Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (354)

Search Parameters:
Keywords = advanced light microscopy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 24713 KB  
Article
Anticancer Activity of a pH-Responsive Nanocomposite Based on Silver Nanoparticles and Pegylated Carboxymethyl Chitosan (AgNPs-CMC-PEG) in Breast (MCF 7) and Colon Cancer Cells (HCT 116)
by Gabriel Gonzalo Taco-Gárate, Sandra Esther Loa-Guizado, Corina Vera-Gonzales, Herly Fredy Zegarra-Aragon, Juan Aquino-Puma and Carlos Alberto Arenas-Chávez
Biophysica 2026, 6(1), 9; https://doi.org/10.3390/biophysica6010009 - 31 Jan 2026
Viewed by 168
Abstract
Cancer is one of the leading causes of mortality worldwide, with breast and colon cancers being among the most common neoplasms in men and women, respectively. Despite significant advancements in treatment, there is a pressing need to enhance specificity and reduce systemic side [...] Read more.
Cancer is one of the leading causes of mortality worldwide, with breast and colon cancers being among the most common neoplasms in men and women, respectively. Despite significant advancements in treatment, there is a pressing need to enhance specificity and reduce systemic side effects. Importantly, a distinctive feature of cancer cells is their acidic extracellular environment, which profoundly influences cancer progression. In this study, we evaluated the anticancer activity of a pH-sensitive nanocomposite based on silver nanoparticles and pegylated carboxymethyl chitosan (AgNPs-CMC-PEG) in breast cancer (MCF-7) and colon cancer (HCT 116) cell lines. To achieve this, we synthesized and characterized the nanocomposite using UV-Vis spectroscopy, Dynamic Light Scattering (DLS), Fourier-Transform Infrared Spectroscopy (FT-IR), and Scanning Electron Microscopy (STEM-in-SEM). Furthermore, we assessed cytotoxic effects, apoptosis, and reactive oxygen species (ROS) generation using MTT, DAPI, and H2DCFDA assays. Additionally, we analyzed the expression of DNA methyltransferases (DNMT3a) and histone acetyltransferases (MYST4, GCN5) at the mRNA level using RT-qPCR, along with the acetylation and methylation of H3K9ac and H3K9me2 through Western blot analysis. The synthesized nanocomposite demonstrated an average hydrodynamic diameter of approximately 175.4 nm. In contrast, STEM-in-SEM analyses revealed well-dispersed nanoparticles with an average core size of about 14 nm. Additionally, Fourier-transform infrared (FTIR) spectroscopy verified the successful surface functionalization of the nanocomposite with polyethylene glycol (PEG), indicating effective conjugation and structural stability. The nanocomposite exhibited a pH and concentration dependent cytotoxic effect, with enhanced activity observed at an acidic pH 6.5 and at concentrations of 150 µg/ml, 75 µg/ml, and 37.5 µg/ml for both cell lines. Notably, the nanocomposite preferentially induced apoptosis accompanied by ROS generation. Moreover, expression analysis revealed a decrease in H3K9me2 and H3K9ac in both cell lines, with a more pronounced effect in MCF-7 at an acidic pH. Furthermore, the expression of DNMT3a at the mRNA level significantly decreased, particularly at acidic pH. Regarding histone acetyltransferases, GCN5 expression decreased in the HCT 116 line, while MYST4 expression increased in the MCF-7 line. These findings demonstrate that the AgNPs-CMC-PEG nanocomposite has therapeutic potential as a pH-responsive nanocomposite, capable of inducing significant cytotoxic effects and altering epigenetic markers, particularly under the acidic conditions of the tumor microenvironment. Overall, this study highlights the advantages of utilizing pH-sensitive materials in cancer therapy, paving the way for more effective and targeted treatment strategies. Full article
Show Figures

