Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = adsorptive membrane chromatography

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1889 KiB  
Article
Determination of Phenylurea Herbicides in Water Samples by Magnet-Integrated Fabric Phase Sorptive Extraction Combined with High Performance Liquid Chromatography
by Natalia Manousi, Apostolia Tsiasioti, Abuzar Kabir and Erwin Rosenberg
Molecules 2025, 30(15), 3135; https://doi.org/10.3390/molecules30153135 - 26 Jul 2025
Viewed by 320
Abstract
In this study, a magnet-integrated fabric phase sorptive extraction (MI-FPSE) protocol was developed in combination with high pressure liquid chromatography—diode array detection (HPLC-DAD) for the simultaneous determination of five phenylurea pesticides (i.e., chlorbromuron, diuron, linuron, metoxuron, monuron) in environmental water samples. To produce [...] Read more.
In this study, a magnet-integrated fabric phase sorptive extraction (MI-FPSE) protocol was developed in combination with high pressure liquid chromatography—diode array detection (HPLC-DAD) for the simultaneous determination of five phenylurea pesticides (i.e., chlorbromuron, diuron, linuron, metoxuron, monuron) in environmental water samples. To produce the MI-FPSE device, two individual sol-gel coated carbowax 20 M (CW 20 M) cellulose membranes were fabricated and stitched to each other, while a magnetic rod was inserted between them to give the resulting device the ability to spin and serve as a stand-alone microextraction platform. The adsorption and desorption step of the MI-FPSE protocol was optimized to achieve high extraction efficiency and the MI-FPSE-HPLC-DAD method was validated in terms of linearity, sensitivity, selectivity, accuracy, and precision. The limits of detection (LODs) were found to be 0.3 μg L−1. The relative recoveries were 85.2–110.0% for the intra-day and 87.7–103.2% for the inter-day study. The relative standard deviations were better than 13% in all cases. The green character and the practicality of the developed procedure were assessed using ComplexGAPI and Blue Analytical Grade Index metric tools, showing good method performance. Finally, the developed method was successfully used for the analysis of tap, river, and lake water samples. Full article
Show Figures

Graphical abstract

22 pages, 4474 KiB  
Review
Hydrogen Purity: Influence of Production Methods, Purification Techniques, and Analytical Approaches
by Yunji Kim and Heena Yang
Energies 2025, 18(3), 741; https://doi.org/10.3390/en18030741 - 6 Feb 2025
Cited by 3 | Viewed by 2569
Abstract
Hydrogen purity plays a crucial role in the expanding hydrogen economy, particularly in applications such as fuel cells and industrial processes. This review investigates the relationship between hydrogen production methods and resulting purity levels, emphasizing the differences between reforming, electrolysis, and biomass-based techniques. [...] Read more.
Hydrogen purity plays a crucial role in the expanding hydrogen economy, particularly in applications such as fuel cells and industrial processes. This review investigates the relationship between hydrogen production methods and resulting purity levels, emphasizing the differences between reforming, electrolysis, and biomass-based techniques. Furthermore, it explores state-of-the-art purification technologies, including pressure swing adsorption (PSA), membrane separation, and cryogenic distillation, highlighting their effectiveness and limitations in achieving ultra-pure hydrogen. Analytical methods such as gas chromatography, mass spectrometry, and cavity ring-down spectroscopy are also discussed in terms of their accuracy and application scope for hydrogen quality assessment. By integrating findings from global and domestic studies, this paper aims to provide a comprehensive understanding of the challenges and advancements in hydrogen purity, offering insights into optimizing hydrogen for a sustainable energy future. Full article
(This article belongs to the Special Issue Advances in Hydrogen Energy IV)
Show Figures

