. ASCAT Data

This paper focuses on the assimilation of ASCAT backscatter observations. ASCAT
is a C-band (5.255 GHz) radar installed on the MetOp satellites. The ASCAT instruments
use vertically polarized antennae for both transmitting and receiving signals. Backscatter
measurements are gathered at three azimuth angles: 45◦, 90◦, and 135◦. While the primary
purpose of ASCAT is to measure wind speed and direction over oceans, these measurements
can also be linked to other geophysical variables. In particular, over land, vegetation and
surface soil moisture both affect the observed backscatter values. Retrieval methods have
been developed to derive a soil moisture index, resulting in the creation of a surface soil
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moisture database [6]. While the assimilation of this SSM retrieval into the ISBA model
has demonstrated benefits [15,18], the vegetation information contained in the backscatter
observations remains untapped. A normalized ASCAT backscatter product at an angle
of incidence of 40◦ with a spatial resolution of 25 km is available together with the SSM
products disseminated by EUMETSAT. Since the original observations are at different angles
of incidence, this product is obtained by interpolation using a linear regression between the
measured backscatter values and the angle of incidence. The resulting interpolated product
is called σ0

40.
An ASCAT SSM product is used in this study for model and data assimilation bench-

marking purposes. The near-surface soil wetness index product SWI-001 is used as a proxy
for the SSM. SWI-001 is a filtered version of the original SSM retrievals. A recursive exponen-
tial filter [49] with a time scale of 1 day is used. In order to assimilate this product without
introducing biases, a seasonal rescaling to the model climatology is performed [21,24,50,51].
This product is available daily with a spatial resolution of 0.1◦.

All data sets are interpolated from their respective native grids to a 0.25◦ resolution
grid using a bilinear interpolation as per [52].

2.4. LAI Data

PROBA-V LAI retrievals from the Copernicus Global Land Service (CGLS) version
1 (GEOV1) with a spatial resolution of 1 km × 1 km are used. The LAI retrievals are derived
from reflectance by using a machine learning algorithm [53]. This dataset is available at a
1 km resolution with observations every 10 days.

2.5. Observation Operator Based on Neural Networks

The observation operator serves as a link between the observations and the LSVs
generated by the ISBA model. In this study, a novel observation operator based on NNs
is developed. Previous research has shown that multi-layer feed-forward NNs, such as
multi-layer perceptrons, are powerful tools for establishing statistical relationships between
satellite observations and soil moisture [34,54]. The NNs used in this study are trained
to simulate the σ0

40 observations using three predictors derived from ISBA outputs and
satellite observations:

• Model soil moisture for the 0.01–0.04 m layer (WG2).
• Model soil temperature for the same layer.
• PROBA-V LAI provided by CGLS.

The inclusion of observed LAI as a predictor is crucial as it captures additional in-
formation related to agricultural practices that are not explicitly represented in the ISBA
simulations. All the predictors are preprocessed using the common z-score normalization
technique. First, the NNs are trained using σ0

40 data corresponding to a training period.
Second, the trained NNs are implemented in LDAS-monde as observation operators and
the assimilation is performed for a test period different from the training period. The
assimilation of σ0

40 is performed for the test period. For the assimilation, the mean ASCAT
σ0

40 observation error is set to 0.33 dB, based on [31].
Overall, this approach allows the assimilation of σ0

40 into ISBA, using the trained
NN-based observation operators to effectively assimilate these data and improve the
estimation of LSVs. The architecture of the neural network (NN) is chosen through a
thorough analysis of the influence of the hyperparameters on the predictions. The influence
of each hyperparameter is evaluated individually for all 247 grid cells within the study
area.