Figure 1

21 pages, 4280 KB  
Article
Geochemical and Textural Features of Apatites from Propylitic to Advanced Argillic Hydrothermal Alteration Zones in the Sharlo Dere Area, Chelopech Cu-Au Deposit, Bulgaria
by Radoslav Kalchev, Irena Peytcheva, David Chew, Atanas Hikov and Elitsa Stefanova
Minerals 2026, 16(2), 150; https://doi.org/10.3390/min16020150 - 29 Jan 2026
Viewed by 176
Abstract
Apatite is a widespread accessory mineral, which can provide information on the geochemical characteristics of magma and the conditions of hydrothermal alteration of the rocks in magmatic–hydrothermal deposits. This study aims to understand the relationships between the geochemical and textural features of apatites [...] Read more.
Apatite is a widespread accessory mineral, which can provide information on the geochemical characteristics of magma and the conditions of hydrothermal alteration of the rocks in magmatic–hydrothermal deposits. This study aims to understand the relationships between the geochemical and textural features of apatites from diorite porphyries that have undergone different degrees of hydrothermal alteration in the Sharlo Dere area, Chelopech epithermal Cu-Au deposit, Bulgaria. The apatites were characterized by laser ablation–inductively coupled plasma mass spectrometry, scanning electron microscopy with energy-dispersive X-ray spectroscopy, electron probe microanalysis with wave-dispersive spectroscopy, optical cathodoluminescence and multi-element mapping. Magmatic apatites from “hematitic”, propylitic and propylitic-sericitic zones of alteration are distinguished by euhedral crystals with oscillatory zoning and brown luminescence in CL images. In quartz-sericitic alteration zones, apatite has a yellow CL response. Hydrothermally altered apatites in the diorite porphyries overprinted by advanced argillic alteration have corroded, irregular forms and pink-green luminescence. Apatite crystals of magmatic origin reveal high contents of chlorine, strontium, light rare earth elements (LREE), negative Eu anomalies and high LaN/SmN and CeN/YbN ratios. Hydrothermally altered or hydrothermal apatites are distinguished by their higher contents of Na2O, F, SO3, Y and middle rare earth elements (MREEs) and their low LaN/SmN and CeN/YbN ratios. The intensity of hydrothermal alteration affects the luminescence and major and trace element contents, including the rare earth element patterns in the apatites, implying apatite can be used as a geochemical indicator to study magmatic–hydrothermal ore deposits. Full article
Show Figures

Figure 1

20 pages, 2378 KB  
Article
Second Harmonic Generation Nanoparticles for Biomedical Imaging: Synthesis and Interaction with Model Bio-Interfaces
by Irene Nepita, Maria Teresa Buscaglia, Belen Arcos-Álvarez, Eduardo Guzmán, Eva Santini, Libero Liggieri and Francesca Ravera
Molecules 2026, 31(3), 416; https://doi.org/10.3390/molecules31030416 - 26 Jan 2026
Viewed by 199
Abstract
This work investigates the synthesis and characterization of Barium Titanate (BT) nanoparticles, which exhibit non-linear optical properties, with a focus on their potential application in biomedical imaging. BT nanoparticles are active in second harmonic generation (SHG), enabling deep tissue imaging with a high [...] Read more.
This work investigates the synthesis and characterization of Barium Titanate (BT) nanoparticles, which exhibit non-linear optical properties, with a focus on their potential application in biomedical imaging. BT nanoparticles are active in second harmonic generation (SHG), enabling deep tissue imaging with a high signal-to-noise ratio. A major objective of this study is to advance in the understanding of the interactions between these nanoparticles and model biological systems. To this end, monolayers of 1,2-dipalmitoyl-sn-glycerol-3-phosphocholine (DPPC) spread on aqueous sub-phase are employed as model bio-interfaces, and the effects of BT nanoparticles on their properties are investigated using physicochemical experimental techniques such as Langmuir trough and Dynamic Light Scattering, also in the presence of albumin, a representative serum protein. The results evidence nanoparticle incorporation into the lipid layer, affecting its phase behavior, as well as the spontaneous formation of protein coronas around NPs, which is further confirmed by super-resolution optical microscopy Full article
Show Figures

Figure 1

13 pages, 4670 KB  
Article
Dentinal Tubule Penetration of an Endodontic Sealer in the Apical Third of Root Canals After Different Final Irrigation Techniques
by Noelia Santamaria, Jaime Bascones, Carlos Gallego-Garcia and Lucia Gancedo-Caravia
J. Clin. Med. 2026, 15(3), 930; https://doi.org/10.3390/jcm15030930 - 23 Jan 2026
Viewed by 163
Abstract
Background/Objectives: This study evaluates the penetration of a calcium silicate-based sealer (BC Universal) into dentinal tubules after different final irrigation protocols. Methods: Eighty-four single-rooted extracted teeth were instrumented with ProTaper Gold to size F4 and assigned to four groups (n [...] Read more.
Background/Objectives: This study evaluates the penetration of a calcium silicate-based sealer (BC Universal) into dentinal tubules after different final irrigation protocols. Methods: Eighty-four single-rooted extracted teeth were instrumented with ProTaper Gold to size F4 and assigned to four groups (n = 21) according to the final irrigation protocol as follows: conventional needle irrigation (CNI), sonic agitation with EndoActivator (EA), ultrasonic activation (UA), and XP-Endo Finisher (XPF). A total of 20 canals from each group were filled with BC Universal sealer mixed with fluorescein and the single-cone obturation technique. The remaining specimen in each group served as a negative control to assess potential imaging bias. Specimens were sectioned 3 mm from the apex and analyzed under confocal laser scanning microscopy. Sealer penetration was assessed by penetration area (PA), maximum depth (MaxD), mean depth (MeanD), and percentage of canal perimeter infiltrated (P). Data were analyzed using Kruskal–Wallis or ANOVA tests (α = 0.05). Results: All activation/agitation techniques showed significantly higher penetration than CNI across all variables (p < 0.001). No significant differences were found among EA, PUI, and XPF for PA, MaxD, and MeanD. However, XPF exhibited the highest perimeter infiltration, which was significantly greater than EA and UA (p < 0.001). Conclusions: Irrigant activation significantly enhanced dentinal tubule penetration of BC Universal sealer compared to CNI. XPF provided superior P, suggesting superior circumferential distribution. These findings suggest a more effective cleaning of the root canal in the apical third achieved by the tested irrigant activation/agitation techniques, which may improve the sealing potential of BC Universal sealer. Full article
(This article belongs to the Special Issue Clinical Advances in Endodontic Dentistry)
Show Figures

