The Impact of Satellite Soil Moisture Data Assimilation on the Hydrological Modeling of SWAT in a Highly Disturbed Catchment
Abstract
:1. Introduction
2. Methodology
2.1. SWAT Model
2.2. The Ensemble Kalman Ffilter (EnKF)
3. Study Area and Data
3.1. Study Area
3.2. Data Preparation for SWAT Model Building
3.3. Remote Sensing and In Situ SM Data
4. Data Assimilation (DA) Setup
4.1. Triple Collocation (TC) Based Error Analysis
4.2. EnKF Implementation in SWAT Model
4.3. Evaluation Metrics
5. Results
5.1. Catchment Applicability of SWAT Model
5.2. Modeling and Observation Errors
5.3. Data Assimilation Effects on Soil Moisture
5.4. Data Assimilation Impacts on Streamflow
6. Discussion
7. Conclusions
- (1)
- SWAT has good applicability in the daily rainfall-runoff simulation of the upper Huai River basin. The PBias values are generally within ±15%, r2 > 0.8, and NSE > 0.60 at the validation stations.
- (2)
- The random error standard deviation of SMAP and ASCAT SM varies between 0.01 m3/m3 and 0.03 m3/m3 for all grid pixels within the basin. Large error differences are present in the SM datasets and in different grid pixels.
- (3)
- SMAP SM DA largely improves the surface and rootzone SM estimation. Nevertheless, ASCAT SM DA gains mixed impacts on performance in SM estimation, primarily due to poor data quality.
- (4)
- The satellite SM DA does not improve streamflow simulation as effectively as SM itself. The effects of SMAP and ASCAT SM assimilation on distributed streamflow simulation are un-significant and not robust.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wanders, N.; Bierkens, M.F.P.; Jong, S.M.; Roo, A.; Karssenberg, D. The benefits of using remotely sensed soil moisture in parameter identification of large-scale hydrological models. Water Resour. Res. 2014, 50, 6874–6891. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating soil moisture–climate interactions in a changing climate: A review. Earth Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Liu, Y.W.; Liu, Y.B.; Wang, W.; Zhou, H.; Tian, L. Historical droughts manifest an abrupt shift to a wetter Tibetan Plateau. Hydrol. Earth Syst. Sci. 2022, 26, 3825–3845. [Google Scholar] [CrossRef]
- Brocca, L.; Melone, F.; Moramarco, T. On the estimation of antecedent wetness conditions in rainfall–runoff modelling. Hydrol. Process. 2008, 22, 629–642. [Google Scholar] [CrossRef]
- Massari, C.; Camici, S.; Ciabatta, L.; Brocca, L. Exploiting satellite-based surface soil moisture for flood forecasting in the Mediterranean area: State update versus rainfall correction. Remote Sens. 2018, 10, 292. [Google Scholar] [CrossRef]
- Crow, W.; Bindlish, R.; Jackson, T.J. The added value of spaceborn passive microwave soil moisture retrievals for forecasting rainfall-runoff partitioning. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Leroux, D.J.; Pellarin, T.; Vischel, T.; Cohard, J.-M.; Gascon, T.; Gibon, F.; Mialon, A.; Galle, S.; Peugeot, C.; Seguis, L. Assimilation of SMOS soil moisture into a distributed hydrological model and impacts on the water cycle variables over the Ouémé catchment in Benin. Hydrol. Earth Syst. Sci. 2016, 20, 2827–2840. [Google Scholar] [CrossRef]
- Liu, Y.W.; Wang, W.; Hu, Y. Investigating the impact of surface soil moisture assimilation on state and parameter estimation in SWAT model based on the ensemble Kalman filter in upper Huai River basin. J. Hydrol. Hydromech. 2017, 65, 123–133. [Google Scholar] [CrossRef]
