Organic Compounds Responsible for the Fouling of Ultrafiltration Membrane Treating Algae-Laden Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Algal Cultivation
2.2. Test Water
2.3. UF Testing System
2.4. UF-Membrane-Fouling Evaluation
2.5. Characterization of Organic Matter
2.5.1. Liquid Chromatography–Organic Carbon Detector (LC–OCD)
2.5.2. Fluorescence Excitation–Emission Matrix (FEEM) Spectrometry
3. Results and Discussion
3.1. Algal Organic Matter—FEEM Characterization
3.2. UF-Membrane-Fouling Responses to Various Natural Organic Fractions
3.3. Interaction between NOM Fractions and UF Membranes—LC–OCD Characterization
3.4. NOM Fractions’ Interactions with UF Membranes—FEEM Characterization
3.5. Effects of Organic Matter Fractions on UF-Membrane Fouling—LC–OCD Characterization
3.6. Effects of Organic Matter Fractions on UF-Membrane Fouling—FEEM Characterization
4. Conclusions
- A higher retention of polysaccharides and protein-like substances was observed on UF membranes treating surface waters with higher AOM contents. The interaction of these substances on the membrane surfaces helped retain lower-molecular-weight organic matter, producing permeates with lower DOC concentrations.
- The deposition of algae cells and large-molecular-weight AOM on the membranes’ surfaces, along with the transport of AOM through the membranes, was the main fouling mechanism observed in this study.
- The SMP-like substances and biopolymers were identified as the groups of organic fractions responsible for the fouling of the UF membranes. The fouling TMP increased with the accumulation of these substances in the membrane tank. These substances seem to be related, since biopolymers are composed of polysaccharides and protein-like substances from microbial metabolism and algae decay.
- The fouling affinity of the polysaccharides and protein-like substances was attributed to two processes: the adsorption of their carboxyl, hydroxyl, and cationic groups on the membrane surfaces and the molecular complexation of their organic groups with multi-valent inorganic ions.
- The retentions of the humic and fulvic substances were low and similar, despite the fouling TMP. This suggests that their retention had no effect on the membrane fouling and could be attributed to synergetic effects with polysaccharides and protein-like substances.
- The building blocks and LMW acids showed no significant retention. The LMW neutrals’ retention was low, suggesting that these substances may have interacted with the proteins and polysaccharides.
- The TMP increase was proportional to the algae-cell and AOM contents of the water evaluated. The high content of AOM induced further TMP increases, probably due to its interaction with the algae cells and the membranes’ surfaces.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
NOM | Natural Organic Matter |
AOM | Algal Organic Matter |
DOC | Dissolved Organic Carbon |
UF | Ultrafiltration |
TMP | Trans-Membrane Pressure |
LC–OCD | Liquid Chromatography–Organic Carbon Detection |
FEEM | Fluorescence Excitation–Emission Matrix |
SMP | Soluble Microbial Products |
EPS | Extracellular Polymeric Substances |
LMW | Low Molecular Weight |
TSS | Total Suspended Solids |
Symbols | |
μ | Viscosity (N-s/m2) |
References
- Sutzkover-Gutman, I.; Hasson, D.; Semiat, R. Humic substances fouling in ultrafiltration processes. Desalination 2010, 261, 218–231. [Google Scholar] [CrossRef]
- Zularisam, A.W.; Ismail, A.F.; Salim, M.R.; Sakinah, M.; Ozaki, H. The effects of NOM fractions on fouling characteristics and flux recovery of UF membranes. Desalination 2007, 212, 191–208. [Google Scholar] [CrossRef]
- Qu, F.; Liang, H.; Zhou, J.; Nan, J.; Shao, S.; Zhang, J. Ultrafiltration membrane fouling caused by extracellular organic matter (EOM) from Microcystis aeruginosa: Effects of membrane pore size and surface hydrophobicity. J. Membr. Sci. 2014, 449, 58–66. [Google Scholar] [CrossRef]
- Yamamura, H.; Okimoto, K.; Kimura, K.; Watanabe, Y. Hydrophilic fraction of NOM causing irreversible fouling of microfiltration and UF membranes. Water Res. 2014, 54, 123–136. [Google Scholar] [CrossRef] [PubMed]
- Villacorte, L.O.; Ekowati, Y.; Neu, T.R.; Kleijn, J.M.; Winters, H.; Amy, G.; Schippers, J.C.; Kennedy, M.D. Characterisation of algal organic matter produced by bloom-forming marine and freshwater algae. Water Res. 2015, 73, 216–230. [Google Scholar] [CrossRef]
- Yu, H.; Li, X.; Chang, H.; Zhou, Z.; Zhang, T.; Yang, Y.; Li, G.; Ji, H.; Gai, G.; Liang, H. Performance of hollow fiber ultrafiltration membrane in a full-scale drinking water treatment plant in China: A systematic evaluation during 7-year operation. J. Membr. Sci. 2020, 613, 118469. [Google Scholar] [CrossRef]