Figure 1

19 pages, 28667 KB  
Article
Electrochemical and Optical Insights into Interfacial Connection for Fast Pollutant Removal: Experimental Study of g-C3N4/BiOCl Heterojunction for Rhb and MO Photodegradation
by Hadja Kaka Abanchime Zenaba, Mi Long, Xue Liu, Mengying Xu, Wen Luo and Tian Zhang
Coatings 2026, 16(1), 138; https://doi.org/10.3390/coatings16010138 - 21 Jan 2026
Viewed by 354
Abstract
Developing efficient heterojunction photocatalysts is essential to address the challenge of degrading persistent organic pollutants. In this study, a multi-scale characterization strategy was employed to investigate the implications of interfacial connectivity between synthesized graphitic carbon nitride (g-C3N4) /bismuth oxychloride [...] Read more.
Developing efficient heterojunction photocatalysts is essential to address the challenge of degrading persistent organic pollutants. In this study, a multi-scale characterization strategy was employed to investigate the implications of interfacial connectivity between synthesized graphitic carbon nitride (g-C3N4) /bismuth oxychloride (BiOCl)e removal of Rhodamine B (RhB) and Methyl Orange (MO). Morpho-structural characterizations, including Scanning/Transmission Electron Microscopy (SEM/TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and N2 physisorption (Brunauer–Emmett–Teller (BET)) analyses, confirmed the successful construction of an intimate interfacial contact between g-C3N4 and BiOCl. The optimized composite (15% g-C3N4/BiOCl), prepared via a one-step hydrothermal method, exhibited enhanced photocatalytic performance following pseudo-first-order kinetics described by the Langmuir–Hinshelwood model, with apparent rate constants of 0.166 min−1 for MO and 0.519 min−1 for RhB. Under visible-light irradiation, degradation efficiencies of 98% for MO (120 min) and 99% for RhB (35 min) were achieved, outperforming the pristine components. Complementary optical and electrochemical analyses indicate improved light absorption and charge-separation efficiency in the heterojunction system. In addition, the photocatalyst demonstrated good operational stability over four consecutive cycles, maintaining 91.70% activity for MO and 99.76% for RhB. Overall, this work highlights the synergistic photocatalytic g-C3N4/BiOCl heterojunction and provides a valuable insight to guide the design of advanced materials for pollutant remediation. Full article
(This article belongs to the Special Issue Coatings for Batteries and Energy Storage)
Show Figures

Figure 1

14 pages, 5048 KB  
Article
Transmissive Multilayer Geometric Phase Gratings Using Water-Soluble Alignment Material
by Fatemeh Abbasi, Kristiaan Neyts, Inge Nys and Jeroen Beeckman
Crystals 2026, 16(1), 62; https://doi.org/10.3390/cryst16010062 - 15 Jan 2026
Viewed by 225
Abstract
Multilayer liquid crystal devices can offer enhanced optical functionalities for augmented reality and photonic applications, but fabrication remains severely limited by solvent incompatibility between photoalignment materials and underlying polymerized layers. Conventional photoalignment agents use aggressive solvents like N,N-dimethylformamide that damage polymerized substrates, necessitating [...] Read more.
Multilayer liquid crystal devices can offer enhanced optical functionalities for augmented reality and photonic applications, but fabrication remains severely limited by solvent incompatibility between photoalignment materials and underlying polymerized layers. Conventional photoalignment agents use aggressive solvents like N,N-dimethylformamide that damage polymerized substrates, necessitating protective interlayers. This study demonstrates a water-soluble photoalignment approach using AbA-2522 that eliminates these fabrication barriers. The water-soluble alignment material enables direct multilayer processing without layer damage while maintaining alignment quality equivalent to conventional materials. We successfully fabricate compact transmissive devices integrating liquid crystal polarization gratings with quarter-wave plates, achieving a first-order diffraction efficiency of 65.4% for 9 μm period gratings for linearly polarized incident light (λ = 457 nm). The multilayer structure exhibits highly selective polarization-dependent diffraction with efficiency ratios exceeding 10:1 between preferred and suppressed orders, eliminating external polarization control elements. Polarized optical microscopy confirms excellent alignment uniformity, while the fabrication process offers environmental benefits and reduced complexity. This approach establishes a practical pathway for advanced multilayer photonic devices critical for next-generation augmented reality systems and photonic integration, addressing fundamental challenges that have limited multilayer liquid crystal device development. Full article
(This article belongs to the Collection Liquid Crystals and Their Applications)
Show Figures