Figure 1

21 pages, 5078 KiB  
Article
Preparation of Zwitterionic Sulfobetaines and Study of Their Thermal Properties and Nanostructured Self-Assembling Features
by Yenglik Amrenova, Arshyn Zhengis, Arailym Yergesheva, Munziya Abutalip and Nurxat Nuraje
Nanomaterials 2025, 15(1), 58; https://doi.org/10.3390/nano15010058 - 2 Jan 2025
Viewed by 1568
Abstract
Zwitterionic polymers have garnered significant attention for their distinctive properties, such as biocompatibility, antifouling capabilities, and resistance to protein adsorption, making them promising candidates for a wide range of applications, including drug delivery, oil production inhibitors, and water purification membranes. This study reports [...] Read more.
Zwitterionic polymers have garnered significant attention for their distinctive properties, such as biocompatibility, antifouling capabilities, and resistance to protein adsorption, making them promising candidates for a wide range of applications, including drug delivery, oil production inhibitors, and water purification membranes. This study reports the synthesis and characterization of zwitterionic monomers and polymers through the modification of linear, vinyl, and aromatic heterocyclic functional groups via reaction with 1,3-propanesultone. Four zwitterionic polymers with varying molecular structures—ranging from linear to five and six membered ring systems—were synthesized: poly(sulfobetaine methacrylamide) (pSBMAm), poly(sulfobetaine-1-vinylimidazole) (pSB1VI), poly(sulfobetaine-2-vinylpyridine) (pSB2VP), and poly(sulfobetaine-4-vinylpyridine) (pSB4VP). Their molecular weights, thermal behavior, and self-assembly properties were analyzed using gel permeation chromatography (GPC), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), transmission electron microscopy (TEM), and zeta potential measurements. The glass transition temperatures (Tg) ranged from 276.52 °C for pSBMAm to 313.69 °C for pSB4VP, while decomposition temperatures exhibited a similar trend, with pSBMAm degrading at 301.03 °C and pSB4VP at 387.14 °C. The polymers’ self-assembly behavior was strongly dependent on pH and their surface charge, particularly under varying pH conditions: spherical micelles were observed at neutral pH, while fractal aggregates formed at basic pH. These results demonstrate that precise modifications of the chemical structure, specifically in the linear, imidazole, and pyridine moieties, enable fine control over the thermal properties and self-assembly behavior of polyzwitterions. Such insights are essential for tailoring polymer properties for targeted applications in filtration membranes, drug delivery systems, and solid polymer electrolytes, where thermal stability and self-assembly play crucial roles. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

16 pages, 2858 KiB  
Article
Proteomic Analysis of Human Serum Proteins Adsorbed onto Collagen Barrier Membranes
by Siddharth Shanbhag, Niyaz Al-Sharabi, Katarina Fritz-Wallace, Einar K. Kristoffersen, Dagmar Fosså Bunæs, Mario Romandini, Kamal Mustafa, Mariano Sanz and Reinhard Gruber
J. Funct. Biomater. 2024, 15(10), 302; https://doi.org/10.3390/jfb15100302 - 9 Oct 2024
Viewed by 1916
Abstract
Collagen barrier membranes are frequently used in guided tissue and bone regeneration. The aim of this study was to analyze the signature of human serum proteins adsorbed onto collagen membranes using a novel protein extraction method combined with mass spectrometry. Native porcine-derived collagen [...] Read more.
Collagen barrier membranes are frequently used in guided tissue and bone regeneration. The aim of this study was to analyze the signature of human serum proteins adsorbed onto collagen membranes using a novel protein extraction method combined with mass spectrometry. Native porcine-derived collagen membranes (Geistlich Bio-Gide®, Wolhusen, Switzerland) were exposed to pooled human serum in vitro and, after thorough washing, subjected to protein extraction either in conjunction with protein enrichment or via a conventional surfactant-based method. The extracted proteins were analyzed via liquid chromatography with tandem mass spectrometry. Bioinformatic analysis of global profiling, gene ontology, and functional enrichment of the identified proteins was performed. Overall, a total of 326 adsorbed serum proteins were identified. The enrichment and conventional methods yielded similar numbers of total (315 vs. 309), exclusive (17 vs. 11), and major bone-related proteins (18 vs. 14). Most of the adsorbed proteins (n = 298) were common to both extraction groups and included several growth factors, extracellular matrix (ECM) proteins, cell adhesion molecules, and angiogenesis mediators involved in bone regeneration. Functional analyses revealed significant enrichment of ECM, exosomes, immune response, and cell growth components. Key proteins [transforming growth factor-beta 1 (TGFβ1), insulin-like growth factor binding proteins (IGFBP-5, -6, -7)] were exclusively detected with the enrichment-based method. In summary, native collagen membranes exhibited a high protein adsorption capacity in vitro. While both extraction methods were effective, the enrichment-based method showed distinct advantages in detecting specific bone-related proteins. Therefore, the use of multiple extraction methods is advisable in studies investigating protein adsorption on biomaterials. Full article
Show Figures

