Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (41)

Search Parameters:
Keywords = adsorption-induced deformation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2781 KB  
Article
Comparative Study on Cation Adsorption and Thermodynamic Characteristics of Clay Minerals in Electrolyte Solutions
by Jiazhong Wu, Heshu Hu, Shuke Zhao, Yisong Li, Kun Zhao, Minghui Zhang and Bin Ding
Surfaces 2025, 8(4), 90; https://doi.org/10.3390/surfaces8040090 - 15 Dec 2025
Viewed by 69
Abstract
The interaction between clay minerals and electrolyte solutions critically affects waterflooding efficiency in enhanced oil recovery (EOR). This study systematically investigated the adsorption and thermodynamic properties of montmorillonite, illite, and kaolinite in different cationic solutions (K+, Na+, Ca2+ [...] Read more.
The interaction between clay minerals and electrolyte solutions critically affects waterflooding efficiency in enhanced oil recovery (EOR). This study systematically investigated the adsorption and thermodynamic properties of montmorillonite, illite, and kaolinite in different cationic solutions (K+, Na+, Ca2+, Mg2+), integrating adsorption isotherm analysis with immersion calorimetry for the first time. Montmorillonite showed the highest adsorption capacity, with the cation affinity following K+ > Na+ > Ca2+ > Mg2+. The highest immersion enthalpy was observed in KCl solution, indicating the dominant roles of ionic radius and solvation energy. Cation adsorption induced deformation of clay lamellae and modification of Si-O and Al-OH groups. These findings suggest that optimizing injected ion composition can enhance reservoir stability and waterflood performance, providing thermodynamic insights for EOR process optimization. Full article
Show Figures

Figure 1

14 pages, 3132 KB  
Article
Assessment of Formation Damage in Carbonate Rocks: Isolated Contribution of Filtration Control Agents in Aqueous Fluids
by Mário C. de S. Lima, Victória B. Romualdo, Gregory V. B. de Oliveira, Ernani D. da S. Filho, Karine C. Nóbrega, Anna C. A. Costa, Elessandre A. de Souza, Sergio T. C. Junior, Marcos A. F. Rodrigues and Luciana V. Amorim
Appl. Sci. 2025, 15(21), 11572; https://doi.org/10.3390/app152111572 - 29 Oct 2025
Viewed by 346
Abstract
Formation damage caused by wellbore fluids remains a key concern in carbonate reservoirs, where pore plugging and filtrate invasion can severely reduce permeability. This study investigates the influence of filtrate-control components in cellulose-based polymeric fluids on the potential for formation damage in carbonate [...] Read more.
Formation damage caused by wellbore fluids remains a key concern in carbonate reservoirs, where pore plugging and filtrate invasion can severely reduce permeability. This study investigates the influence of filtrate-control components in cellulose-based polymeric fluids on the potential for formation damage in carbonate rocks and evaluates the performance of HPA starch as an alternative to cellulose, focusing on its comparative effects on formation permeability. Experimental tests were performed using Indiana Limestone cores to measure filtration behavior and permeability recovery after exposure to different polymeric solutions. The results revealed distinct mechanisms associated with each additive: PAC LV controlled fluid loss mainly by adsorption and pore plugging, while HPA starch formed more deformable and permeable structures. Glycerin, when used alone, did not induce formation damage but increased fluid viscosity, favoring more stable dispersion of the polymeric phase. Micronized calcite enhanced external cake consolidation through particle bridging. The combined use of PAC LV, glycerin, and calcite provided the most efficient filtration control and minimized formation damage. These findings contribute to understanding the isolated and synergistic roles of filtrate-control agents and support the design of optimized polymer-based fluids for well intervention and abandonment operations. Full article
(This article belongs to the Section Fluid Science and Technology)
Show Figures