2.6. In Situ Soil Moisture Observations

The Soil Moisture Observing System—Meteorological Automatic Network Integrated
Application (SMOSMANIA) is a network of weather stations with frequency domain re-
flectometry soil moisture sensors installed along a 400 km Mediterranean–Atlantic transect
in southern France that have been providing continuous measurements of soil moisture at
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different soil depths every 12 min from 2006 to the present [55]. The stations are equipped
with soil moisture probes at four depths (0.05, 0.10, 0.20 and 0.30 m) and are separated
by an average distance of 45 km. For this study, only the 14 stations located within the
study area in southwestern France (SBR, URG, CRD, PRG, CDM, LHS, SVN, MNT, SFL,
LZC, MTM, NBN, PZN, PRD) were considered, and are shown in Figure 1. The in situ SSM
observations at 0.05 m depth are used to validate the SSM simulations.
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2.7. Experimental Setup and Assessment

In this study, version 8.1 of SURFEX is used in the offline mode. The ISBA LSM is
forced with the ERA5 atmospheric reanalysis [56,57], which is available globally from
1979 to the present with an hourly frequency and a horizontal resolution of 31 km. The
ERA5 atmospheric variables are interpolated to the regular ISBA 0.25◦ × 0.25◦ grid using a
bilinear interpolation. The study area (Figure 1) covers southwestern France and extends
from 42.0◦N to 46.0◦N latitude and 2.0◦W to 4.0◦E longitude. This area was selected in
part because of the wide variety of vegetation types present: grasslands, coniferous trees,
deciduous broadleaf trees, C3 crops (mostly wheat and barley) and C4 crops (mostly maize).
A period of 12 years, from 2007 to 2018, is considered. The period is divided in two parts.
A training period, from 2007 to 2014 (8 years), is used to train the NN-based observation
operator. Keras algorithms (https://keras.io/, accessed on 2 August 2023) with stochastic
gradient descent using the Adam optimizer [58] are used to optimize the NN. The Relu
activation function is used. The test period from 2015 to 2018 (4 years) is used to validate
the NN and the analysis (Table 1). Masks for frozen soils, snow, complex topography,
water bodies and urban areas are applied to both the model and the satellite data using
information from ECOCLIMAP-II. As a result, 247 grid cells are considered.

https://keras.io/
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Table 1. Numerical experiments performed in this study.

Experiment
(Time Period)

Assimilated
Observations

Model
Equivalent

Model Control
Variables

ISBA
Model Version

Atmospheric
Forcing

OL
(2007–2018) n/a n/a n/a

Multi-layer soil,
photosynthesis,

interactive vegetation

ERA5
re-interpolated at

0.25◦

EKF
(2015–2018) ASCAT σ0

40 σ0
40

LAI,
WG2 to WG8

(0.01–1 m)

Multi-layer soil,
photosynthesis,

interactive vegetation

ERA5
re-interpolated at

0.25◦

EKF_SWI_LAI
(2015–2018)

ASCAT SWI-001
(rescaled)

and PROBA-V
LAI

WG2
(0.01–0.04 m),

LAI

LAI,
WG2 to WG8

(0.01–1 m)

Multi-layer soil,
photosynthesis,

interactive vegetation

ERA5
re-interpolated at

0.25◦

n/a stands for not applicable.

Three configurations of LDAS-Monde are used for the comparison (Table 1):

• Open loop (OL), a 12-year ISBA run without assimilation performed after a 20-fold
spin-up of the initial year—2007.

• A 4-year conventional simplified extended Kalman filter analysis based on the assimi-
lation of the ASCAT SWI-001 product and LAI (EKF_SWI_LAI).

• A novel configuration based on the assimilation of σ0
40 (EKF).

The two 4-year data assimilation runs start from the same initial conditions on 1 Jan-
uary 2015, obtained from the OL simulation. They follow the same framework as described
in Albergel et al. [15] and subsequent studies in terms of specified background error covari-
ance matrix and run perturbations. The NN training is based on OL simulations, PROBA-V
LAI observations, and ASCAT σ0

40 observations from 2007 to 2014.
NN performance is evaluated using the root-mean-square deviation (RMSD) of simu-

lated vs. observed σ0
40 values and the Pearson correlation coefficient (R). The influence of

each predictor is evaluated by imposing a constant mean value of each predictor, one at a
time, on the simulations of the previously trained NN. The resulting RMSD maps indicate
the geographic impact of the temporal variability of a given predictor on the simulated
σ0

40.