Graphical abstract

21 pages, 1298 KB  
Review
Quantum Imaging with Metasurfaces: Gains, Limitations, and Prospects
by Yuxuan Shang, Zhisheng Zhang and Weitao Liu
Photonics 2026, 13(1), 69; https://doi.org/10.3390/photonics13010069 - 12 Jan 2026
Viewed by 355
Abstract
Quantum imaging leverages entanglement and photon correlations to surpass classical limits in resolution and noise performance. However, its practical deployment is constrained by bulky optical setups and limited system adaptability. Metasurfaces—ultrathin, subwavelength-structured devices—offer a compact and reconfigurable solution for wavefront control in quantum [...] Read more.
Quantum imaging leverages entanglement and photon correlations to surpass classical limits in resolution and noise performance. However, its practical deployment is constrained by bulky optical setups and limited system adaptability. Metasurfaces—ultrathin, subwavelength-structured devices—offer a compact and reconfigurable solution for wavefront control in quantum light fields. This review presents recent advances in geometric-, propagation-, and hybrid-phase metasurface designs, showcasing their contributions to enhanced spatial resolution, improved visibility, and system miniaturization across applications such as ghost imaging, quantum holography, and single-photon microscopy. It also examines key challenges—including photon loss, fabrication-induced phase noise, and the lack of dynamic tunability—while outlining future directions for developing integrated, noise-resilient, and task-specific quantum imaging platforms. Full article
(This article belongs to the Section Quantum Photonics and Technologies)
Show Figures

Figure 1

19 pages, 1358 KB  
Article
Interaction of BSA with Ta2O5 Nanoparticles: The Effect of Polydopamine Pre-Coating
by Ekaterina Koshevaya, Nikita Lifanovsky, Elena Shishmakova, Maksim Staltsov, Alexander Dubovik, Alexandr Belousov, Dmitry Kaluzhny, Vladimir Kuzmin, Vladimir Morozov, Maria Kolyvanova and Olga Dement’eva
Molecules 2026, 31(2), 241; https://doi.org/10.3390/molecules31020241 - 11 Jan 2026
Viewed by 364
Abstract
The modification of tantalum oxide (Ta2O5) nanoparticles (NPs) with biocompatible polymers is crucial for their biomedical use. Such modification can prolong NP circulation in the bloodstream by minimizing salt-induced aggregation and reducing nonspecific protein adsorption onto their surface. Understanding [...] Read more.
The modification of tantalum oxide (Ta2O5) nanoparticles (NPs) with biocompatible polymers is crucial for their biomedical use. Such modification can prolong NP circulation in the bloodstream by minimizing salt-induced aggregation and reducing nonspecific protein adsorption onto their surface. Understanding the features of polymer–NP interactions is a key issue in the fabrication of nanostructures with required characteristics. The present work aims to provide a comprehensive comparative study of bovine serum albumin (BSA) adsorption on bare and polydopamine (PDA)-coated Ta2O5 NPs. The synthesized NPs were characterized via transmission electron microscopy, Fourier transform infrared spectroscopy, dynamic light scattering, and zeta potential measurements. Fluorescence and circular dichroism spectroscopy were also employed for the first-time investigation of the interactions of Ta2O5 NPs and Ta2O5@PDA NPs with BSA. The results obtained show that PDA coating significantly enhances the protein-binding affinity. Time-resolved measurements revealed signatures of Förster resonance energy transfer, confirming complex formation between NPs and BSA. Moreover, colloidal stability tests in phosphate-buffered saline indicated that the presence of adsorbed BSA improves the dispersion stability of bare and PDA-coated Ta2O5 NPs. These findings advance the understanding of protein–NP interactions and highlight the potential of PDA coatings for designing stable and functional nanostructures for biomedical applications. Full article
(This article belongs to the Section Nanochemistry)
Show Figures