Figure 1

26 pages, 5224 KB  
Article
Modeling Anisotropic Permeability of Coal and Shale with Gas Rarefaction Effects, Matrix–Fracture Interaction, and Adsorption Hysteresis
by Lilong Wang, Zongyuan Li, Jie Zeng, Biwu Chen, Jiafeng Li, Huimin Jia, Wenhou Wang, Jinwen Zhang, Yiqun Wang and Zhihong Zhao
Processes 2025, 13(10), 3304; https://doi.org/10.3390/pr13103304 - 15 Oct 2025
Viewed by 416
Abstract
Permeability of fissured sorbing rocks, such as coal and shale, controls gas transport and is relevant to a variety of scientific problems and industrial processes. Multiple gas transport and rock deformation mechanisms affect permeability evolution, including gas rarefaction effects, gas-sorption-induced anisotropic matrix–fracture interaction, [...] Read more.
Permeability of fissured sorbing rocks, such as coal and shale, controls gas transport and is relevant to a variety of scientific problems and industrial processes. Multiple gas transport and rock deformation mechanisms affect permeability evolution, including gas rarefaction effects, gas-sorption-induced anisotropic matrix–fracture interaction, and anisotropic deformation induced by effective stress variation. In this paper, a generic anisotropic permeability model is proposed to address the impacts of the above mechanisms and effects. Specifically, the influence of matrix–fracture interactions on permeability evolution is depicted through the nonuniform matrix swelling caused by the gas diffusion process from fracture walls into the matrix. The following characteristics are also incorporated in this model: (1) anisotropic mechanical and swelling properties, (2) arbitrary box-shaped matrix blocks due to the anisotropic rock structure, (3) adsorbability variation of different matrix blocks because of complex rock compositions, (4) adsorption hysteresis, and (5) dynamic tortuosity. The directional permeability models are derived based on the anisotropic poroelasticity theory and anisotropic swelling equations considering adsorption hysteresis. We use a gas-invaded-volume ratio to describe the nonuniform swelling of matrix blocks. Additionally, swelling of blocks with different adsorption and mechanical properties are characterized by a volume-weighted function. Finally, the anisotropic tortuosity is defined as a power law function of effective porosity. The model is verified against experimental data. Results show that four-stage permeability evolution with time can be observed. Permeability evolution in different directions follows its own ways and depends on anisotropic swelling, mechanical properties, and structures, even when the boundary conditions are identical. Adsorption hysteresis controls the local shrinkage region. Tortuosity variation significantly affects permeability but has the smallest influence on the local swelling region. The existence of multiple matrix types complicates the permeability evolution behavior. Full article
(This article belongs to the Special Issue Advances in Enhancing Unconventional Oil/Gas Recovery, 2nd Edition)
Show Figures

Figure 1

19 pages, 1784 KB  
Article
Influence of Stress on Gas Sorption Behavior and Induced Swelling in Coal: Implications for Sustainable CO2 Geological Storage
by Zhiming Fang, Chenlong Yang and Shaicheng Shen
Sustainability 2025, 17(20), 8990; https://doi.org/10.3390/su17208990 - 10 Oct 2025
Viewed by 453
Abstract
The influence of stress on gas sorption behavior and sorption-induced swelling in coal is critical for the success of CO2-enhanced coalbed methane recovery (CO2-ECBM) and geological carbon sequestration—a key strategy for mitigating climate change and promoting clean energy transitions. [...] Read more.
The influence of stress on gas sorption behavior and sorption-induced swelling in coal is critical for the success of CO2-enhanced coalbed methane recovery (CO2-ECBM) and geological carbon sequestration—a key strategy for mitigating climate change and promoting clean energy transitions. However, this influence remains insufficiently understood, largely due to experimental limitations (e.g., overreliance on powdered coal samples) and conflicting theoretical frameworks in existing studies. To address this gap, this study systematically investigates the effects of two distinct stress constraints—constant confining pressure and constant volume—on CO2 adsorption capacity, adsorption kinetics, and associated swelling deformation of intact anthracite coal cores. An integrated experimental apparatus was custom-designed for this study, combining volumetric sorption measurement with high-resolution strain monitoring via the confining fluid displacement (CFD) method and the confining pressure response (CPR) method. This setup enables the quantification of CO2–coal interactions under precisely controlled stress environments. Key findings reveal that stress conditions exert a regulatory role in shaping CO2–coal behavior: constant confining pressure conditions enhance CO2 adsorption capacity and sustain adsorption kinetics by accommodating matrix swelling, thereby preserving pore accessibility for continuous gas uptake. In contrast, constant volume constraints lead to rapid internal stress buildup, which inhibits further gas adsorption and accelerates the attainment of kinetic saturation. Sorption-induced swelling exhibits clear dependence on both pressure and constraint conditions. Elevated CO2 pressure leads to increased strain, while constant confining pressure facilitates more gradual, sustained expansion. This is particularly evident at higher pressures, where adsorption-induced swelling prevails over mechanical constraints. These results help resolve key discrepancies in the existing literature by clarifying the dual role of stress in modulating both pore accessibility (for gas transport) and mechanical response (for matrix deformation). These insights provide essential guidance for optimizing CO2 injection strategies and improving the long-term performance and sustainability of CO2-ECBM and geological carbon storage projects, ultimately supporting global efforts in carbon emission reduction and sustainable energy resource utilization. Full article
(This article belongs to the Section Resources and Sustainable Utilization)
Show Figures

