Effects of Wind Wave Spectra, Non-Gaussianity, and Swell on the Prediction of Ocean Microwave Backscatter with Facet Two-Scale Model
Abstract
:1. Introduction
2. Data and Methods
2.1. Reference Data
2.1.1. Sentinel-1 SAR Data
2.1.2. ASCAT Data
2.1.3. Geophysical Model Function
2.2. Ocean Wave Spectrum
2.3. Construction of the Sea Surface
2.4. Facet Scattering Model
3. Results
3.1. Effect of Wind Wave Spectra on NRCS Simulation
3.2. Effect of Non-Gaussianity on NRCS Simulation
3.3. Effect of Swell on NRCS Simulation
4. Discussion
Effect of Ocean Parameters on the NRCS Simulation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rice, S.O. Reflection of electromagnetic waves from slightly rough surfaces. Commun. Pure Appl. Math. 2010, 4, 351–378. [Google Scholar] [CrossRef]
- Khenchaf, A. Bistatic scattering and depolarization by randomly rough surfaces: Application to the natural rough surfaces in X-band. Wave Random Media 2001, 11, 61–89. [Google Scholar] [CrossRef]
- Bass, F.G.; Fuks, I.M. Wave Scattering From Statistically Rough Surface; Pergamon: Oxford, MS, USA, 1979; pp. 418–442. [Google Scholar]
- Voronovich, A.G. Small-slope approximation for electromagnetic wave scattering at a rough interface of two dielectric half-spaces. Waves Random Media 1994, 4, 337–367. [Google Scholar] [CrossRef]
- Fung, A.K.; Li, Z.; Chen, K.S. Backscattering from a randomly rough dielectric surface. IEEE Trans. Geosci. Remote Sens. 1992, 30, 356–369. [Google Scholar] [CrossRef]
- Franceschetti, G.; Migliaccio, M.; Riccio, D.; Schirinzi, G. SARAS: Asynthetic aperture radar (SAR) raw signal simulator. Trans. Geosci. Remote Sens. 1992, 30, 110–123. [Google Scholar] [CrossRef]
- Franceschetti, G.; Migliaccio, M.; Riccio, D. On ocean SAR rawsignal simulation. IEEE Trans. Geosci. Remote Sens. 1998, 36, 84–100. [Google Scholar] [CrossRef]
- Franceschetti, G.; Iodice, A.; Riccio, D.; Ruello, G.; Siviero, R. SAR raw signal simulation of oil slicks in ocean environments. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1935–1949. [Google Scholar] [CrossRef]
- Di Martino, G.; Riccio, D.; Zinno, I. SAR imaging of fractal surfaces. IEEE Trans. Geosci. Remote Sens. 2012, 50, 630–644. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, H.; Yin, H.C. Facet-Based Investigation on EM Scattering From Electrically Large Sea Surface With Two-Scale Profiles: Theoretical Model. IEEE Trans.Geosci. Remote Sens. 2011, 49, 1967–1975. [Google Scholar] [CrossRef]
- Li, J.; Zhang, M.; Fan, W.; Nie, D. Facet-Based Investigation on Microwave Backscattering From Sea Surface With Breaking Waves: Sea Spikes and SAR Imaging. IEEE Trans.Geosci. Remote Sens. 2017, 55, 2313–2325. [Google Scholar] [CrossRef]
- Su, X.; Zhang, X.; Tan, X.; Dang, H. Analysis of Microwave Backscattering from Nonlinear Sea Surface with Currents. In Proceedings of the 2019 49th European Microwave Conference, Paris, France, 1–3 October 2019; pp. 1036–1039. [Google Scholar]
- Chen, H.; Zhang, M.; Zhao, W.; Luo, W. An efficient slope-deterministic facet model for SAR imagery simulation of marine scene. IEEE Trans. Antennas Propag. 2010, 58, 3751–3756. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, M.; Nie, D.; Yin, H.-C. Robust semi-deterministic facet model for fast estimation on EM scattering from ocean-like surface. Prog. Electromagn. Res. B 2009, 18, 347–363. [Google Scholar] [CrossRef] [Green Version]
- Hasselmann, K.; Barnett, T.P.; Bouws, E.; Carlson, H.; Cartwright, D.E.; Enke, K.; Walden, H. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Dtsch. Hydrogr. Z 1973, 12, 1–95. [Google Scholar]
- Elfouhaily, T.; Chapron, B.; Katsaros, K.; Vandemark, D. A unified directional spectrum for long and short wind-driven waves. J. Geophys. Res. Oceans 1997, 102, 15781–15796. [Google Scholar] [CrossRef] [Green Version]
- Hara, T.; Bock, E.; Lyzenga, D. In situ measurements of capillary-gravity wave spectra using a scanning laser slope gauge and microwave radars. J. Geophys. Res. 1994, 99, 12593–12602. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Simmons, A. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020; In Print. [Google Scholar]
- Wilson, J.J.W.; Anderson, C.; Baker, M.A.; Bonekamp, H.; Saldana, J.F.; Dyer, R.G.; Lerch, J.A.; Kayal, G.; Gelsthorpe, R.V.; Brown, M.A.; et al. Radiometric calibration of the advanced wind scatterometer radar ASCAT carried onboard the METOP-A satellite. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3236–3255. [Google Scholar] [CrossRef]
- Liu, W.T.; Tang, W. Equivalent Neutral Wind; NASA Jet Propulsion Laboratory: Pasadena, CA, USA, 1996; pp. 17–96. [Google Scholar]
- Verhoef, A.; Portabella, M.; Stoffelen, A.; Hersbach, H. CMOD5.n-the CMOD5 GMF for Neutral Winds. Technical Report SAF/OSI/CDOP/KNMI/TEC/TN/3, 165. KNMI: De Bilt, The Netherlands, 2008. Available online: http://hdl.handle.net/10261/156198 (accessed on 1 June 2020).