3. Results
3.1. NN Training and Architecture Selection

We use a learning rate of 0.001 and 250 epochs to train the NN (Table 2). The choice of
these values is based on the optimal result obtained after training while avoiding overfitting.
The performance of the model does not improve for larger values of the number of epochs.
Preliminary tests show that one NN per grid cell is necessary. A single NN for the whole
domain or for specific vegetation types within the domain is not able to represent the
spatial and temporal variability of σ0

40.

Table 2. Hyper-parameters selected for all 247 individual neural networks.

Hyperparameter Hidden Layers Number of
Neurons Learning Rate Epoch Number Activation

Function
Preprocessing
of Predictors

Value 1 40 0.001 250 Relu Z-score
normalization

Figure 2 shows the statistical distribution of the RMSD of the simulated σ0
40 after

training the NNs. This figure shows that a single layer consisting of 40 neurons is sufficient
to achieve a median RMSD value comparable to the observation error of ASCAT (0.33 dB).
Further increasing the number of neurons only slightly decreases the RMSD, while adding
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hidden layers does not improve the σ0
40 predictions. The NNs with two or more hidden

layers, especially those with 150 neurons per layer or more, show increased RMSD values,
indicating potential overfitting during the training phase. Consequently, a single layer with
40 neurons is determined to be the optimal choice. The remaining hyperparameter values
are selected using the same methodology, and their specific values can be found in Table 2.
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3.2. NN Predictor Sensitivity

A sensitivity analysis was performed on the NNs to assess the influence of different
predictors for each grid cell. By “neutralizing” individual predictors and examining their
impact on the σ0

40 predictions (Section 2.7), the analysis provides insight into the LSVs that
drive σ0

40 according to the land cover classes presented in Figure 1. The results shown in
Figure 3 indicate that the predictions of σ0

40 are primarily influenced by the model’s SSM,
with higher RMSD values observed in agricultural areas and over the Les Landes forest.
In particular, the Les Landes forest, which is dominated by conifers, shows a particularly
strong influence. In addition, the neutralization of the PROBA-V LAI has a noticeable
impact on the σ0

40 predictions, especially over C3 agricultural areas. Although the surface
soil temperature has a relatively smaller influence on the predictions, it still contributes to
the predictions to some extent, especially over agricultural areas.

3.3. NN Validation

The validation of the NN observation operator is performed over the 2015–2018 test
period, based on SSM and soil temperature simulations from the OL numerical experiment
(Table 1) and from PROBA-V LAI observations. Figure 4 shows that the RMSD of the
simulated σ0

40 is often in the range of 0.3 to 0.4 dB (for about 45% of the grid cells). This is
in agreement with the mean ASCAT observational error of 0.33 dB. In the central region
of the domain, specifically between the Condom (CDM) and Savenès (SVN) stations and
around the Saint-Félix de Lauragais (SFL) station, some larger RMSD values in the range of
0.5 to 0.6 dB can be observed. RMSD values greater than 0.4 dB can be observed in about
15% of the grid cells, corresponding to agricultural areas consisting mainly of C3 crops
(Figure 1).
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Figure 3. Predictor sensitivity analysis of the 1 layer, 40 neuron NNs for the 2007–2014 training
period. Three experiments are shown. For each experiment, one input variable is neutralized by
using its mean value for the prediction of σ0

40. The maps show the difference between the σ0
40

RMSD calculated using all 3 predictors and the RMSD calculated with one neutralized predictor
for the test period, in dB. The three experiments show the effects of neutralizing (a) SSM, (b) the
interpolated PROBA-V LAI observations and (c) the surface soil temperature.
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Figure 4. Map of the RMSD of σ0
40 predictions (in dB) from the 1-layer, 40-neuron NNs using OL

SSM and soil temperature as input together with PROBA-V LAI observations, for the 2015–2018 test
period with respect to the ASCAT σ0

40 observations. Values are given for 247 grid cells. Hashed areas
represent the zones that are masked. Triangles show the position of the SMOSMANIA stations.