- Huber, S.A.; Balz, A.; Albert, M.; Pronk, W. Characterisation of aquatic humic and non-humic matter with size-exclusion chromatography-organic carbon detection-organic nitrogen detection (LC-OCD-OND). Water Res. 2011, 45, 879–885. [Google Scholar] [CrossRef]
- Tian, J.Y.; Ernst, M.; Cui, F.; Jekel, M. Correlations of relevant membrane foulants with UF membrane fouling in different waters. Water Res. 2013, 47, 1218–1228. [Google Scholar] [CrossRef]
- Huang, W.; Chu, H.; Dong, B.; Liu, J. Evaluation of different algogenic organic matters on the fouling of microfiltration membranes. Desalination 2014, 334, 329–338. [Google Scholar] [CrossRef]
- Lee, N.; Amy, G.; Croue, J.P. Low-pressure membrane (MF/UF) fouling associated with allochthonous versus autochthonous natural organic matter. Water Res. 2006, 40, 2357–2368. [Google Scholar] [CrossRef]
- Yao, X.; Zhang, Y.; Zhu, G.; Qin, B.; Feng, L.; Cai, L.; Gao, G. Resolving the variability of CDOM fluorescence to differentiate the sources and fate of DOM in Lake Taihu and its tributaries. Chemosphere 2011, 82, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Qu, F.; Liang, H.; Han, Z.S.; Ma, J.; Shao, S.; Chag, H.; Li, G. Understanding UF membrane fouling by extracellular organic matter of M. aeruginosa using fluorescence excitation-emission matrix coupled with parallel factor analysis. Desalination 2014, 337, 67–75. [Google Scholar] [CrossRef]
- Kimura, K.; Kume, K. Irreversible fouling in hollow-fiber PVDF MF/UF membranes filtering surface water: Effect of precoagulation and identification of foulant. J. Membr. Sci. 2020, 602, 117975. [Google Scholar] [CrossRef]
- Peldszus, S.; Halle, C.; Peiris, R.H.; Hamouda, M.; Jin, X.; Legge, R.L.; Budman, H.; Moresoli, C.; Huck, P.M. Reversible and irreversible low-pressure membrane foulants in drinking water treatment: Identification by principal component analysis of fluorescence EEM and mitigation by biofiltration pretreatment. Water Res. 2011, 45, 5161–5170. [Google Scholar] [CrossRef]
- Su, M.; Yu, J.; Pan, S.; An, W.; Yang, M. Spatial and temporal variations of two cyanobacteria in the mesotrophic Miyun reservoir, China. J. Environ. Sci. 2014, 26, 289–298. [Google Scholar] [CrossRef]
- O’Neil, J.M.; Davis, T.W.; Burford, M.A.; Gobler, C.J. The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change. Harmful Algae 2012, 14, 313–334. [Google Scholar] [CrossRef]
- Zurawell, R.W.; Chen, H.; Burke, J.M.; Prepas, E.E. Hepatotoxic cyanobacteria: A review of the biological importance of Microcystins in freshwater environments. J. Toxicol. Environ. Health Part B 2005, 8, 1–37. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Office of Ground Water and Drinking Water. November, 2005. Membrane Filtration Guidance Manual. Available online: https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=901V0500.TXT (accessed on 6 September 2023).
- Chen, E.; Westerhoff, P.; Leenheer, J.A.; Booksh, K. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter. Environ. Sci. Technol. 2003, 37, 5701–5710. [Google Scholar] [CrossRef]
- Guo, L.; Lu, M.; Li, Q.; Zhang, J.; She, Z. A comparison of different pre-treatments on hydrogen fermentation form waste sludge by fluorescence excitation-emission matrix with regional integration analysis. Int. J. Hydrogen Energy 2015, 40, 197–208. [Google Scholar] [CrossRef]
- Ou, H.S.; Wei, C.H.; Deng, Y.; Gao, N.Y.; Ren, Y.; Hu, Y. Principal component analysis to assess the efficiency and mechanism for enhanced coagulation of natural algae-laden water using a novel dual coagulation system. Environ. Sci. Pollut. Res. 2014, 21, 2122–2131. [Google Scholar] [CrossRef]
- Brezonik, P.L.; Arnold, W.A. Water Chemistry: An Introduction to the Chemistry of Natural and Engineered Aquatic Systems; Oxford University Press: Oxford, UK, 2011; pp. 697–972. [Google Scholar]
- Zhang, X.; Fan, L.; Roddick, F.A. Understanding the fouling of a ceramic microfiltration membrane caused by algal organic matter released from Microcystis aeruginosa. J. Membr. Sci. 2013, 447, 362–368. [Google Scholar] [CrossRef]
- Laksono, S.; ElSherbiny, I.M.A.; Huber, S.A.; Panglisch, S. Fouling scenarios in hollow fiber membranes during mini-plant filtration test and correlation to microalgae-loadded feed characteristics. Chem. Eng. J. 2021, 420, 127723. [Google Scholar] [CrossRef]
- Gao, K.; Li, T.; Zhao, Q.; Liu, W.; Liu, J.; Song, Y.; Chu, H. UF fouling behavior of allelopathy of extracellular organic matter produced by mixed algae co-cultures. Sep. Purif. Technol. 2021, 261, 118297. [Google Scholar] [CrossRef]
- Castilla-Rodriguez, E. Pretreatment Alternatives for the Ultrafiltration of Algae Laden Water. Ph.D. Thesis, University of Guelph, Guelph, ON, Canada, 2020. Available online: http://hdl.handle.net/10214/17698 (accessed on 6 September 2023).