Figure 1

13 pages, 3076 KiB  
Article
A Nanobody of PEDV S1 Protein: Screening and Expression in Escherichia coli
by Zhipeng Hao, Xufeng Dong, Zhongtao Zhang and Zhihua Qin
Biomolecules 2024, 14(9), 1116; https://doi.org/10.3390/biom14091116 - 4 Sep 2024
Cited by 2 | Viewed by 2485
Abstract
Porcine epidemic diarrhea virus (PEDV) has caused significant economic losses to the pig farming industry in various countries for a long time. Currently, there are no highly effective preventive or control measures available. Research into the pathogenic mechanism of PEDV has shown that [...] Read more.
Porcine epidemic diarrhea virus (PEDV) has caused significant economic losses to the pig farming industry in various countries for a long time. Currently, there are no highly effective preventive or control measures available. Research into the pathogenic mechanism of PEDV has shown that it primarily causes infection by binding the S protein to the CD13 (APN) receptor on the membrane of porcine intestinal epithelial cells. The S1 region contains three neutralization epitopes and multiple receptor-binding domains, which are closely related to viral antigenicity and ad-sorption invasion. Nanobodies are a type of single-domain antibody that have been discovered in recent years. They can be expressed on a large scale through prokaryotic expression systems, which makes them cost-effective, stable, and less immunogenic. This study used a phage display library of nanobodies against the PEDV S1 protein. After three rounds of selection and enrichment, the DNA sequence of the highly specific nanobody S1Nb1 was successfully obtained. To obtain soluble nanobody S1Nb1, its DNA sequence was inserted into the vector Pcold and a solubility-enhancing SUMO tag was added. The resulting recombinant vector, Pcold-SUMO-S1Nb1, was then transformed into E. coli BL21(DE3) to determine the optimal expression conditions for the nanobody. Following purification using Ni-column affinity chromatography, Western blot analysis confirmed the successful purification of S1Nb1 carrying the solubility-enhancing tag. ELISA results demonstrated a strong affinity between the S1Nb1 nanobody and PEDV S1 protein. Full article
(This article belongs to the Section Synthetic Biology and Bioengineering)
Show Figures

Figure 1

17 pages, 1927 KiB  
Review
Application of Monoclonal Antibodies against Naturally Occurring Bioactive Ingredients
by Shunsuke Fujii, Takuhiro Uto, Hiroaki Hayashi, Waraporn Putalun, Seiichi Sakamoto, Hiroyuki Tanaka and Yukihiro Shoyama
Antibodies 2024, 13(3), 60; https://doi.org/10.3390/antib13030060 - 24 Jul 2024
Viewed by 2302
Abstract
Monoclonal antibodies (Mabs) are widely used in a variety of fields, including protein identification, life sciences, medicine, and natural product chemistry. This review focuses on Mabs against naturally occurring active compounds. The preparation of Mabs against various active compounds began in the 1980s, [...] Read more.
Monoclonal antibodies (Mabs) are widely used in a variety of fields, including protein identification, life sciences, medicine, and natural product chemistry. This review focuses on Mabs against naturally occurring active compounds. The preparation of Mabs against various active compounds began in the 1980s, and now there are fewer than 50 types. Eastern blotting, which was developed as an antibody staining method for low-molecular-weight compounds, is useful for its ability to visually represent specific components. In this method, a mixture of lower-molecular-weight compounds, particularly glycosides, are separated by thin-layer chromatography (TLC). The compounds are then transferred to a membrane by heating, followed by treatment with potassium periodate (KIO4) to open the sugar moiety of the glycoside on the membrane to form an aldehyde group. Proteins are then added to form Schiff base bonds to enable adsorption on the membrane. A Mab is bound to the glycoside moiety on the membrane and reacts with a secondary antibody to produce color. Double Eastern blotting, which enables the simultaneous coloration of two glycosides, can be used to evaluate quality and estimate pharmacological effects. An example of staining by Eastern blotting and a component search based on the results will also be presented. A Mab-associated affinity column is a method for isolating antigen molecules in a single step. However, the usefulness of the wash fractions that are not bound to the affinity column is unknown. Therefore, we designated the wash fraction the “knockout extract”. Comparing the nitric oxide (NO) production of a glycyrrhizin (GL)-knockout extract of licorice with a licorice extract revealed that the licorice extract is stronger. Therefore, the addition of GL to the GL-knockout extract of licorice increased NO production. This indicates that GL has synergic activity with the knockout extract. The GL-knockout extract of licorice inhibited high-glucose-induced epithelial–mesenchymal transition in NRK-52E cells, primarily by suppressing the Notch2 pathway. The real active constituent in licorice may be constituents other than GL, which is the causative agent of pseudohyperaldosteronism. This suggests that a GL-knockout extract of licorice may be useful for the treatment of diabetic nephritis. Full article
Show Figures