Graphical abstract

14 pages, 4258 KB  
Article
Highly Efficient Photocatalytic Degradation of Bisphenol A Under UV–Visible Light Irradiation Using Au/Zn3In2S6 Schottky Junction Photocatalyst
by Di Chen, Aoyun Meng, Zhen Li and Jinfeng Zhang
Int. J. Mol. Sci. 2026, 27(2), 705; https://doi.org/10.3390/ijms27020705 - 10 Jan 2026
Viewed by 305
Abstract
Designing and constructing heterojunctions has emerged as a pivotal strategy for improving the photocatalytic efficiency of semiconductors. In this study, we report the controlled synthesis of an Au/Zn3In2S6 Schottky junction through a combination of hydrothermal and in situ [...] Read more.
Designing and constructing heterojunctions has emerged as a pivotal strategy for improving the photocatalytic efficiency of semiconductors. In this study, we report the controlled synthesis of an Au/Zn3In2S6 Schottky junction through a combination of hydrothermal and in situ photodeposition methods. The structural, morphological, and photoelectrochemical properties of the catalyst were meticulously characterized using a suite of techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), photoelectrochemical (PEC) measurements, and electron spin resonance (ESR) spectroscopy. The optimized 3% Au/Zn3In2S6 composite exhibited a remarkable enhancement in both photocatalytic activity and stability, achieving a 90.4% removal of bisphenol A (BPA) under UV–visible light irradiation within 100 min. The corresponding first-order reaction rate constant was approximately 1.366 h−1, nearly 4.37 times greater than that of the pristine Zn3In2S6. This substantial improvement can be attributed to several key factors, including increased BPA adsorption, enhanced light absorption, and the efficient charge separation facilitated by the Au/Zn3In2S6 heterojunction. Photogenerated holes, superoxide radicals, and hydroxyl radicals were identified as the primary reactive species responsible for the BPA degradation. This work highlights the potential of metal-modified semiconductors for advanced photocatalytic applications, offering insights into the design of highly efficient materials for environmental remediation. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

26 pages, 6105 KB  
Article
Disruption of the Placenta–Brain Axis in Transgenic Mice Lacking Serotonin Transporter (SERT) in Trophoblast Cells
by David T. Ellenberger, Zhen Lyu, Rosalind T. B. Herrington, Jessica A. Kinkade, Gustavo W. Leone, Ji Ying Sze, Nathan J. Bivens, R. Frank Baker, R. Michael Roberts, Trupti Joshi and Cheryl S. Rosenfeld
Int. J. Mol. Sci. 2026, 27(1), 436; https://doi.org/10.3390/ijms27010436 - 31 Dec 2025
Viewed by 674
Abstract
Serotonin reuptake inhibitors (SSRIs) are commonly prescribed to pregnant women experiencing depression. Such drugs, however, might adversely affect placenta and fetal brain development. Parietal trophoblast giant cells (pTGCs) in the mouse placenta are postulated to internalize maternal serotonin (5-HT) via transport through SERT, [...] Read more.
Serotonin reuptake inhibitors (SSRIs) are commonly prescribed to pregnant women experiencing depression. Such drugs, however, might adversely affect placenta and fetal brain development. Parietal trophoblast giant cells (pTGCs) in the mouse placenta are postulated to internalize maternal serotonin (5-HT) via transport through SERT, encoded by Slc6a4, and to provide the initial source of 5-HT to the emerging brain via the placental–brain axis. Genetic deletion of Slc6a4 in pTGCs has been hypothesized to impact placental and fetal brain development. A transgenic mouse line with high-affinity SERT, encoded by Slc6a4, was selectively deleted by pairing mice with Cre recombinase linked to Prl2c2, with LoxP sites flanking the Slc6a4 gene. PRL2C2 is solely expressed by pTGCs and other giant cells of the placenta. To compare placental and fetal brain development in selective Slc6a4 KO and WT mice, 5-HT content in the placenta and fetal brains of conceptuses was measured. No significant differences in 5-HT content were evident between knockout (KO) and wild-type (WT) placentas or fetal brains. However, there were significantly fewer pTGCs in KO placentas compared to WT (p ≤ 0.05). Sexually dimorphic differences in gene expression were evident in the placenta and fetal brain between KO and WT counterparts, with female conceptuses showing the most dramatic responses, including decrease in Prl7a2, Prl5a1, Prl3a1, Slc28a3, and Ceacam 15 in female placental samples. These findings suggest that ablation of Slc6a4 in pTGC disrupts the placenta–brain axis in a sex-dependent manner. The results might have important clinical ramifications for pregnant women being treated with SSRIs. Full article
(This article belongs to the Special Issue Molecular Insights into Placental Pathology)
Show Figures