- Yamamura, H.; Kimura, K.; Okajima, T.; Tokumoto, H.; Watanabe, Y. Affinity of functional groups for membrane surface: Implication for physically irreversible fouling. Environ. Sci. Technol. 2008, 42, 5310–5315. [Google Scholar] [CrossRef]
- Henderson, R.; Parsons, S.A.; Jefferson, B. The impact of algal properties and pre-oxidation on solid-liquid separation of algae. Water Res. 2008, 42, 1827–1845. [Google Scholar] [CrossRef]
- Stumm, W.; Morgan, J.J. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3rd ed.; A Wiley Interscience Publication, John Wiley and Sons: New York, NY, USA, 1996. [Google Scholar]
- Kimura, K.; Tanaka, K.; Watanabe, Y. Microfiltration of different surface waters with/without coagulation: Clear correlation between membrane fouling and hydrophilic biopolymers. Water Res. 2014, 49, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.Q.; Hu, X.; Wang, C.; Ai, L. Polysaccharides: Structure and solubility. In Solubility of Polysaccharides; Xu, Z., Ed.; InTech: Rijeka, Croatia, 2017. [Google Scholar] [CrossRef]
- Pongpairoj, P.; Field, R.; Cui, Z.; Wicaksana, F.; Fane, A.G. Transmission of and fouling by long chain molecules during crossflow microfiltration of algal suspensions: Influence of shear. Desalination Water Treat. 2011, 35, 138–149. [Google Scholar] [CrossRef]
- Zhao, F.; Han, X.; Shao, Z.; Li, Z.; Li, Z.; Chen, D. Effect of different pore sizes on membrane fouling and their performance in algae harvesting. J. Membr. Sci. 2022, 641, 119916. [Google Scholar] [CrossRef]
- Henderson, R.K.; Subhi, N.; Antony, A.; Khan, S.J.; Murphy, K.R.; Leslie, G.L.; Chen, V.; Stuetz, R.M.; Le-Clech, P. Evaluation of effluent organic matter fouling in UF treatment using advanced organic characterisation techniques. J. Membr. Sci. 2011, 382, 50–59. [Google Scholar] [CrossRef]
Test Water | Unit | L | LA | AL | A |
---|---|---|---|---|---|
Lake DOC | mg L−1 | 5.0 | 3.3 | 1.7 | - |
Algal DOC | mg L−1 | - | 1.7 | 3.3 | 5.0 |
UVA | m−1 | 0.150 | 0.100 | 0.065 | 0.050 |
SUVA | L m−1 mg−1 | 2.9 | 2.0 | 1.3 | 1.0 |
Turbidity | NTU | 8 | 20 | 27 | 20 |
pH | 7 | 7 | 7 | 7 | |
Hardness | mg L−1 CaCO3 | 120 | 120 | 120 | 120 |
Alkalinity | mg L−1 CaCO3 | 60 | 70 | 70 | 60 |
Lake TSS | mg L−1 | 10 | 6.6 | 3.3 | - |
Algal TSS | mg L−1 | - | 3.3 | 6.6 | 10 |
Items | Value or Description |
---|---|
Fiber outside/inside diameter, mm | 0.95/0.47 |
Nominal pore side, µm | 0.02 |
Module-membrane area, m2 | 0.1 |
Membrane-tank volume, L | 0.6 |
Permeate-tank volume, L | 0.3 |
Feed-tank volume, L | 50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castilla-Rodriguez, E.; Zhou, H. Organic Compounds Responsible for the Fouling of Ultrafiltration Membrane Treating Algae-Laden Water. Membranes 2023, 13, 787. https://doi.org/10.3390/membranes13090787
Castilla-Rodriguez E, Zhou H. Organic Compounds Responsible for the Fouling of Ultrafiltration Membrane Treating Algae-Laden Water. Membranes. 2023; 13(9):787. https://doi.org/10.3390/membranes13090787
Chicago/Turabian StyleCastilla-Rodriguez, Edwin, and Hongde Zhou. 2023. "Organic Compounds Responsible for the Fouling of Ultrafiltration Membrane Treating Algae-Laden Water" Membranes 13, no. 9: 787. https://doi.org/10.3390/membranes13090787
APA StyleCastilla-Rodriguez, E., & Zhou, H. (2023). Organic Compounds Responsible for the Fouling of Ultrafiltration Membrane Treating Algae-Laden Water. Membranes, 13(9), 787. https://doi.org/10.3390/membranes13090787