3.4. Impact of Assimilating σ0
40 Observations

Once the trained NNs are coupled with the ISBA LSM, the ASCAT σ0
40 observations

can be assimilated into the ISBA LSM (EKF experiment in Table 1) during the 2015–2018 test
period. The σ0

40, LAI, and SSM simulations of the OL and EKF experiments are compared
with the ASCAT σ0

40, PROBA-V LAI, and in situ SSM observations, respectively. The
SWI-001 retrievals are also used to evaluate the analysed SSM. In both the OL and EKF
experiments, the LAI values used as input to the NNs are simulated by the ISBA model.

3.4.1. Simulated σ0
40

The predicted OL and EKF σ0
40 values are compared with the ASCAT satellite ob-

servations to assess the impact of the assimilation. The EKF σ0
40 predictions (Figure 5a)

show similar and sometimes even smaller RMSD values compared to the σ0
40 predictions
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based on the observed PROBA-V LAI (Figure 4). The previously largest RMSD values in
the central region of the domain have decreased and are now closer to the observational
error of ASCAT, with hardly any grid cells showing RMSD values above 0.4 dB.
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Figure 5. RMSD (in dB) of the EKF σ0
40 predictions with respect to the ASCAT σ0

40 observations
(a) and difference between the latter and the RMSD (in dB) of the OL σ0

40 predictions with respect to
the ASCAT σ0

40 observations (b).

Figure 5b shows the difference in RMSD between the EKF and OL σ0
40 predictions,

showing a reduction in RMSD across all grid cells in the study area. The most significant
impact of the assimilation is observed in the central and northwestern regions of the domain.
As mentioned in the previous section, these areas are characterized by C3 crops.

A closer examination of the grid cells corresponding to the 12 SMOSMANIA stations,
which correspond to the grid cells where σ0

40 is assimilated (Table 3), shows that the
assimilation has the greatest influence on the CDM, Lahas (LHS), Montaut (MNT), SFL
and Prades-le-Lez (PRD) stations, with notable RMSD differences of −1.44, −1.29, −0.62,
−1.96 and −0.67 dB, respectively. In addition, Table 3 highlights the positive impact of the
assimilation on R, which is greater for all stations. In fact, the latter five stations have an R
difference greater than 0.4, indicating a marked improvement in the simulated σ0

40 values
resulting from the assimilation of σ0

40 observations. This shows that the assimilation is
able to properly integrate σ0

40 observations into the ISBA LSM.

Table 3. Statistics for EKF and OL σ0
40 predictions over grid cells covering SMOSMANIA stations,

from west (top) to east (bottom). Scores are calculated with respect to the ASCAT σ0
40 observations.

RMSD differences smaller than −0.5 dB and R differences larger or equal to 0.4 are in bold.

Station
Name

OL RMSD
(dB)

EKF RSMD
(dB) OL R EKF R Number

RMSD
Difference

(dB)

R
Difference

SBR 0.45 0.37 0.76 0.86 1296 −0.09 0.10
URG 0.37 0.34 0.74 0.79 1219 −0.03 0.05
CRD 0.34 0.31 0.77 0.82 1220 −0.03 0.05
PRG 0.70 0.34 0.55 0.82 1207 −0.36 0.27
CDM 1.78 0.34 0.47 0.90 1209 −1.44 0.43
LHS 1.62 0.33 0.53 0.93 1204 −1.29 0.40
SVN 0.66 0.45 0.72 0.83 1228 −0.22 0.11
MNT 0.97 0.35 0.39 0.81 1185 −0.62 0.42
SFL 2.30 0.34 0.40 0.92 1227 −1.96 0.52
LZC 0.54 0.25 0.30 0.69 1256 −0.29 0.39