Figure 1

19 pages, 4305 KB  
Article
Laboratory Study on the Characteristics of Wetting-Induced Deformation for Compacted Granite Residual Soil
by Xiang Li, Xinran Chen, Jie Yuan, Huailei Cheng, Jianlong Ye, Liang Ren and Zengyi Wang
Buildings 2025, 15(18), 3372; https://doi.org/10.3390/buildings15183372 - 17 Sep 2025
Viewed by 429
Abstract
Granite residual soil is widely employed as subgrade fill material, but its tendency to undergo wetting-induced deformation under moisture infiltration poses significant challenges to pavement stability. To address this issue, this study introduces an innovative wetting device capable of precisely controlling moisture content [...] Read more.
Granite residual soil is widely employed as subgrade fill material, but its tendency to undergo wetting-induced deformation under moisture infiltration poses significant challenges to pavement stability. To address this issue, this study introduces an innovative wetting device capable of precisely controlling moisture content increase, enabling multi-step wetting tests under controlled conditions. Saturated wetting tests were also conducted using both single-line and double-line methods, and the results were compared. Pore size distribution curves for granite residual soil samples with different initial states were measured using Mercury Intrusion Porosimeter (MIP) tests. Results indicate that for both the single-line method and the double-line method, the εV-lgp curve for samples subjected to different compaction efforts remains parallel across varying initial moisture content. The increase in vertical stress will constrain the water adsorption and swelling potential. Whereas an increase in compaction effort leads to greater swelling potential, which is mitigated by an increase in initial moisture content. By integrating the test results of the soil water characteristic (SWCC) curve, the relationship between normalized wetting deformation and matric suction is primarily influenced by the initial state of the soil sample and remains unaffected by vertical stress during multi-step wetting. Based on the test results, an empirical wetting prediction model was formulated, accounting for the influence of vertical stress, initial matric suction, and matric suction after wetting. Fitting results confirmed that the established model achieved high prediction accuracy (R2 > 0.9), supporting its application in practical engineering endeavors. Full article
(This article belongs to the Special Issue Recycling of Waste in Material Science and Building Engineering)
Show Figures