- Yang, H.; Xiong, L.; Liu, D.; Cheng, L.; Chen, J. High spatial resolution simulation of profile soil moisture by assimilating multi-source remote-sensed information into a distributed hydrological model. J. Hydrol. 2021, 597, 126311. [Google Scholar] [CrossRef]
- Wang, D.; Chen, Y.; Cai, X. State and parameter estimation of hydrologic models using the constrained ensemble Kalman filter. Water Resour. Res. 2009, 45, w11416. [Google Scholar] [CrossRef]
- Aubert, D.; Loumagne, C.; Oudin, L. Sequential assimilation of soil moisture and streamflow data in a conceptual rainfall–runoff model. J. Hydrol. 2003, 280, 145–161. [Google Scholar] [CrossRef]
- Fu, X.; Zhang, Y.; Zhong, Q.; Lü, H.; Ding, Y.; Li, Z.; Yu, Z.; Jiang, X. Soil moisture estimation by assimilating in-situ and SMAP surface soil moisture using unscented weighted ensemble Kalman filter. Water Resour. Res. 2023, 59, e2023WR034506. [Google Scholar] [CrossRef]
- Yu, Z.; Fu, X.; Luo, L.; Lü, H.; Ju, Q.; Liu, D.; Kalin, A.D.; Huang, D.; Yang, C.; Zhao, L. One-dimensional soil temperature simulation with Common Land Model by assimilating in situ observations and MODIS LST with the temperature simulation with Common Land Model by assimilating in situ observations and MODIS LST with the ensemble particle filter. Water Resour. Res. 2014, 50, 6950–6965. [Google Scholar] [CrossRef]
- Sahoo, A.K.; Lannoy, G.J.M.D.; Reichle, R.H.; Houser, P.R. Assimilation and downscaling of satellite observed soil moisture over the Little River Experimental Watershed in Georgia, USA. Adv. Water Resour. 2013, 52, 19–33. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0309170812002357 (accessed on 9 January 2024). [CrossRef]
- Ines, A.V.M.; Das, N.N.; Hansen, J.W.; Njoku, E.G. Assimilation of remotely sensed soil moisture and vegetation with a crop simulation model for maize yield prediction. Remote Sens. Environ. 2013, 138, 149–164. [Google Scholar] [CrossRef]
- Alvarez-Garreton, C.; Ryu, D.; Western, A.W.; Su, C.H.; Crow, W.T.; Robertson, D.E.; Leahy, C. Improving operational flood ensemble prediction by the assimilation of satellite soil moisture: Comparison between lumped and semi-distributed schemes. Hydrol. Earth Syst. Sci. 2015, 19, 1659–1676. [Google Scholar] [CrossRef]
- Lievens, H.; Tomer, S.K.; Al Bitar, A.; De Lannoy, G.J.M.; Drusch, M.; Dumedah, G.; Hendricks Franssen, H.J.; Kerr, Y.H.; Martens, B.; Pan, M.; et al. SMOS soil moisture assimilation for improved hydrologic simulation in the Murray Darling Basin. Australia. Remote Sens. Environ. 2015, 168, 146–162. [Google Scholar] [CrossRef]
- Liu, Y.W.; Wang, W.; Liu, Y. ESA CCI Soil Moisture Assimilation in SWAT for Improved Hydrological Simulation in Upper Huai River Basin. Adv. Meteorol. 2018, 2018, 7301314. [Google Scholar] [CrossRef]
- Khaki, M.; Hendricks Franssen, H.J.; Han, S.C. Multi-mission satellite remote sensing data for improving land hydrological models via data assimilation. Sci. Rep. 2020, 10, 18791. [Google Scholar] [CrossRef]
- Santis De, D.; Biondi, D.; Crow, W.T.; Camici, S.; Modanesi, S.; Brocca, L.; Massari, C. Assimilation of satellite soil moisture products for river flow prediction: An extensive experiment in over 700 catchments throughout Europe. Water Resour. Res. 2021, 57, e2021WR029643. [Google Scholar] [CrossRef]