MTM 0.26 0.21 0.52 0.63 1191 −0.05 0.11
PRD 0.98 0.31 0.04 0.58 1117 −0.67 0.54
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3.4.2. Simulated LAI

The EKF LAI RMSD, as shown in Figure 6a, is lower than 1 m2m−2 in the plains.
Conversely, higher RMSD values are observed in the medium-altitude mountainous areas
of the Massif Central and the Pyrenees (northeastern and southern parts of the domain,
respectively). The map illustrating the difference in RMSD between the OL and the EKF
LAI (Figure 6b) shows a reduction in RMSD over most of the domain. Similar to σ0

40, the
LAI over agricultural areas is more affected by the assimilation. It can be noted that a slight
increase in RMSD can be observed, especially in the southwestern part of the domain, in
Spain.

Remote Sens. 2023, 15, x FOR PEER REVIEW 10 of 17 
 

 

 
Figure 6. RMSD (in m2m−2) of the EKF LAI predictions with respect to the PROBA-V LAI observa-
tions (a) and difference between the latter and the RMSD (in m2m−2) of the OL LAI predictions with 
respect to the PROBA-V LAI observations (b). 

Table 3. Statistics for EKF and OL σ040 predictions over grid cells covering SMOSMANIA stations, 
from west (top) to east (bottom). Scores are calculated with respect to the ASCAT σ040 observations. 
RMSD differences smaller than −0.5 dB and R differences larger or equal to 0.4 are in bold. 

Station Name 
OL RMSD 

(dB) 

EKF 
RSMD 

(dB) 
OL R EKF R Number 

RMSD Differ-
ence (dB) 

R 
Difference 

SBR 0.45 0.37 0.76 0.86 1296 −0.09 0.10 
URG 0.37 0.34 0.74 0.79 1219 −0.03 0.05 
CRD 0.34 0.31 0.77 0.82 1220 −0.03 0.05 
PRG 0.70 0.34 0.55 0.82 1207 −0.36 0.27 
CDM 1.78 0.34 0.47 0.90 1209 −1.44 0.43 
LHS 1.62 0.33 0.53 0.93 1204 −1.29 0.40 
SVN 0.66 0.45 0.72 0.83 1228 −0.22 0.11 
MNT 0.97 0.35 0.39 0.81 1185 −0.62 0.42 
SFL 2.30 0.34 0.40 0.92 1227 −1.96 0.52 
LZC 0.54 0.25 0.30 0.69 1256 −0.29 0.39 

MTM 0.26 0.21 0.52 0.63 1191 −0.05 0.11 
PRD 0.98 0.31 0.04 0.58 1117 −0.67 0.54 

Table 4. Statistics for EKF and OL LAI predictions over grid cells covering SMOSMANIA stations, 
from west (top) to east (bottom). Scores are calculated with respect to the PROBA-V LAI observa-
tions. RMSD differences smaller than −0.5 m2m−2 are in bold. 

Station Name OL RMSD 
(m2m−2) 

EKF 
RSMD 
(m2m−2) 

OL R EKF R Number RMSD Differ-
ence (m2m−2) R Difference 

SBR 0.67 0.51 0.75 0.73 127 −0.16 −0.02 
URG 0.97 0.83 0.67 0.71 120 −0.14 0.05 
CRD 0.85 0.73 0.76 0.81 121 −0.12 0.06 
PRG 1.11 0.69 0.65 0.70 119 −0.42 0.05 
CDM 0.96 0.41 0.74 0.78 118 −0.55 0.04 
LHS 1.30 0.53 0.65 0.82 114 −0.77 0.17 
SVN 0.84 0.76 0.66 0.44 114 −0.08 −0.23 
MNT 0.99 0.48 0.77 0.85 115 −0.51 0.08 
SFL 1.41 0.65 0.70 0.60 119 −0.76 −0.10 
LZC 0.51 0.29 0.85 0.88 119 −0.22 0.03 

MTM 0.49 0.37 0.80 0.84 114 −0.12 0.04 

Figure 6. RMSD (in m2m−2) of the EKF LAI predictions with respect to the PROBA-V LAI observa-
tions (a) and difference between the latter and the RMSD (in m2m−2) of the OL LAI predictions with
respect to the PROBA-V LAI observations (b).