Figure 1

22 pages, 24809 KB  
Article
Study on Coal Fragmentation Induced by Instantaneously Depressurized Gas and Its Influence on Coal and Gas Outburst: A Case Study of Different Gas Types
by Jie Zheng, Linfan Chen, Zhenghan Li and Gun Huang
Appl. Sci. 2025, 15(18), 9974; https://doi.org/10.3390/app15189974 - 11 Sep 2025
Cited by 1 | Viewed by 563
Abstract
Coal and gas outburst, as an extremely destructive underground disaster, poses serious threats to mine production safety and global energy supply. The mechanisms of this disaster, particularly how gas participates in and affects coal mass fragmentation, have not been fully revealed. To investigate [...] Read more.
Coal and gas outburst, as an extremely destructive underground disaster, poses serious threats to mine production safety and global energy supply. The mechanisms of this disaster, particularly how gas participates in and affects coal mass fragmentation, have not been fully revealed. To investigate this issue, this study simulated the coal-breaking process through instantaneously releasing high-pressure gas saturated in coal samples under gas–stress coupled conditions, employed image binarization method to quantitatively analyze the deformation and fragmentation characteristics of coal samples under different gas conditions, and conducted corroborative analysis from mechanical response and expansion energy perspectives. The results demonstrated that with the enhancement of gas adsorptive ability, gas desorption rate and amount accelerated, carried energy increased, and the long-term adsorption-induced degradation became more significant, resulting in greater extents of coal sample damage. Additionally, a rarely reported axial stress rebound phenomenon was observed, where axial stress underwent rapid decline followed by swift recovery to nearly initial levels within extremely short timeframes. This indicated that the instantaneously depressurized gas-induced coal fragmentation in coal seams level intensifies with the enhancement of adsorptive ability of different gases. The findings of this study may be helpful for understanding the gas participating in coal–rock damage during outburst occurrences, further ensuring mine safety production and global energy security. Full article
Show Figures

Figure 1

27 pages, 5201 KB  
Review
Geomechanical and Geochemical Considerations for Hydrogen Storage in Shale and Tight Reservoirs
by Sarath Poda and Gamadi Talal
Processes 2025, 13(8), 2522; https://doi.org/10.3390/pr13082522 - 11 Aug 2025
Cited by 3 | Viewed by 1815
Abstract
Underground hydrogen storage (UHS) in shale and tight reservoirs offers a promising solution for large-scale energy storage, playing a critical role in the transition to a hydrogen-based economy. However, the successful deployment of UHS in these low-permeability formations depends on a thorough understanding [...] Read more.
Underground hydrogen storage (UHS) in shale and tight reservoirs offers a promising solution for large-scale energy storage, playing a critical role in the transition to a hydrogen-based economy. However, the successful deployment of UHS in these low-permeability formations depends on a thorough understanding of the geomechanical and geochemical factors that affect storage integrity, injectivity, and long-term stability. This review critically examines the geomechanical aspects, including stress distribution, rock deformation, fracture propagation, and caprock integrity, which govern hydrogen containment under subsurface conditions. Additionally, it explores key geochemical challenges such as hydrogen-induced mineral alterations, adsorption effects, microbial activity, and potential reactivity with formation fluids, to evaluate their impact on storage feasibility. A comprehensive analysis of experimental studies, numerical modeling approaches, and field applications is presented to identify knowledge gaps and future research directions. Full article
Show Figures