Figure 1

25 pages, 3428 KB  
Article
Biosynthesis of Silver Nanoparticles from Paullinia cupana Kunth Leaf: Effect of Seasonality and Preparation Method of Aqueous Extracts
by Alan Kelbis Oliveira Lima, Tainá Pereira da Silva Oliveira, Isadora Florêncio, Alberto Gomes Tavares Junior, Victor Hugo Sousa Araújo, Arthur Abinader Vasconcelos, Marlus Chorilli, Hugo de Campos Braga, Dayane Batista Tada, Gerson Nakazato, Sônia Nair Báo, Paulo Sérgio Taube, José Antônio de Aquino Ribeiro, Clenilson Martins Rodrigues and Mônica Pereira Garcia
Pharmaceuticals 2026, 19(1), 72; https://doi.org/10.3390/ph19010072 - 30 Dec 2025
Viewed by 382
Abstract
Background/Objectives: The biogenic synthesis of silver nanoparticles (AgNPs) is a promising alternative method, driven by the presence of metabolites in plant matrices capable of acting as reducing and stabilizing agents. Seasonality is a key factor that influences the phytochemical composition of plants [...] Read more.
Background/Objectives: The biogenic synthesis of silver nanoparticles (AgNPs) is a promising alternative method, driven by the presence of metabolites in plant matrices capable of acting as reducing and stabilizing agents. Seasonality is a key factor that influences the phytochemical composition of plants and can directly impact the yield, physicochemical characteristics, stability, and bioactivities of the obtained AgNPs. This study aimed to synthesize AgNPs using aqueous extracts from Paullinia cupana leaves collected during dry and rainy seasons, prepared by two different methods (agitation or infusion), to evaluate the impact of these variables on the biosynthesis and properties of the nanostructures. Methods: The extracts were characterized by UHPLC-HRMS/MS, and their total phenolic compound (TPC) content and antioxidant potential against DPPH and ABTS radicals were determined. The AgNPs were characterized by UV/Vis spectrophotometry, dynamic light scattering (DLS), zeta potential (ZP), nano-particle tracking analysis (NTA), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDX). Results: The metabolic profile results showed a predominance of alkaloids and flavonoids in all extracts, with greater phytochemical diversity in samples prepared by infusion. TPC indicated superior phenolic extraction in extracts prepared by infusion during the rainy season, correlating with greater antioxidant potential via the elimination of free radicals. The evolution of AgNP synthesis was accompanied by a gradual change in the color of the suspensions and the formation of plasmon bands between 410 and 430 nm, characteristic of spherical AgNPs. The nanostructures presented hydrodynamic diameters between 37.49 and 145.5 nm, PdI between 0.222 and 0.755, and Zeta potential between −11.3 and −39.9 mV, suggesting satisfactory colloidal stability. Morphological analyses revealed predominantly spherical particles with average diameters ranging from 33.61 to 48.86 nm and uniform distribution, while EDX spectra confirmed the presence of silver. Conclusions: Thus, our results demonstrate that both seasonality and the method of extract preparation influence the phytochemical composition and, consequently, the morphology, stability, and optical properties of AgNPs, with subtle emphasis on collections made during the rainy season and extracts prepared by infusion. Such knowledge contributes to the advancement of more reproducible and purpose-oriented syntheses in the field of green nanotechnology, enabling applications in various sectors. Full article
Show Figures