Figure 1

19 pages, 6494 KiB  
Article
Enrichment of Total Flavonoids and Licochalcone A from Glycyrrhiza inflata Bat. Residue Based on a Combined Membrane–Macroporous Resin Process and a Quality-Control Study
by Xiaoxia Wang, Zhou Zhang, Yun Wang, Yayi Wu, Li Miao, Yue Ma, Lihua Wei, Wen Chen and Hong Li
Molecules 2024, 29(10), 2282; https://doi.org/10.3390/molecules29102282 - 12 May 2024
Viewed by 1615
Abstract
Glycyrrhiza inflata Bat. produces a lot of licorice waste after water extraction, which also retains abundant total flavonoids (TFs) and licochalcone A. However, licorice residue is often wasted due to the lack of good utilization of resources in practical applications. This study first [...] Read more.
Glycyrrhiza inflata Bat. produces a lot of licorice waste after water extraction, which also retains abundant total flavonoids (TFs) and licochalcone A. However, licorice residue is often wasted due to the lack of good utilization of resources in practical applications. This study first screened the optimal membrane pore size and resin type and then explored the mechanism and conditions of the adsorption of TFs on the resin. Then, different combinations and sequences of membrane and macroporous resin (MR) methods were investigated. It was found that using the membrane method for initial purification, followed by the MR method for further purification, yielded the best purification results. Next, response surface methodology was utilized to investigate the resin’s dynamic desorption conditions for TFs. Finally, the TF purity increased from 32.9% to 78.2% (2.38-fold) after purification by a combined membrane–MR process; the purity of licochalcone A increased from 11.63 mg·g−1 to 22.70 mg·g−1 (1.95-fold). This study verified the feasibility of enriching TFs and licochalcone A from licorice residue using a membrane–MR coupling method. In addition, a quality-control method was established using a fingerprinting method on the basis of ultrahigh-performance liquid chromatography (UPLC) to ensure the stability of the enrichment process. Full article
Show Figures

Figure 1

11 pages, 1480 KiB  
Article
Exploring Bacterial Cellulose and a Biosurfactant as Eco-Friendly Strategies for Addressing Pharmaceutical Contaminants
by Nathália Roberta Cardoso Mendes Castanho, Nathane de Marco, Érika Leão Ajala Caetano, Patrícia Lius Melo Alves, Thaisa Borim Pickler, Natasha Lien de Almeida Ibanez, Angela Faustino Jozala and Denise Grotto
Molecules 2024, 29(2), 448; https://doi.org/10.3390/molecules29020448 - 17 Jan 2024
Cited by 1 | Viewed by 1598
Abstract
Aquatic environments face contamination by pharmaceuticals, prompting concerns due to their toxicity even at low concentrations. To combat this, we developed an ecologically sustainable biosurfactant derived from a microorganism and integrated it into bacterial cellulose (BC). This study aimed to evaluate BC’s efficacy, [...] Read more.
Aquatic environments face contamination by pharmaceuticals, prompting concerns due to their toxicity even at low concentrations. To combat this, we developed an ecologically sustainable biosurfactant derived from a microorganism and integrated it into bacterial cellulose (BC). This study aimed to evaluate BC’s efficacy, with and without the biosurfactant, as a sorbent for paracetamol and 17α-ethinylestradiol (EE2) in water. We cultivated BC membranes using Gluconacetobacter xylinus ATCC 53582 and synthesized the biosurfactant through pre-inoculation of Bacillus subtilis in a synthetic medium. Subsequently, BC membranes were immersed in the biosurfactant solution for incorporation. Experiments were conducted using contaminated water, analyzing paracetamol concentrations via spectrophotometry and EE2 levels through high-performance liquid chromatography. Results indicated BC’s superior adsorption for EE2 over paracetamol. Incorporating the biosurfactant reduced hormone adsorption but enhanced paracetamol sorption. Notably, original and freeze-dried BC exhibited better adsorption efficacy than biosurfactant-infused BC. In conclusion, BC showed promise in mitigating EE2 contamination, suggesting its potential for environmental remediation. Future research could focus on optimizing biosurfactant concentrations to enhance sorption capabilities without compromising BC’s inherent effectiveness. Full article
(This article belongs to the Special Issue Functional Polymers in Separation Science)
Show Figures