Figure 1

15 pages, 3175 KB  
Article
Creep Deformation Mechanisms of Gas-Bearing Coal in Deep Mining Environments: Experimental Characterization and Constitutive Modeling
by Xiaolei Sun, Xueqiu He, Liming Qiu, Qiang Liu, Limin Qie and Qian Sun
Processes 2025, 13(8), 2466; https://doi.org/10.3390/pr13082466 - 4 Aug 2025
Viewed by 561
Abstract
The impact mechanism of long-term creep in gas-containing coal on coal and gas outbursts has not been fully elucidated and remains insufficiently understood for the purpose of disaster engineering control. This investigation conducted triaxial creep experiments on raw coal specimens under controlled confining [...] Read more.
The impact mechanism of long-term creep in gas-containing coal on coal and gas outbursts has not been fully elucidated and remains insufficiently understood for the purpose of disaster engineering control. This investigation conducted triaxial creep experiments on raw coal specimens under controlled confining pressures, axial stresses, and gas pressures. Through systematic analysis of coal’s physical responses across different loading conditions, we developed and validated a novel creep damage constitutive model for gas-saturated coal through laboratory data calibration. The key findings reveal three characteristic creep regimes: (1) a decelerating phase dominates under low stress conditions, (2) progressive transitions to combined decelerating–steady-state creep with increasing stress, and (3) triphasic decelerating–steady–accelerating behavior at critical stress levels. Comparative analysis shows that gas-free specimens exhibit lower cumulative strain than the 0.5 MPa gas-saturated counterparts, with gas presence accelerating creep progression and reducing the time to failure. Measured creep rates demonstrate stress-dependent behavior: primary creep progresses at 0.002–0.011%/min, decaying exponentially to secondary creep rates below 0.001%/min. Steady-state creep rates follow a power law relationship when subject to deviatoric stress (R2 = 0.96). Through the integration of Burgers viscoelastic model with the effective stress principle for porous media, we propose an enhanced constitutive model, incorporating gas adsorption-induced dilatational stresses. This advancement provides a theoretical foundation for predicting time-dependent deformation in deep coal reservoirs and informs monitoring strategies concerning gas-bearing strata stability. This study contributes to the theoretical understanding and engineering monitoring of creep behavior in deep coal rocks. Full article
Show Figures

Figure 1

18 pages, 11001 KB  
Article
Temperature Prediction Model for Horizontal Shale Gas Wells Considering Stress Sensitivity
by Jianli Liu, Fangqing Wen, Hu Han, Daicheng Peng, Qiao Deng and Dong Yang
Processes 2025, 13(6), 1896; https://doi.org/10.3390/pr13061896 - 15 Jun 2025
Viewed by 813
Abstract
In the production process of horizontal wells, wellbore temperature data play a critical role in predicting shale gas production. This study proposes a coupled thermo-hydro-mechanical (THM) mathematical model that accounts for the influence of the stress field when determining the distribution of wellbore [...] Read more.
In the production process of horizontal wells, wellbore temperature data play a critical role in predicting shale gas production. This study proposes a coupled thermo-hydro-mechanical (THM) mathematical model that accounts for the influence of the stress field when determining the distribution of wellbore temperature. The model integrates the effects of heat transfer in the temperature field, gas transport in the seepage field, and the mechanical deformation of shale induced by the stress field. The coupled model is solved using the finite difference method. The model was validated against field data from shale gas production, and sensitivity analyses were conducted on seven key parameters related to the stress field. The findings indicate that the stress field exerts an influence on both the wellbore temperature distribution and the total gas production. Neglecting the stress field effects may lead to an overestimation of shale gas production by up to 12.9%. Further analysis reveals that reservoir porosity and Langmuir volume are positively correlated with wellbore temperature, while permeability, Young’s modulus, Langmuir pressure, the coefficient of thermal expansion, and adsorption strain are negatively correlated with wellbore temperature. Full article
Show Figures