Table 4 shows that—similarly to the σ0
40 results in Table 3—the EKF vs. OL RMSD

difference for LAI is negative for all stations considered. The agricultural areas experience
the largest impact of the assimilation, with the MNT, CDM, LHS, and SFL stations showing
a significant decrease in RMSD (<−0.5 m2m−2). Overall, there is an increase in R for all
stations, except SBR, SVN, and SFL. However, despite the negative effect on R, assimilation
still has a positive effect on the RMSD for these three stations. For SVN, the decrease in R is
particularly strong (−0.23). SVN also shows the smallest decrease in RMSD (−0.08 m2m−2).
A closer look at the LAI time series shows that in 2015, the annual cycle of the EKF LAI
over SVN differs from the observations: the spring LAI peak is missed and the LAI is
overestimated from October to December 2015. This difference is not observed for the other
3 years of the test period.

The LAI time series for the CDM station (Figure 7) shows that the annual cycle and the
interannual variability of LAI are poorly captured by the OL. The OL shows a systematic
positive bias in the summer, reaching 2 m2m−2 in the summer of 2018. This positive bias is
also evident at the end of 2016, where a peak in LAI is predicted but not observed.
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Figure 7. LAI time series for the grid cell containing the station of CDM, from 2015 to 2018. The time
series are shown for the PROBA-V LAI observations, the OL, EKF and EKF_SWI_LAI experiments
(orange, blue, red and green lines, respectively).

Table 4. Statistics for EKF and OL LAI predictions over grid cells covering SMOSMANIA stations,
from west (top) to east (bottom). Scores are calculated with respect to the PROBA-V LAI observations.
RMSD differences smaller than −0.5 m2m−2 are in bold.

Station
Name

OL RMSD
(m2m−2)

EKF RSMD
(m2m−2) OL R EKF R Number

RMSD
Difference
(m2m−2)

R Difference

SBR 0.67 0.51 0.75 0.73 127 −0.16 −0.02
URG 0.97 0.83 0.67 0.71 120 −0.14 0.05
CRD 0.85 0.73 0.76 0.81 121 −0.12 0.06
PRG 1.11 0.69 0.65 0.70 119 −0.42 0.05
CDM 0.96 0.41 0.74 0.78 118 −0.55 0.04
LHS 1.30 0.53 0.65 0.82 114 −0.77 0.17
SVN 0.84 0.76 0.66 0.44 114 −0.08 −0.23
MNT 0.99 0.48 0.77 0.85 115 −0.51 0.08
SFL 1.41 0.65 0.70 0.60 119 −0.76 −0.10
LZC 0.51 0.29 0.85 0.88 119 −0.22 0.03

MTM 0.49 0.37 0.80 0.84 114 −0.12 0.04
PRD 0.84 0.38 0.75 0.78 110 −0.46 0.02

The joint assimilation of LAI and SSM helps to correct the bias at the end of 2016 and
brings the simulated results closer to the observed values during the summer. However,
the positive bias is still present in summer. The assimilation of σ0

40 is more efficient in
improving the modelled LAI, bringing it much closer to the observations compared to the
OL and EKF_LAI_SWI experiments. The summer bias is almost completely reduced.

3.4.3. Simulated SSM

The difference map of the SSM temporal correlations between SWI-001 and the EKF
SSM (Figure 8) shows that for most grid cells, larger R values are obtained after assimilation
of σ0

40. The largest differences (>0.08) are observed in the agricultural area between the
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CDM and SVN stations and around SFL. However, small reductions in the correlations,
smaller than −0.02, can be observed near the PRD station.
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L-band brightness temperatures (Tbs) as input. The single NN is trained to mimic the Eu-
ropean Centre for Medium Range Weather Forecasts (ECMWF) SSM simulations using 
Tbs as input. The retrieved SSM can then be assimilated into the ECMWF land surface 
model without having to seasonally rescale the assimilated SSM observations to fit the 
physical range of the model SSM. In this study, we show that a more complex approach 
is required to assimilate ASCAT σ040, since we have to use a 40-neuron NN per grid cell. 
Assimilating microwave radiance (σ040 values in this study) instead of assimilating SSM 
retrievals is more complicated and at the same time more advantageous. The additional 

Figure 8. Map of the difference in R values of SWI-001 vs. EKF SSM and SWI-001 vs. OL SSM.