- Chen, F.; Crow, W.T.; Starks, P.J.; Moriasi, D.N. Improving hydrologic predictions of a catchment model via assimilation of surface soil moisture. Adv. Water Resour. 2011, 34, 526–536. [Google Scholar] [CrossRef]
- Crow, W.T.; Ryu, D. A new data assimilation approach for improving runoff prediction using remotely-sensed soil moisture retrievals. Hydrol. Earth Sys. Sci. 2009, 13, 1–16. [Google Scholar] [CrossRef]
- Han, E.; Merwade, V.; Heathman, G.C. Implementation of surface soil moisture data assimilation with watershed scale distributed hydrological model. J. Hydrol. 2012, 416–417, 98–117. [Google Scholar] [CrossRef]
- Reichle, R.H.; Crow, W.T.; Keppenne, C.L. An adaptive ensemble Kalman filter for soil moisture data assimilation. Water Resour. Res. 2008, 44, 423. [Google Scholar] [CrossRef]
- Xie, X.; Zhang, D. Data assimilation for distributed hydrological catchment modeling via ensemble Kalman filter. Adv. Water Resour. 2010, 33, 678–690. [Google Scholar] [CrossRef]
- Lei, F.; Huang, C.; Shen, H.; Li, X. Improving the estimation of hydrological states in the SWAT model via the ensemble Kalman smoother: Synthetic experiments for the Heihe River Basin in northwest China. Adv. Water Resour. 2014, 67, 32–45. [Google Scholar] [CrossRef]
- Brocca, L.; Moramarco, T.; Dorigo, W.; Wagner, W. Assimilation of satellite soil moisture data into rainfall-runoff modelling for several catchments worldwide. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium-IGARSS, Melbourne, VIC, Australia, 21–26 July 2013; pp. 2281–2284. [Google Scholar] [CrossRef]
- Corato, G.; Matgen, P.; Fenicia, F.; Schlaffer, S.; Chini, M. Assimilating satellite derived soil moisture products into a distributed hydrological model. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 3315–3318. [Google Scholar] [CrossRef]
- Nayak, A.K.; Biswal, B.; Sudheer, K.P. Role of hydrological model structure in the assimilation of soil moisture for streamflow prediction. J. Hydrol. 2021, 598, 126465. [Google Scholar] [CrossRef]
- Massari, C.; Brocca, L.; Tarpanelli, A.; Moramarco, T. Data assimilation of satellite soil moisture into rainfall-runoff modelling: A complex recipe? Remote Sens. 2015, 7, 11403–11433. [Google Scholar] [CrossRef]
- Fu, X.; Jiang, X.; Yu, Z.; Ding, Y.; Lü, H.; Zheng, D. Understanding the key factors that influence soil moisture estimation using the unscented weighted ensemble Kalman filter. Agric. For. Meteorol. 2022, 313, 108745. [Google Scholar] [CrossRef]
- Brocca, L.; Moramarco, T.; Melone, F.; Wagner, W.; Hasenauer, S.; Hahn, S. Assimilation of Surface-and Root-Zone ASCAT Soil Moisture Products Into Rainfall–Runoff Modeling. IEEE Trans. Geosci. Remote Sens. 2015, 50, 2542–2555. [Google Scholar] [CrossRef]
- Dorigo, W.A.; Gruber, A.; De Jeu, R.A.M.; Wagner, W.; Stacke, T.; Loew, A.; Kidd, R. Evaluation of the ESA CCI soil moisture product using ground-based observations. Remote Sens. Environ. 2015, 162, 380–395. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009; TR-406, Texas Water Resources Institute Technical Report No.406; Texax A&M University: College Station, TX, USA, 2011; Available online: http://swat.tamu.edu/media/99192/swat2009theory.pdf (accessed on 9 January 2024).