Figure 1

15 pages, 882 KiB  
Article
Isolation of Polyphenols from Aqueous Extract of the Halophyte Salicornia ramosissima
by Malthe Fredsgaard, Job Tchoumtchoua, Stephan Kohnen, Tanmay Chaturvedi and Mette Hedegaard Thomsen
Molecules 2024, 29(1), 220; https://doi.org/10.3390/molecules29010220 - 31 Dec 2023
Cited by 4 | Viewed by 2133
Abstract
Polyphenols from residual non-food grade Salicornia ramosissima have health-promoting effects in feed, food, or nutraceutical applications. Therefore, the isolation of polyphenols is of interest from a series of environmentally friendly isolation methods with recyclable solvents. The isolation of polyphenols from non-food grade S. [...] Read more.
Polyphenols from residual non-food grade Salicornia ramosissima have health-promoting effects in feed, food, or nutraceutical applications. Therefore, the isolation of polyphenols is of interest from a series of environmentally friendly isolation methods with recyclable solvents. The isolation of polyphenols from non-food grade S. ramosissima was investigated using sequential membrane filtration with and without acid pretreatment, liquid–liquid extraction, resin adsorption, and centrifugal partition chromatography (CPC); analyzed by the Folin–Ciocalteu assay for total polyphenols; and finally analyzed using UPLC-TQMS in negative ion-spray mode for detection of 14 polyphenols. Sequential membrane filtration and acid hydrolysis indicated the polyphenols forming complexes with other compounds, retaining the polyphenols in the retentate fraction of large molecular weight cut-off membrane sizes. Conventional liquid–liquid extraction using sequential ethyl acetate and n-butanol showed most polyphenols were extracted, apart from chlorogenic acids, indicating a low isolation efficiency of higher polarity polyphenols. Analysis of the extract after resin adsorption by Amberlite XAD-4 resin showed high efficiency for separation, with 100% of polyphenols adsorbed to the resin after 13 bed volumes and 96.7% eluted from the resin using ethanol. CPC fractionations were performed to fractionate the concentrated extract after resin adsorption. CPC fractionations of the 14 polyphenols were performed using an organic or aqueous phase as a mobile phase. Depending on the mobile phase, different compounds were isolated in a high concentration. Using these easily scalable methods, it was possible to comprehensively study the polyphenols of interest from S. ramosissima and their isolation mechanics. This study will potentially lead the way for the large-scale isolation of polyphenols from S. ramosissima and other complex halophytes. The compounds of the highest concentration after CPC fractionation were isoquercitrin and hyperoside (155.27 mg/g), chlorogenic acid (85.54 mg/g), cryptochlorogenic acid (101.50 mg/g), and protocatechuic acid (398.67 mg/g), and further isolation using CPC could potentially yield novel polyphenol nutraceuticals. Full article
Show Figures