Graphical abstract

33 pages, 1558 KB  
Review
Volume Electron Microscopy: Imaging Principles, Computational Advances and Applications in Multi-Scale Biological System
by Bowen Shi and Yanan Zhu
Crystals 2026, 16(1), 14; https://doi.org/10.3390/cryst16010014 - 24 Dec 2025
Viewed by 621
Abstract
Volume electron microscopy (Volume-EM) has transformed structural cell biology by enabling nanometre-resolution imaging across cellular and tissue scales. Serial-section TEM, Serial Block-Face Scanning Electron Microscopy (SBF-SEM), Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) and multi-beam SEM now routinely generate terabyte-scale volumes that capture [...] Read more.
Volume electron microscopy (Volume-EM) has transformed structural cell biology by enabling nanometre-resolution imaging across cellular and tissue scales. Serial-section TEM, Serial Block-Face Scanning Electron Microscopy (SBF-SEM), Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) and multi-beam SEM now routinely generate terabyte-scale volumes that capture organelles, synapses and neural circuits in three dimensions, while cryogenic Volume-EM extends this landscape by preserving vitrified, fully hydrated specimens in a near-native state. Together, these room-temperature and cryogenic modalities define a continuum of approaches that trade off volume, resolution, throughput and structural fidelity, and increasingly interface with correlative light microscopy and cryo-electron tomography. In parallel, advances in computation have turned Volume-EM into a data-intensive discipline. Multistage preprocessing pipelines for alignment, denoising, stitching and intensity normalisation feed into automated segmentation frameworks that combine convolutional neural networks, affinity-based supervoxel agglomeration, flood-filling networks and, more recently, diffusion-based generative restoration. Weakly supervised and self-supervised learning, multi-task objectives and human-AI co-training mitigate the scarcity of dense ground truth, while distributed storage and streaming inference architectures support segmentation and proofreading at the terascale and beyond. Open resources such as COSEM, MICRONS, OpenOrganelle and EMPIAR provide benchmark datasets, interoperable file formats and reference workflows that anchor method development and cross-laboratory comparison. In this review, we first outline the physical principles and imaging modes of conventional and cryogenic Volume-EM, then describe current best practices in data acquisition and preprocessing, and finally survey the emerging ecosystem of AI-driven segmentation and analysis. We highlight how cryo-Volume-EM expands the field towards native-state structural biology, and how multimodal integration with light microscopy, cryo-electron tomography (cryo-ET) and spatial omics is pushing Volume-EM from descriptive imaging towards predictive, mechanistic, cross-scale models of cell physiology, disease ultrastructure and neural circuit function. Full article
(This article belongs to the Special Issue Electron Microscopy Characterization of Soft Matter Materials)
Show Figures

Figure 1

13 pages, 1999 KB  
Article
Optimizing Organic Photovoltaic Efficiency Through Controlled Doping of ZnS/Co Nanoparticles
by Jude N. Ike and Raymond Tichaona Taziwa
Solids 2025, 6(4), 69; https://doi.org/10.3390/solids6040069 - 11 Dec 2025
Viewed by 367
Abstract
Thin-film organic solar cells (TFOSCs) are gaining momentum as next-generation photovoltaic technologies due to their lightweight nature, mechanical flexibility, and low cost-effective fabrication. In this pioneering study, we report for the first time the incorporation of cobalt-doped zinc sulfide [...] Read more.
Thin-film organic solar cells (TFOSCs) are gaining momentum as next-generation photovoltaic technologies due to their lightweight nature, mechanical flexibility, and low cost-effective fabrication. In this pioneering study, we report for the first time the incorporation of cobalt-doped zinc sulfide (ZnS/Co) nanoparticles (NPs) into a poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) bulk-heterojunction photoactive layer. ZnS/Co NPs were successfully synthesized via a wet chemical method and integrated at varying concentrations (1%wt, 3%wt, and 5%wt) to systematically investigate their influence on device performance. The optimal doping concentration of 3%wt yielded a remarkable power conversion efficiency (PCE) of 4.76%, representing a 102% enhancement over the pristine reference device (2.35%) under ambient laboratory conditions. The observed positive trend is attributed to the localized surface plasmon resonance (LSPR) effect and near-field optical enhancement induced by the presence of ZnS/Co NPs in the active layer, thereby increasing light-harvesting capability and exciton dissociation. Comprehensive morphological and optical characterizations using high-resolution scanning electron microscopy (HRSEM), high-resolution transmission electron microscopy (HRTEM), and spectroscopic techniques confirmed uniform nanoparticle dispersion, nanoscale crystallinity, and effective light absorption. These findings highlight the functional role of ZnS/Co NPs as dopants in enhancing TFOSC performance, providing valuable insights into optimizing nanoparticle concentration. This work offers a scalable and impactful strategy for advancing high-efficiency, flexible, and wearable organic photovoltaic devices. Full article
Show Figures