- Monteith, J.L. Evaporation and the environment. In 19th Symposia of the Society for Experimental Biology: The State and Movement of Water in Living Organisms; Cambridge University Press: London, UK, 1965; pp. 205–234. [Google Scholar]
- Evensen, G. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. Journal of Geophysical methods to forecast error statistics. J. Geophys. Res.-Ocean 1994, 99, 10143–10162. [Google Scholar] [CrossRef]
- Evensen, G. The Ensemble Kalman Filter: Theoretical formulation and practical implementation. Ocean Dynam. 2003, 53, 343–367. [Google Scholar] [CrossRef]
- O’Neill, P.E.; Chan, S.; Njoku, E.G.; Jackson, T.; Bindlish, R.; Chaubell, J. L3 Radiometer Global Daily 36 km EASE-Grid Soil Moisture, Version 8; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2021. [Google Scholar] [CrossRef]
- Wagner, W.; Lemoine, G.; Rott, H. A method for estimating soil moisture from ERS scatterometer and soil data. Remote Sens. Environ. 1999, 70, 191–207. [Google Scholar] [CrossRef]
- Naeimi, V.; Scipal, K.; Bartalis, Z.; Hasenauer, S.; Wagner, W. An improved soil moisture retrieval algorithm for ERS and METOP scatterometer observations. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1999–2013. [Google Scholar] [CrossRef]
- Zeng, J.; Li, Z.; Chen, Q.; Bi, H.; Qiu, J.; Zou, P. Evaluation of remotely sensed and reanalysis soil moisture products over the Tibetan Plateau using in-situ observations. Remote Sens. Environ. 2015, 163, 91–110. [Google Scholar] [CrossRef]
- Shellito, P.J.; Small, E.E.; Livneh, B. Controls on surface soil drying rates observed by smap and simulated by the noah land surface model. Hydrol. Earth Syst. Sci. 2018, 22, 1649–1663. [Google Scholar] [CrossRef]
- Dong, J.Z.; Crow, W.T.; Tobin, K.J.; Cosh, M.H.; Bosch, D.D.; Starks, P.J.; Seyfried, M.; Collins, C.H. Comparison of microwave remote sensing and land surface modeling for surface soil moisture climatology estimation. Remote Sens. Environ. 2020, 242, 111756. [Google Scholar] [CrossRef]
- Stoffelen, A. Toward the true near-surface wind speed: Error modeling and calibration using triple collocation. J. Geophys. Res. 1998, 103, 7755–7766. [Google Scholar] [CrossRef]
- McColl, K.A.; Vogelzang, J.; Konings, A.G.; Entekhabi, D.; Piles, M.; Stoffelen, A. Extended triple collocation: Estimating errors and correlation coefficients with respect to an unknown target. Geophys. Res. Lett. 2014, 41, 6229–6236. [Google Scholar] [CrossRef]
- Dorigo, W.; Wagner, W.; Albergel, C.; Albrecht, F.; Balsamo, G.; Brocca, L.; Chung, D.; Ertl, M.; Forkel, M.; Gruber, A. ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sens. Environ. 2017, 203, 185–215. [Google Scholar] [CrossRef]
- Crow, W.; Van den Berg, M. An improved approach for estimating observation and model error parameters in soil moisture data assimilation. Water Resour. Res. 2010, 46, W12519. [Google Scholar] [CrossRef]
- Su, C.H.; Ryu, D.; Crow, W.T.; Western, A.W. Beyond triple collocation: Applications to soil moisture monitoring. J. Geophys. Res.-Atmos. 2014, 119, 6419–6439. [Google Scholar] [CrossRef]
- Reichle, R.H.; Koster, R.D. Bias reduction in short records of satellite soil moisture. Geophys. Res. Lett. 2004, 31, L19501. [Google Scholar] [CrossRef]
- Scipal, K.; Drusch, M.; Wagner, W. Assimilation of a ERS scatterometer derived soil moisture index in the ECMWF numerical weather prediction system. Adv. Water Resour. 2008, 31, 1101–1112. [Google Scholar] [CrossRef]
- Clark, M.P.; Rupp, D.E.; Woods, R.A.; Zheng, X.; Ibbitt, R.P.; Slater, A.G.; Schmidt, J.; Uddstrom, M.J. Hydrological data assimilation with the ensemble Kalman filter: Use of streamflow observations to update states in a distributed hydrological model. Adv. Water Resour. 2008, 31, 1309–1324. [Google Scholar] [CrossRef]