Figure 1

15 pages, 3955 KiB  
Article
Development of Poly(acrylamide)-Based Hydrogel Composites with Powdered Activated Carbon for Controlled Sorption of PFOA and PFOS in Aqueous Systems
by Maria Victoria X. Klaus, Angela M. Gutierrez and J. Zach Hilt
Polymers 2023, 15(22), 4384; https://doi.org/10.3390/polym15224384 - 11 Nov 2023
Cited by 6 | Viewed by 4165
Abstract
Per- and polyfluoroalkyl substances (PFAS) are anthropogenic compounds developed for various applications; some are connected to adverse health impacts including immunosuppression and higher susceptibility to some cancers. Current PFAS remediation treatments from aqueous sources include granular activated carbon (GAC) adsorption, membrane separation, and [...] Read more.
Per- and polyfluoroalkyl substances (PFAS) are anthropogenic compounds developed for various applications; some are connected to adverse health impacts including immunosuppression and higher susceptibility to some cancers. Current PFAS remediation treatments from aqueous sources include granular activated carbon (GAC) adsorption, membrane separation, and anion-exchange resin (AER) removal. Each has specific disadvantages, hence the need for a new and efficient technology. Herein, acrylamide-based hydrogel composites were synthesized with powdered activated carbon (PAC) and characterized to determine their affinity for PFAS. Physicochemical characterization included Fourier-Transform infrared spectroscopy (FTIR) to identify chemical composition, thermogravimetric analysis (TGA) to confirm PAC loading percentage, and aqueous swelling studies to measure the effect of crosslinking density. FTIR showed successful conversion of carbonyl and amine groups, and TGA analysis confirmed the presence of PAC within the network. Surface characterization also confirmed carbon-rich areas within composite networks, and the swelling ratio decreased with increasing crosslinking density. Finally, sorption of PFAS was detected via liquid chromatography with tandem mass spectrometry (LC-MS/MS), with removal efficiencies of up to 98% for perfluorooctanoic sulfonic acid (PFOS) and 96% for perfluorooctanoic acid (PFOA). The developed hydrogel composites exhibited great potential as advanced materials with tunable levers that can increase affinity towards specific compounds in water. Full article
(This article belongs to the Special Issue Polymeric Materials for Wastewater Treatment Applications)
Show Figures

Figure 1

16 pages, 4078 KiB  
Article
Chemically Stable Styrenic Electrospun Membranes with Tailorable Surface Chemistry
by Maura Sepesy, Tuli Banik, Joelle Scott, Luke A. F. Venturina, Alec Johnson, Bernadette L. Schneider, Megan M. Sibley and Christine E. Duval
Membranes 2023, 13(11), 870; https://doi.org/10.3390/membranes13110870 - 2 Nov 2023
Cited by 1 | Viewed by 2893
Abstract
Membranes with tailorable surface chemistry have applications in a wide range of industries. Synthesizing membranes from poly(chloromethyl styrene) directly incorporates an alkyl halide surface-bound initiator which can be used to install functional groups via SN2 chemistry or graft polymerization techniques. In [...] Read more.
Membranes with tailorable surface chemistry have applications in a wide range of industries. Synthesizing membranes from poly(chloromethyl styrene) directly incorporates an alkyl halide surface-bound initiator which can be used to install functional groups via SN2 chemistry or graft polymerization techniques. In this work, poly(chloromethyl styrene) membranes were synthesized through electrospinning. After fabrication, membranes were crosslinked with a diamine, and the chemical resistance of the membranes was evaluated by exposure to 10 M nitric acid, ethanol, or tetrahydrofuran for 24 h. The resulting membranes had diameters on the order of 2–5 microns, porosities of >80%, and permeance on the order of 10,000 L/m2/h/bar. Crosslinking the membranes generally increased the chemical stability. The degree of crosslinking was approximated using elemental analysis for nitrogen and ranged from 0.5 to 0.9 N%. The poly(chloromethyl styrene) membrane with the highest degree of crosslinking did not dissolve in THF after 24 h and retained its high permeance after solvent exposure. The presented chemically resistant membranes can serve as a platform technology due to their versatile surface chemistry and can be used in membrane manufacturing techniques that require the membrane to be contacted with organic solvents or monomers. They can also serve as a platform for separations that are performed in strong acids. Full article
(This article belongs to the Special Issue Women’s Special Issue Series: Membrane Materials and Applications)
Show Figures