- Verspeek, J.; Stoffelen, A.; Portabella, M.; Bonekamp, H.; Anderson, C.; Saldana, J.F. Validation and calibration of ASCAT using CMOD5. n. IEEE Trans.Geosci. Remote Sens. 2009, 48, 386–395. [Google Scholar] [CrossRef]
- Thompson, D.R.; Elfouhaily, T.; Chapron, B. Polarization ratio for microwave backscattering from the ocean surface at low to moderate incidence angles. In Proceedings of the IGARSS ’98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174), Seattle, WA, USA, 6–10 July 1998; Volume 3, pp. 1671–1673. [Google Scholar]
- Schreiber, F.M.; Angelliaume, S.; Guerin, C.A. Modeling the Polarization Ratio in the Upper Microwave Band for Sea Clutter Analysis. IEEE Trans. Geosci. Remote Sens. 2021, 8, 59. [Google Scholar] [CrossRef]
- Plant, W.J. A stochastic, multiscale model of microwave backscatter from the ocean. J. Geophys. Res. 2002, 107, 3-1–3-21. [Google Scholar] [CrossRef]
- Apel, J.R. An improved model of the ocean surface wave vector spectrum and its effects on radar backscatter. J. Geophys. Res. Ocean. 1994, 99, 16269–16291. [Google Scholar] [CrossRef]
- Hwang, P.A.; Fan, Y. Low-frequency mean square slopes and dominant wave spectral properties: Toward tropical cyclone remote sensing. IEEE Trans. Geosci. Remote Sens. 2018, 56, 7359–7368. [Google Scholar] [CrossRef]
- Donelan, M.A.; Hui, W.H. Directional Spectra of Wind-Generated Waves. Phil. Trans. R. Soc. Lond. Ser. A 1985, 315, 509–562. [Google Scholar]
- Banner M, L. Equilibrium spectra of wind waves. J. Phys. Oceanogr. 1990, 20, 966–984. [Google Scholar] [CrossRef]
- Plant, W.J. A two-scale model of short wind-generated waves and scatterometry. J. Geophys. Res. Ocean. 1986, 91, 10735–10749. [Google Scholar] [CrossRef]
- Cox, C.; Munk, W. Measurement of the roughness of the sea surface from photographs of the Sun’s Glitter. J. Opt. Soc. Amer. 1954, 44, 838–850. [Google Scholar] [CrossRef]
- Hwang, P.A.; Fois, F. Surface roughness and breaking wave properties retrieved from polarimetric microwave radar backscattering. J. Geophys. Res. Ocean. 2015, 120, 3640–3657. [Google Scholar] [CrossRef]
- He, H.; Liu, H.; Zeng, F.; Yang, G. A way to real-time ocean wave simulation. Proc. IEEE CGIV 2005, 409–415. [Google Scholar]
- Williams, A.N.; Crull, W. Simulation of directional waves in a numerical basin by a desingularized integral equation approach. Ocean. Eng. 2000, 27, 603–624. [Google Scholar] [CrossRef]
- Chen, K.S.; Fung, A.; Amar, F. An Empirical Bispectrum Model for Sea Surface Scattering. IEEE Trans. Geosci. Remote Sens. 1993, 31, 830–835. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, L.; Zhen-Sen, W. Modified Two-Scale Model for Electromagnetic Scattering from the Non-Gaussian Oceanic Surface. Chin. Phys. Lett. 2005, 22, 2808–2811. [Google Scholar]
- Guissard, A. Multispectra for ocean-like random rough surface scattering. J. Electromagn. Waves Appl. 2012, 10, 1413–1443. [Google Scholar] [CrossRef]
- Cox, C.; Munk, W. Slopes of the sea surface deduced from photographs of sun glitter. Bull. Scripps Inst. Oceanogr. 1956, 6, 401–488. [Google Scholar]
- Xie, D.; Chen, K.S.; Yang, X. Effects of Wind Wave Spectra on Radar Backscatter From Sea Surface at Different Microwave Bands: A Numerical Study. IEEE Trans.Geosci. Remote Sens. 2019, 57, 6325–6334. [Google Scholar] [CrossRef]