- Abbaspour, K.; Johnson, C.; Van Genuchten, M.T. Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure. Vadose Zone J. 2004, 3, 1340–1352. [Google Scholar] [CrossRef]
- Chen, H.; Yang, D.; Hong, Y.; Gourley, J.J.; Zhang, Y. Hydrological data assimilation with the ensemble square-root-filter: Use of streamflow observations to update model states for real-time flash flood forecasting. Adv. Water Resour. 2013, 59, 209–220. [Google Scholar] [CrossRef]
- Kumar, S.V.; Reichle, R.H.; Koster, R.D.; Crow, W.T.; Peters-Lidard, C.D. Role of Subsurface Physics in the Assimilation of Surface Soil Moisture Observations. J. Hydrometeor. 2009, 10, 1534–1547. [Google Scholar] [CrossRef]
- Patil, A.; Ramsankaran, R. Improving streamflow simulations and forecasting performance of SWAT model by assimilating remotely sensed soil moisture observations. J. Hydrol. 2017, 555, 683–696. [Google Scholar] [CrossRef]
- Patil, A.; Ramsankaran, R. Improved streamflow simulations by coupling soil moisture analytical relationship in EnKF based hydrological data assimilation framework. Adv. Water Resour. 2018, 121, 173–188. [Google Scholar] [CrossRef]
- Beven, K.; Freer, J. Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. J. Hydrol. 2001, 249, 11–29. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef]
- Dong, J.Z.; Lei, F.N.; Crow, W. Land transpiration-evaporation partitioning errors responsible for modeled summertime warm bias in the central United States. Nat. Commun. 2022, 13, 336. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Zhang, D. A partitioned update scheme for state-parameter estimation of distributed hydrologic models based on the ensemble Kalman filter. Water Resour. Res. 2013, 49, 7350–7365. [Google Scholar] [CrossRef]
- Sun, L.; Seidou, O.; Nistor, I. Data assimilation for streamflow forecasting: State-parameter assimilation versus output assimilation. J. Hydrol. Eng. 2017, 22, 04016060. [Google Scholar] [CrossRef]
- Sun, L.; Seidou, O.; Nistor, I.; Goïta, K.; Magagi, R. Simultaneous assimilation of in situ soil moisture and streamflow in the SWAT model using the Extended Kalman Filter. J. Hydrol. 2016, 543, 671–685. [Google Scholar] [CrossRef]
- Avellaneda, P.M.; Ficklin, D.L.; Lowry, C.S.; Knouft, J.H.; Hall, D.M. Improving hydrological models with the assimilation of crowdsourced data. Water Resour. Res. 2020, 56, e2019WR026325. [Google Scholar] [CrossRef]
- Azimi, S.; Dariane, A.B.; Modanesi, S.; Bauer-Marschallinger, B.; Bindlish, R.; Wagner, W.; Massari, C. Assimilation of Sentinel 1 and SMAP–based satellite soil moisture retrievals into SWAT hydrological model: The impact of satellite revisit time and product spatial resolution on flood simulations in small basins. J. Hydrol. 2020, 581, 124367. [Google Scholar] [CrossRef]
Soil Name | Layers | Soil Depth (cm) | CLAY (%) | SILT (%) | SAND (%) | ROCK (%) | Profile Stratification (cm) | Area (%) |
---|---|---|---|---|---|---|---|---|
HEAVYCLAY | 3 | 100 | 67 | 21 | 12 | 7 | 0–10–30–100 | 0.01 |
CLAY | 3 | 100 | 49.54 | 29.23 | 21.23 | 4.77 | 0–10–30–100 | 18.19 |
CLAYLOAM | 3 | 100 | 30 | 31.25 | 38.75 | 7 | 0–10–30–100 | 7.29 |
SILTLOAM | 3 | 100 | 21 | 50 | 29 | 10 | 0–10–30–100 | 14.49 |
LOAM | 3 | 100 | 20.51 | 41.16 | 38.34 | 9.44 | 0–10–30–100 | 48.13 |
SANDYCLAYLOAM | 3 | 100 | 23 | 24 | 53 | 5 | 0–10–30–100 | 0.75 |
SANDYLOAM | 3 | 100 | 10.25 | 13.375 | 76.38 | 9.125 | 0–10–30–100 | 2.13 |
LOAMYSAND | 3 | 100 | 8.1 | 11.7 | 80.2 | 10 | 0–10–30–100 | 7.64 |