Graphical abstract

12 pages, 2259 KiB  
Article
Preparation of Protein A Membrane Adsorbers Using Strain-Promoted, Copper-Free Dibenzocyclooctyne (DBCO)-Azide Click Chemistry
by Joshua Osuofa and Scott M. Husson
Membranes 2023, 13(10), 824; https://doi.org/10.3390/membranes13100824 - 6 Oct 2023
Cited by 2 | Viewed by 3176
Abstract
Protein A chromatography is the preferred unit operation for purifying Fc-based proteins. Convective chromatography technologies, like membrane adsorbers, can perform the purification rapidly and improve throughput dramatically. While the literature reports the preparation of Protein A membrane adsorbers utilizing traditional coupling chemistries that [...] Read more.
Protein A chromatography is the preferred unit operation for purifying Fc-based proteins. Convective chromatography technologies, like membrane adsorbers, can perform the purification rapidly and improve throughput dramatically. While the literature reports the preparation of Protein A membrane adsorbers utilizing traditional coupling chemistries that target lysine or thiol groups on the Protein A ligand, this study demonstrates a new approach utilizing copper-free dibenzocyclooctyne (DBCO)-azide click chemistry. The synthetic pathway consists of three main steps: bioconjugation of Protein A with a DBCO-polyethylene glycol (PEG) linker, preparation of an azide-functionalized membrane surface, and click reaction of DBCO-Protein A onto the membrane surface. Using polyclonal human immunoglobulins (hIgG) as the target molecule, Protein A membranes prepared by this synthetic pathway showed a flowrate-independent dynamic binding capacity of ~10 mg/mL membrane at 10% breakthrough. Fitting of static binding capacity measurements to the Langmuir adsorption isotherm showed a maximum binding (qmax) of 27.48 ± 1.31 mg/mL and an apparent equilibrium dissociation constant (Kd) of value of 1.72 × 10−1 ± 4.03 × 10−2 mg/mL. This work represents a new application for copper-less click chemistry in the membrane chromatography space and outlines a synthetic pathway that can be followed for immobilization of other ligands. Full article
(This article belongs to the Collection Feature Papers in Membrane Chemistry)
Show Figures

Figure 1

25 pages, 5193 KiB  
Article
Holmium-Containing Metal-Organic Frameworks as Modifiers for PEBA-Based Membranes
by Anna Kuzminova, Mariia Dmitrenko, Kirill Salomatin, Olga Vezo, Sergey Kirichenko, Semyon Egorov, Marina Bezrukova, Anna Karyakina, Alexey Eremin, Ekaterina Popova, Anastasia Penkova and Artem Selyutin
Polymers 2023, 15(18), 3834; https://doi.org/10.3390/polym15183834 - 20 Sep 2023
Cited by 1 | Viewed by 2186
Abstract
Recently, there has been an active search for new modifiers to create hybrid polymeric materials for various applications, in particular, membrane technology. One of the topical modifiers is metal-organic frameworks (MOFs), which can significantly alter the characteristics of obtained mixed matrix membranes (MMMs). [...] Read more.
Recently, there has been an active search for new modifiers to create hybrid polymeric materials for various applications, in particular, membrane technology. One of the topical modifiers is metal-organic frameworks (MOFs), which can significantly alter the characteristics of obtained mixed matrix membranes (MMMs). In this work, new holmium-based MOFs (Ho-MOFs) were synthesized for polyether block amide (PEBA) modification to develop novel MMMs with improved properties. The study of Ho-MOFs, polymers and membranes was carried out by methods of X-ray phase analysis, scanning electron and atomic force microscopies, Fourier transform infrared spectroscopy, low-temperature nitrogen adsorption, dynamic and kinematic viscosity, static and dynamic light scattering, gel permeation chromatography, thermogravimetric analysis and contact angle measurements. Synthesized Ho-MOFs had different X-ray structures, particle forms and sizes depending on the ligand used. To study the effect of Ho-MOF modifier on membrane transport properties, PEBA/Ho-MOFs membrane retention capacity was evaluated in vacuum fourth-stage filtration for dye removal (Congo Red, Fuchsin, Glycine thymol blue, Methylene blue, Eriochrome Black T). Modified membranes demonstrated improved flux and rejection coefficients for dyes containing amino groups: Congo Red, Fuchsin (PEBA/Ho-1,3,5-H3btc membrane possessed optimal properties: 81% and 68% rejection coefficients for Congo Red and Fuchsin filtration, respectively, and 0.7 L/(m2s) flux). Full article
(This article belongs to the Special Issue MOFs-Polymer Hybrid Materials)
Show Figures