The comparison of the OL, EKF, and EKF_SWI_LAI SSM values with the in situ SSM
observations (Figure 9) shows that the assimilation of σ0

40 leads to a slight improvement in
the 25th and 50th percentiles of the monthly R statistical distribution across stations and
years. The median R value for EKF SSM consistently shows better results than OL and
EKF_SWI_LAI in all months, except September and November, with the most significant
effect observed in December, where all stations experience an improvement. The R 25%
percentile is systematically better for EKF than for the other two experiments. For the three
experiments, the lowest median values of R are observed in July, August and October. For
these months, all stations except URG, LHS, SFL and PRD can present monthly R values
smaller than −0.1.
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25%, 50%, 75% percentiles, maximum values. The number of values is in parentheses.
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4. Discussion
4.1. Assimilating Microwave Retrievals or Radiance?

The studies conducted by [11,34] demonstrate that a single NN with only one layer
and five neurons can be used to retrieve SSM from multi-angular, dual-polarized SMOS
L-band brightness temperatures (Tbs) as input. The single NN is trained to mimic the
European Centre for Medium Range Weather Forecasts (ECMWF) SSM simulations using
Tbs as input. The retrieved SSM can then be assimilated into the ECMWF land surface
model without having to seasonally rescale the assimilated SSM observations to fit the
physical range of the model SSM. In this study, we show that a more complex approach
is required to assimilate ASCAT σ0

40, since we have to use a 40-neuron NN per grid cell.
Assimilating microwave radiance (σ0

40 values in this study) instead of assimilating SSM
retrievals is more complicated and at the same time more advantageous. The additional
complexity is related to the difficulty of simulating a very complex microwave signal from
the limited information content of LSMs [59]. Microwave radiance is influenced by factors
that are not at all or not fully represented by LSMs, such as changes in the spatial extent of
water bodies, subsurface scattering, surface roughness, or the presence of metal reflectors.
This makes the prediction of radiance challenging. Using one NN per grid cell as a forward
operator is one way to overcome this problem. Another difficulty is that the trained NN
needs to be coupled with the LSM. This study shows that this is feasible and that σ0

40 can
be sequentially assimilated in the ISBA LSM. The advantage of assimilating σ0

40 instead of
SSM retrievals is that σ0

40 observations contain additional valuable vegetation information
that would be missing in SSM retrievals. Our results show that using this methodology,
LAI can be analysed together with SSM and root zone soil moisture (Figure 7).

4.2. What Are the Biophysical Drivers of ASCAT σ0
40?

Accurate prediction of radiance also requires the selection of appropriate predictors
for the NNs. To aid in this selection process, we conducted a sensitivity analysis, which
showed that σ0

40 predictions are mainly influenced by SSM, as well as LAI (Figure 3). The
LAI influence on σ0

40 is more pronounced in agricultural areas and the assimilation of σ0
40

has the potential to improve the LAI simulations over these areas. The ISBA LSM is not
a crop model, and agricultural practices such as crop rotation are not represented. Our
results show that the assimilation of σ0

40 has the ability to improve LAI over agricultural
areas (Figure 6). The analysis also shows that soil temperature has a smaller effect, but still
shows a slight influence, especially over agricultural areas (Figure 3). The influence of soil
temperature may be due to its influence on leaf water potential [60] and on below-ground
hydraulic conductivity [61]. In addition to its effect on the root biological activity, soil
temperature has a direct effect on water surface tension and on gas volume in soils [62].
Shan et al. [59] investigated a broader range of predictors, including interception water
storage by vegetation. We evaluated the use of interception water storage and found that
this variable has a rather neutral effect on the performance of the NNs, but tends to induce
instabilities in the data assimilation process.