Graphical abstract

25 pages, 4377 KB  
Article
Plasmon-Enhanced Piezo-Photocatalytic Degradation of Metronidazole Using Ag-Decorated ZnO Microtetrapods
by Farid Orudzhev, Makhach Gadzhiev, Rashid Gyulakhmedov, Sergey Antipov, Arsen Muslimov, Valeriya Krasnova, Maksim Il’ichev, Yury Kulikov, Andrey Chistolinov, Damir Yusupov, Ivan Volchkov, Alexander Tyuftyaev and Vladimir Kanevsky
Molecules 2025, 30(23), 4643; https://doi.org/10.3390/molecules30234643 - 3 Dec 2025
Viewed by 525
Abstract
The development of advanced semiconductor-based catalysts for the rapid degradation of emerging pharmaceutical pollutants in water remains a critical challenge in environmental science. In this study, we present the synthesis, characterization, and catalytic performance of zinc oxide (ZnO) microtetrapods decorated with plasmonic Ag [...] Read more.
The development of advanced semiconductor-based catalysts for the rapid degradation of emerging pharmaceutical pollutants in water remains a critical challenge in environmental science. In this study, we present the synthesis, characterization, and catalytic performance of zinc oxide (ZnO) microtetrapods decorated with plasmonic Ag nanoparticles. These microtetrapods have been designed to enhance piezo-, photo-, and piezo-photocatalytic degradation of metronidazole (MNZ), a persistent antibiotic contaminant. ZnO microtetrapods were synthesized by high-temperature pyrolysis and using atmospheric-pressure microwave nitrogen plasma, followed by photochemical deposition of Ag nanoparticles at various precursor concentrations (0–1 mmol AgNO3). The structural integrity of the samples was confirmed through X-ray diffraction (XRD) analysis, while the morphology was examined using scanning electron microscopy with energy-dispersive X-ray analysis (SEM-EDX). Additionally, spectroscopic analysis, including Raman, electron paramagnetic resonance (EPR), and photoluminescence (PL) spectroscopy, was conducted to verify the successful formation of heterostructures with adjustable surface loading of Ag. It has been shown that ZnO microtetrapods decorated with plasmonic Ag nanoparticles exhibit Raman-active properties. A systematic evaluation under photocatalytic, piezocatalytic, and combined piezo-photocatalytic conditions revealed a pronounced volcano-type dependence of catalytic activity on Ag content, with the 0.75 mmol composition exhibiting optimal performance. In the presence of both light irradiation and ultrasonication, the optimized Ag/ZnO composite exhibited 93% degradation of MNZ within a span of 5 min, accompanied by an apparent rate constant of 0.56 min−1. This value stands as a significant improvement, surpassing the degradation rate of pristine ZnO by over 24-fold. The collective identification of defect modulation, plasmon-induced charge separation, and piezoelectric polarization as the predominant mechanisms driving enhanced reactive oxygen species (ROS) generation is a significant advancement in the field. These findings underscore the synergistic interplay between plasmonic and piezoelectric effects in oxide-based heterostructures and present a promising strategy for the efficient removal of recalcitrant water pollutants using multi-field activated catalysis. Full article
(This article belongs to the Special Issue Photocatalytic Materials and Photocatalytic Reactions, 2nd Edition)
Show Figures

Graphical abstract

29 pages, 6226 KB  
Article
IL-15 Complexes Combined with PD-1 Blockade Affect Immune Cell Distribution, Localization, and Immune Signatures in Regressing Versus Non-Regressing Metastatic Breast Tumors
by Josef W. Goldufsky, Anjelica F. Reyes, Allie A. Heller, Malia E. Leifheit, Maram N. Albalawi, Noah T. King, Timothy M. Kuzel, Jeffrey R. Schneider and Amanda L. Marzo
Int. J. Mol. Sci. 2025, 26(23), 11490; https://doi.org/10.3390/ijms262311490 - 27 Nov 2025
Viewed by 1000
Abstract
Rapid advancements in understanding how the immune system can eliminate tumors have quickly translated into breakthroughs in developing cancer therapeutics. Immune checkpoint inhibitors (ICIs) have shown great promise in several cancers; however, resistance can affect up to two-thirds of patients receiving ICIs. A [...] Read more.
Rapid advancements in understanding how the immune system can eliminate tumors have quickly translated into breakthroughs in developing cancer therapeutics. Immune checkpoint inhibitors (ICIs) have shown great promise in several cancers; however, resistance can affect up to two-thirds of patients receiving ICIs. A significant limitation of the effectiveness of anti-PD-1 therapy centers around the insufficient levels of immune cells needed to recognize and kill cancer cells compared to the number of suppressive immune cells within the tumor microenvironment. Determining what is required to overcome the resistance to anti-PD-1 therapy in breast cancer remains a critical need. Our data demonstrate that IL-15 complexes injected intratumorally in combination with PD-1 blockade therapy induce regression of established luminal B mammary breast tumors. We show that IL-15 alone or in combination with anti-PD-1 drives changes in gene expression of pathways associated with TCR and co-stimulatory signaling, immune cell adhesion, and migration. Furthermore, we show that intratumoral injection of IL-15 complexes traffics to the tumor-draining lymph node, as evidenced by Light sheet microscopy, and colocalizes with the anti-PD-1 monoclonal antibody. We also identify the immune signatures, localization, and distribution of immune cells in regressing and non-regressing breast tumors. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

Back to TopTop