Figure 1

15 pages, 2853 KB  
Article
Thermodynamic Method for Evaluating the Gas Adsorption-Induced Swelling of Confined Coal: Implication for CO2 Geological Sequestration
by Zhigang Du, Tianxiang Chen, Shuigen Hu, Yanqiang Du, Fuqiang Gao, Pengli He, Qiang Huang, Shaoyang Yan and Ning Li
Processes 2025, 13(5), 1504; https://doi.org/10.3390/pr13051504 - 14 May 2025
Viewed by 712
Abstract
Geological storage of CO2 in coal seam is an effective way for carbon emission reduction. Evaluating the adsorption-induced swelling behavior of confined coal is essential for this carbon emission reduction strategy. Based on the thermodynamic theory and the Gibbs adsorption model, a [...] Read more.
Geological storage of CO2 in coal seam is an effective way for carbon emission reduction. Evaluating the adsorption-induced swelling behavior of confined coal is essential for this carbon emission reduction strategy. Based on the thermodynamic theory and the Gibbs adsorption model, a thermodynamic method for evaluating the gas adsorption-induced swelling behavior of confined coal was established. The influences of factors such as stress, gas pressure, and the state of gas on the adsorption-induced swelling behavior of confined coal were discussed. The predicted swelling deformation from the thermodynamic method based on the ideal gas hypothesis was consistent with the experimental result only under the condition of low-pressure CO2 (<2 MPa). The predicted swelling deformation from that method was larger than the experimental result under the condition of high-pressure CO2 (>2 MPa). However, the method based on the real gas hypothesis always had better prediction results under both the low- and high-pressure CO2 conditions. From the perspective of phase equilibrium and transfer, in the process of CO2 adsorption by the confined coal, gas molecules transfer from the adsorption site of high chemical potential to the low chemical potential. Taking the real gas as ideal gas will result in the surface energy increase in the established model. Consequently, the prediction result will be larger. Therefore, for geological storage of CO2 in coal seam, it is necessary to take the real gas state to predict the adsorption-induced swelling behavior of the coal. In the process of CO2 adsorption by the confined coal, when its pressure is being closed to the critical pressure, capillary condensation phenomenon will occur on the pore surface of the confined coal. This can make an excessive adsorption of CO2 by the coal. With the increase in the applied stress, the adsorption capacity and adsorption-induced swelling deformation of the confined coal decrease. Compared to N2 with CO2, the coal by CO2 adsorption always shows swelling deformation under the simulated condition of ultra-high-pressure injection. However, the coal by N2 adsorption will shows shrinking deformation due to the pore pressure effect after the equilibrium pressure. Taking the difference in the adsorption-induced swelling behavior and pore compression effect, N2 can be mixed to improve the injectivity of CO2. This suggests that CO2 storage in the deep burial coal seam can be carried out by its intermittent injection under high-pressure condition along with mixed N2. Full article
Show Figures

Figure 1

27 pages, 6070 KB  
Article
The Effects of Water Immersion-Induced Softening and Anisotropy of Mechanical Properties on Gas Depletion in Underground Coal Mines
by Yuling Tan, Hanlei Zhang, Xiuling Chen, Qinghe Niu and Guanglei Cui
Energies 2025, 18(8), 2033; https://doi.org/10.3390/en18082033 - 16 Apr 2025
Viewed by 506
Abstract
Coalbed methane (CBM), a highly efficient and clean energy source with substantial reserves, holds significant development potential. Permeability is a crucial factor in CBM recovery in underground coal mines. Hydraulic fracturing technology causes water to enter the coal reservoir, which will change mechanical [...] Read more.
Coalbed methane (CBM), a highly efficient and clean energy source with substantial reserves, holds significant development potential. Permeability is a crucial factor in CBM recovery in underground coal mines. Hydraulic fracturing technology causes water to enter the coal reservoir, which will change mechanical properties, affecting permeability changes and gas depletion trends. This study combines theoretical analysis with numerical simulation techniques to create a coupling model for fluid flow and reservoir deformation. The numerical model is established by referring to the geological conditions of the Wangpo coal mine, Shanxi province. Specifically, the impact of water immersion-induced softening and changes in the anisotropic mechanical properties on the directional permeability and gas flow rate is examined through parametric analysis. The dominant role in controlling the evolution of permeability varies depending on the orientation. Horizontal deformation primarily affects vertical permeability, which is subsequently influenced by the gas adsorption effect. In contrast, horizontal permeability is mainly determined by vertical deformation. Water immersion-induced softening significantly reduces the permeability and gas flow rate. Young’s modulus, which is dependent on water saturation, alters the permeability trend under water-rich conditions. Vertical permeability evolution is more sensitive to water-induced softening and changes in the anisotropic mechanical properties. When Sw0 is 0.7, the vertical permeability decreases by 60%, while the horizontal permeability decreases by 43%. Ultimately, the vertical permeability ratio stabilizes between 0.9 and 1.0, while the horizontal permeability ratio stabilizes in the range of 0.6 to 0.7. The influence of permeability on gas production characteristics is dependent on the water saturation conditions. In water-scarce conditions, variations in the fracture permeability greatly influence production flow rates. Conversely, in water-rich conditions, a higher permeability facilitates a quicker return to original levels and also enhances gas production flow rates. The research findings from this study provide important insights for fully understanding the mechanical properties of coal and ensuring the sustainable production of CBM. Full article
(This article belongs to the Special Issue Advanced Clean Coal Technology)
Show Figures