4.3. Assimilating Microwave Radiance or LAI?

Examining the results of the assimilation of ASCAT σ0
40 (Figures 6 and 7), it is clear

that the assimilation has a positive influence on the simulated LAI. This effect is particularly
noticeable in the agricultural regions. The slight increases in RMSD that are sometimes
observed in Figure 6, especially in Spain, can be explained by the fact that this area can
be very dry in summer and is subject to subsurface scattering. Karst aquifers can also
contribute to the degradation of the radar signal and the subsequent increase in RMSD [63].
Overall, Figure 6 shows a significant improvement in the LAI RMSD, which corresponds to
the almost complete rectification of the systematic positive bias observed during summer
in the LAI simulation of the OL run over these areas. This suggests that the σ0

40 product
contains valuable information about agricultural activity that is missing from the OL ISBA
simulations. This information is effectively captured by the NNs and used by LDAS-Monde
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to constrain the LSM. Furthermore, the EKF run shows superior performance compared
to the EKF_SWI_LAI run in both LAI and SSM predictions. These improvements can be
attributed, at least in part, to the higher frequency of σ0

40 observations compared to the
PROBA-V LAI observations (daily vs. one observation every 10 days, respectively). This
is shown in Figure 7 for the period June–July 2018. The abrupt changes in the LAI values
analysed by EKF_SWI_LAI, observed every 10 days, are caused by the assimilation of LAI
observations that are smaller than the modelled ones. The assimilation of daily σ0

40 values
produces a smoother LAI. The ISBA version we used did not represent crop phenology or
irrigation. Further work is needed to assess the impact of assimilating ASCAT σ0

40 over
cropland when this functionality is enabled [64].

Finally, Figure 6 shows that the EKF LAI predictions are less accurate over mountain-
ous areas (Massif Central and Pyrenees), with RMSD values exceeding 1 m2m−2. This
could be due to (1) the mismatch between the ASCAT σ0

40 spatial resolution and the
complex terrain and (2) the lower penetration depth within the vegetation canopy over the
deciduous broadleaf forests present in these areas (Figure 1). In a data assimilation study
over the continental United States, Seo et al. [65] found that topographic complexity can
limit the usefulness of ASCAT data.

5. Conclusions

A new methodology for the assimilation of C-band ASCAT radar backscatter observa-
tions (σ0

40) into the ISBA land surface model is applied to a case study in southwestern
France. This approach is made possible by the development of a new observation operator
based on local neural networks (one per grid cell). First, the local NNs are trained to
predict σ0

40 from PROBA-V LAI observations and model outputs of surface soil moisture
(SSM) and soil temperature. The trained NNs are very efficient in predicting σ0

40, with
RMSD values over the validation period close to the observation error of σ0

40 (0.33 dB).
Once trained, the NNs are implemented as observation operators in the LDAS-Monde
land data assimilation system. The assimilation of σ0

40 alone leads to an improvement in
the simulated LAI and SSM. The most significant improvements occur over agricultural
areas, some of which consist of C3 crops such as straw cereals. Using the PROBA-V LAI
observations as a reference, the simulated LAI shows strong improvements in summer,
with a correction of the positive bias caused by the lack of crop rotation representation. The
comparison with a classical joint assimilation of PROBA-V LAI and SSM retrievals shows
that better LAI predictions are obtained when assimilating σ0

40, possibly due to the more
frequent ASCAT observations. Improvements in the SSM simulations are also observed
when compared to ASCAT SSM retrievals. Correlations with in situ SSM observations
also show an improvement with respect to the open loop and to the joint assimilation of
PROBA-V LAI and SSM retrievals. The use of NN observation operators appears promising,
and our results open the way for the assimilation of other radiance satellite products.
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