Figure 1

18 pages, 3169 KiB  
Article
Organic Compounds Responsible for the Fouling of Ultrafiltration Membrane Treating Algae-Laden Water
by Edwin Castilla-Rodriguez and Hongde Zhou
Membranes 2023, 13(9), 787; https://doi.org/10.3390/membranes13090787 - 12 Sep 2023
Cited by 4 | Viewed by 2097
Abstract
Fouling comparisons of the organic fractions in surface and algae-laden waters make it possible to determine the main compounds responsible for the fouling of ultrafiltration (UF) membranes. This study examined the fouling of UF membranes and its relationship to the characteristics of the [...] Read more.
Fouling comparisons of the organic fractions in surface and algae-laden waters make it possible to determine the main compounds responsible for the fouling of ultrafiltration (UF) membranes. This study examined the fouling of UF membranes and its relationship to the characteristics of the organic fractions found in drinking-water supply. Four types of water were prepared by combining natural organic matter (NOM) from lake water with algal organic matter (AOM) from four algae species commonly found in freshwater. Liquid chromatography–organic carbon detection (LC–OCD) and a fluorescence excitation–emission matrix (FEEM) were used to analyze the feed water and permeate to assess the interactions between and fouling behavior of the organic fractions. The results showed that the interaction of large-molecular-weight AOMs on the membrane surfaces and their transport through the membrane pores were the main fouling mechanisms. Polysaccharides followed by protein-like substances were the organic compounds responsible for the fouling of the UF membranes. The fouling affinity of these substances was attributed to two processes, the adsorption of their carboxyl, hydroxyl and cationic groups on the membrane surfaces, and the molecular complexation of their organic groups. The humic substances’ retention was marginal and attributed to the synergetic effects of the polysaccharides and proteins. Full article
Show Figures

Figure 1

23 pages, 2799 KiB  
Article
Breakthrough Curve Modeling and Analysis for Lysozyme Adsorption by Tris(hydroxymethyl)aminomethane Affinity Nanofiber Membrane
by Kuei-Hsiang Chen, You-Ren Lai, Nguyen The Duc Hanh, Steven S.-S. Wang and Yu-Kaung Chang
Membranes 2023, 13(9), 761; https://doi.org/10.3390/membranes13090761 - 28 Aug 2023
Cited by 12 | Viewed by 2721
Abstract
In this study, a polyacrylonitrile nanofiber membrane was first hydrolyzed and then functionalized with tris(hydroxymethyl)aminomethane (P-Tris), then used as an affinity nanofiber membrane for lysozyme adsorption in membrane chromatography. The dynamic adsorption behavior of lysozyme was investigated in a flow system under various [...] Read more.
In this study, a polyacrylonitrile nanofiber membrane was first hydrolyzed and then functionalized with tris(hydroxymethyl)aminomethane (P-Tris), then used as an affinity nanofiber membrane for lysozyme adsorption in membrane chromatography. The dynamic adsorption behavior of lysozyme was investigated in a flow system under various operating parameters, including adsorption pHs, initial feed lysozyme concentration, loading flow rate, and the number of stacked membrane layers. Four different kinetic models, pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion kinetic models, were applied to experimental data from breakthrough curves of lysozyme. The results showed that the dynamic adsorption results were fitted well with the pseudo-second-order kinetic model. The breakthrough curve experimental results show significant differences in the breakthrough time, the dynamic binding capacity, the length of the mass transfer zone, and the utilization rate of the membrane bed under different operating parameters. Four dynamic adsorption models (i.e., Bohart–Adams, Thomas, Yoon–Nelson, and BDST models) were used to analyze the breakthrough curve characteristics of the dynamic adsorption experiments. Among them, the Yoon–Nelson model was the best model to fit the breakthrough curve. However, some of the theoretical results based on the Thomas and Bohart–Adams model analyses of the breakthrough curve fit well with the experimental data, with an error percentage of <5%. The Bohart–Adams model has the largest difference from the experimental results; hence it is not suitable for breakthrough curve analysis. These results significantly impact dynamic kinetics studies and breakthrough curve characteristic analysis in membrane bed chromatography. Full article
Show Figures

Figure 1

Back to TopTop