- Zheng, H.; Khenchaf, A.; Wang, Y. Sea Surface Monostatic and Bistatic EM Scattering Using SSA-1 and UAVSAR Data: Numerical Evaluation and Comparison Using Different Sea Spectra. Remote Sens. 2018, 10, 1084. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B. On Modeling of Quad-Polarization Radar Scattering from the Ocean Surface with Breaking Waves. J. Geophys. Res. Ocean. 2020, 125, e2020JC016319. [Google Scholar] [CrossRef]
- Yan, Q.; Fan, C.; Zhang, J.; Meng, J. Understanding Ku-Band ocean radar backscatter at low incidence angles under weak to severe wind conditions by comparison of measurements and models. Remote Sens. 2021, 12, 3445. [Google Scholar] [CrossRef]
- Chu, X.; He, Y.; Chen, G. Asymmetry and Anisotropy of Microwave Backscatter at Low Incidence Angles. IEEE Trans. Geosci. Remote Sens. 2012, 50, 4014–4024. [Google Scholar] [CrossRef]
- Du, Y.; Yang, X.; Chen, K.S.; Ma, W.; Li, Z. An Improved Spectrum Model for Sea Surface Radar Backscattering at L-Band. Remote Sens. 2017, 9, 776. [Google Scholar] [CrossRef] [Green Version]
- Nouguier, F.; Guérin, C.A.; Chapron, B. “Choppy wave” model for nonlinear gravity waves. J. Geophys. Res. Ocean. 2009, 14, C09012. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Zhang, Y.M. Numerical Simulation of SAR Image for Sea Surface. Remote Sens. 2022, 14, 439. [Google Scholar] [CrossRef]
ID | Incidence Angle (degree) | Wind Speed (m/s) | Wind Direction (degree) | Significant Wave Height (m) | Wavelength of the Dominant Wave (m) | Direction of the Dominant Wave (degree) |
---|---|---|---|---|---|---|
1 | 32.2 | 4.7 | 260.0 | 2.0 | 171.5 | 149.0 |
2 | 41.5 | 7.1 | 137.7 | 2.6 | 185.7 | 158.2 |
3 | 35.0 | 13.0 | 240.0 | 4.1 | 200.0 | 180.0 |
Ocean Surface | Wavelength of the Dominant Wave (m) | Direction of the Dominant Wave (degree) |
---|---|---|
Sentinel-1 data | 171.5 | 149.0 |
Sea surface without swell | 19.4 | 227.4 |
Sea surface with swell | 171.5 | 149.1 |
Ocean Surface | Wavelength of the Dominant Wave (m) | Direction of the Dominant Wave (degree) |
---|---|---|
Sentinel-1 data | 185.7 | 158.2 |
Sea surface without swell | 44.5 | 150.1 |
Sea surface with swell | 185.7 | 158.2 |
Ocean Surface | Wavelength of the Dominant Wave (m) | Direction of the Dominant Wave (degree) |
---|---|---|
Sentinel-1 data | 200.0 | 180.0 |
Tayfun sea surface without swell | 131.3 | 203.2 |
Tayfun sea surface with swell | 200.0 | 180.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Fan, C.; Yan, Q.; Meng, J.; Song, T.; Zhang, J. Effects of Wind Wave Spectra, Non-Gaussianity, and Swell on the Prediction of Ocean Microwave Backscatter with Facet Two-Scale Model. Remote Sens. 2023, 15, 1469. https://doi.org/10.3390/rs15051469
Wu Y, Fan C, Yan Q, Meng J, Song T, Zhang J. Effects of Wind Wave Spectra, Non-Gaussianity, and Swell on the Prediction of Ocean Microwave Backscatter with Facet Two-Scale Model. Remote Sensing. 2023; 15(5):1469. https://doi.org/10.3390/rs15051469
Chicago/Turabian StyleWu, Yuqi, Chenqing Fan, Qiushuang Yan, Junmin Meng, Tianran Song, and Jie Zhang. 2023. "Effects of Wind Wave Spectra, Non-Gaussianity, and Swell on the Prediction of Ocean Microwave Backscatter with Facet Two-Scale Model" Remote Sensing 15, no. 5: 1469. https://doi.org/10.3390/rs15051469
APA StyleWu, Y., Fan, C., Yan, Q., Meng, J., Song, T., & Zhang, J. (2023). Effects of Wind Wave Spectra, Non-Gaussianity, and Swell on the Prediction of Ocean Microwave Backscatter with Facet Two-Scale Model. Remote Sensing, 15(5), 1469. https://doi.org/10.3390/rs15051469