Figure 1

12 pages, 3153 KB  
Article
Sensitive Detection of Aflatoxin B1 in Foods Using Aptasensing Based on FGO-Mediated CdTe QDs
by Puye Liang, Sihan Liu, Qinqing Han, Kaixuan Zhou, Tiange Li, Xianqing Huang, Lianjun Song and Tianlin Wang
Chemosensors 2025, 13(4), 141; https://doi.org/10.3390/chemosensors13040141 - 11 Apr 2025
Cited by 1 | Viewed by 987
Abstract
Aflatoxin B1 (AFB1) exhibits high toxicity and has the potential to induce cancer, deformities, and mutations. It is therefore highly desirable that sensitive and straightforward methods for detecting AFB1 be developed. In this study, due to the high specific [...] Read more.
Aflatoxin B1 (AFB1) exhibits high toxicity and has the potential to induce cancer, deformities, and mutations. It is therefore highly desirable that sensitive and straightforward methods for detecting AFB1 be developed. In this study, due to the high specific adsorption capacity of AFB1 aptamers, we applied a sensing strategy based on quantum dots (QDs) and carboxyl-functionalized graphene oxide (FGO) to construct a simple fluorescence quenching platform. FGO and CdTe QDs modified with AFB1 aptamers cause a FRET effect that produces CdTe QDs with yellow-green fluorescence quenching. When AFB1 is present, aptamers form complexes with it and CdTe QDs leave the quenching platform, resulting in fluorescence recovery. In this study, we used a fluorescence aptasensor with a wide detection range of 0.05 to 150 ng/mL and a low limit of detection (LOD) of 8.2 pg/mL. The average recoveries of AFB1 in peanut and pure milk samples ranged from 94.5% to 107.0%. The aptasensor also exhibited the advantages of simple operation, low cost, and good stability. The sensing strategy reported here can thus serve as a potential candidate for the rapid detection of AFB1. Full article
(This article belongs to the Special Issue Advanced Biosensors for Point-of-Care Testing in Analytical Chemistry)
Show Figures

Figure 1

41 pages, 3294 KB  
Article
Parametric Analysis for 3D Modeling of Consolidation-Induced Solute Transport Using OpenFOAM
by Bolin Wang and Dong-Sheng Jeng
Appl. Sci. 2024, 14(24), 11749; https://doi.org/10.3390/app142411749 - 16 Dec 2024
Cited by 1 | Viewed by 1754
Abstract
Most previous investigations for consolidation-induced solute transport models have been limited to one-dimensional studies in unsaturated porous media and lack systematic parameter sensitivity analysis. This study addresses these gaps by analyzing the effects of hydraulic conductivity (K), shear modulus (G [...] Read more.
Most previous investigations for consolidation-induced solute transport models have been limited to one-dimensional studies in unsaturated porous media and lack systematic parameter sensitivity analysis. This study addresses these gaps by analyzing the effects of hydraulic conductivity (K), shear modulus (G), saturation (Sr), Poisson’s ratio (ν), partitioning coefficient (Kd), and anisotropy ratio (KxKz and KyKz) on pore water pressure, soil deformation, and solute transport. The findings reveal that higher Kd values significantly hinder solute migration through enhanced adsorption and reduced vertical transport to deeper layers, while increasing anisotropy ratios primarily enhance horizontal migration, with their effects diminishing beyond a threshold. Additionally, a higher K accelerates pressure dissipation and solute movement, while a lower G increases soil deformation and speeds up solute migration. Saturation has a minor effect on solute concentration, with slight increases under higher Sr. The Poisson ratio significantly impacts the transport of the solute, with smaller ν accelerating and larger ν slowing migration. These insights offer valuable theoretical support for optimizing models in unsaturated porous media. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