SAND | 3 | 100 | 4.2 | 6 | 89.8 | 10 | 0–10–30–100 | 0.25 |
SHUITI | 2 | 100 | 0 | 0 | 0 | 0 | 0–10–30 | 1.13 |
Hydrological Modules | Paramters | Descriptions |
---|---|---|
surface runoff | CN2 | moisture condition II curve number |
surlag | surface runoff lag coefficient | |
evapotranspiration | esco | soil evaporation compensation coefficient |
epco | plant uptake compensation factor | |
canmx | maximum canopy storage | |
soil water dynamics | AWCly | available water capacity of soil layer |
Ksat | saturated hydraulic conductivity of soil | |
ground water | aqshthr,q | threshold water level in shallow aquifer for base flow |
αgw | baseflow recession constant | |
βrev | revap coefficient | |
aqshthr,rvp | threshold water level in shallow aquifer for revap | |
channel routing | Kch | effective hydraulic conductivity of channel |
n | Manning’s n value for main channels |
Hydrological Stations | Calibration (2010–2015) | Validation (2016–2018) | ||||||
---|---|---|---|---|---|---|---|---|
NSE | PBias (%) | r2 | RMSE (m3/s) | NSE | PBias (%) | r2 | RMSE (m3/s) | |
Xixian | 0.41 | 5.81 | 0.65 | 123.60 | −0.15 | 21.75 | 0.48 | 162.11 |
Huaibin | 0.63 | 21.89 | 0.80 | 126.92 | 0.66 | −4.78 | 0.81 | 180.49 |
Wangjiaba | 0.68 | 6.73 | 0.83 | 137.44 | 0.58 | −23.07 | 0.78 | 265.47 |
Lutaizi | 0.64 | −5.11 | 0.80 | 358.82 | 0.68 | 0.12 | 0.83 | 503.70 |
Bengbu | 0.66 | 11.61 | 0.82 | 462.01 | 0.74 | 4.49 | 0.86 | 550.57 |
Xiaoliuxiang | 0.66 | 9.50 | 0.82 | 464.63 | 0.73 | 6.07 | 0.86 | 578.43 |
Scenarios | Statistics | Bias | r | RMSE | ubRMSE |
---|---|---|---|---|---|
SMAP DA (10 cm) | % of stations with SMAP superiors to Openloop | 37 | 53 | 47 | 49 |
% of stations with EnKF improves upon the Openloop | 27 | 63 | 88 | 76 | |
SMAP DA (30 cm) | % of stations with EnKF improves upon the Openloop | 29 | 71 | 82 | 84 |
ASCAT DA (10 cm) | % of stations with ASCAT superiors to Openloop | 33 | 27 | 25 | 25 |
% of stations with EnKF improves upon the Openloop | 33 | 31 | 69 | 57 | |
ASCAT DA (30 cm) | % of stations with EnKF improves upon the Openloop | 24 | 41 | 76 | 57 |
Hydrological Stations | EnKF-SMAP | EnKF-ASCAT | ||
---|---|---|---|---|
EFF (%) | NER (%) | EFF (%) | NER (%) | |
Xixian | −2.8 | −5.8 | −4.5 | −9.1 |
Huaibin | 2.4 | 4.7 | 1.9 | 3.8 |
Wangjiaba | 5.3 | 10.3 | 4.1 | 8.1 |
Lutaizi | 0.3 | 0.6 | −2.9 | −5.9 |
Bengbu | −5.8 | −12.0 | −5.3 | −10.9 |
Xiaoliuxiang | −8.7 | −18.1 | −5.6 | −11.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Cui, W.; Ling, Z.; Fan, X.; Dong, J.; Luan, C.; Wang, R.; Wang, W.; Liu, Y. The Impact of Satellite Soil Moisture Data Assimilation on the Hydrological Modeling of SWAT in a Highly Disturbed Catchment. Remote Sens. 2024, 16, 429. https://doi.org/10.3390/rs16020429
Liu Y, Cui W, Ling Z, Fan X, Dong J, Luan C, Wang R, Wang W, Liu Y. The Impact of Satellite Soil Moisture Data Assimilation on the Hydrological Modeling of SWAT in a Highly Disturbed Catchment. Remote Sensing. 2024; 16(2):429. https://doi.org/10.3390/rs16020429
Chicago/Turabian StyleLiu, Yongwei, Wei Cui, Zhe Ling, Xingwang Fan, Jianzhi Dong, Chengmei Luan, Rong Wang, Wen Wang, and Yuanbo Liu. 2024. "The Impact of Satellite Soil Moisture Data Assimilation on the Hydrological Modeling of SWAT in a Highly Disturbed Catchment" Remote Sensing 16, no. 2: 429. https://doi.org/10.3390/rs16020429
APA StyleLiu, Y., Cui, W., Ling, Z., Fan, X., Dong, J., Luan, C., Wang, R., Wang, W., & Liu, Y. (2024). The Impact of Satellite Soil Moisture Data Assimilation on the Hydrological Modeling of SWAT in a Highly Disturbed Catchment. Remote Sensing, 16(2), 429. https://doi.org/10.3390/rs16020429