12 pages, 1914 KB  
Article
Computational Design of the Electronic Response for Volatile Organic Compounds Interacting with Doped Graphene Substrates
by Li Chen, David Bodesheim, Ahmad Ranjbar, Arezoo Dianat, Robert Biele, Rafael Gutierrez, Mohammad Khazaei and Gianaurelio Cuniberti
Nanomaterials 2024, 14(22), 1778; https://doi.org/10.3390/nano14221778 - 5 Nov 2024
Cited by 2 | Viewed by 1742
Abstract
Changes in the work function provide a fingerprint to characterize analyte binding in charge transfer-based sensor devices. Hence, a rational sensor design requires a fundamental understanding of the microscopic factors controlling the modification of the work function. In the current investigation, we address [...] Read more.
Changes in the work function provide a fingerprint to characterize analyte binding in charge transfer-based sensor devices. Hence, a rational sensor design requires a fundamental understanding of the microscopic factors controlling the modification of the work function. In the current investigation, we address the mechanisms behind the work function change (WFC) for the adsorption of four common volatile organic compounds (toluene, ethanol, 2-Furfurylthiol, and guaiacol) on different nitrogen-doped graphene-based 2D materials using density functional theory. We show that competition between the surface dipole moment change induced by spatial charge redistribution, the one induced by the pure adsorbate, and the one caused by the surface deformation can quantitatively predict the work function change. Furthermore, we also show this competition can explain the non-growing work function change behavior in the increasing concentrations of nitrogen-doped graphenes. Finally, we propose possible design principles for WFC of VOCs interacting with N-doped graphene materials. Full article
Show Figures

Figure 1

15 pages, 2554 KB  
Article
Ball-Milling Enhanced UV Protection Performance of Ca2Fe-Sulisobenzone Layered Double Hydroxide Organic Clay
by Márton Szabados, Rebeka Mészáros, Dorina Gabriella Dobó, Zoltán Kónya, Ákos Kukovecz and Pál Sipos
Nanomaterials 2024, 14(17), 1436; https://doi.org/10.3390/nano14171436 - 2 Sep 2024
Cited by 1 | Viewed by 1982
Abstract
Using a co-precipitation technique, the anionic form of sulisobenzone (benzophenone-4) sunscreen ingredient was incorporated into the interlayer space of CaFe-hydrocalumite for the first time. Using detailed post-synthetic millings of the photoprotective nanocomposite obtained, we aimed to study the mechanochemical effects on complex, hybridized [...] Read more.
Using a co-precipitation technique, the anionic form of sulisobenzone (benzophenone-4) sunscreen ingredient was incorporated into the interlayer space of CaFe-hydrocalumite for the first time. Using detailed post-synthetic millings of the photoprotective nanocomposite obtained, we aimed to study the mechanochemical effects on complex, hybridized layered double hydroxides (LDHs). Various physicochemical properties of the ground and the intact LDHs were compared by powder X-ray diffractometry, N2 adsorption-desorption, UV–Vis diffuse reflectance, infrared and Raman spectroscopy, scanning electron microscopy and thermogravimetric measurements. The data showed significant structural and morphological deformations, surface and textural changes and multifarious thermal behavior. The most interesting development was the change in the optical properties of organic LDHs; the milling significantly improved the UV light blocking ability, especially around 320 nm. Spectroscopic results verified that this could be explained by a modification in interaction between the LDH layers and the sulisobenzone anions, through modulated π–π conjugation and light absorption of benzene rings. In addition to the vibrating mill often used in the laboratory, the photoprotection reinforcement can also be induced by the drum mill grinding system commonly applied in industry. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

Back to TopTop