Sensitive Detection of Aflatoxin B1 in Foods Using Aptasensing Based on FGO-Mediated CdTe QDs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Instruments
2.3. Experimental Procedures
2.3.1. Preparation of GO and FGO
2.3.2. Preparation of CdTe QDs
2.3.3. Ligation of CdTe QDs with AFB1 Aptamer
2.4. CdTe-Apt/FGO Aptasensing System for Detection of AFB1
2.5. Specificity and Anti-Interference Ability
2.6. Detection of AFB1 in Real Samples
3. Results
3.1. Construction of CdTe-Apt/FGO Fluorescent Aptasensor
3.2. Characterization of FGO and CdTe QDs
3.3. Feasibility Assessment of FGO/CdTe-Apt Aptasensor for AFB1 Detection
3.4. Optimization Conditions of Aptasensing System
3.5. Performance of the Aptasensing System in AFB1 Detection
3.6. Selectivity and Stability of the Aptasensor
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cai, Q.; Zhu, L.; Chen, P. Effective Physical Methods for Aflatoxin B1 Removal in Food: A Comprehensive Review. Food Control 2025, 173, 111215. [Google Scholar] [CrossRef]
- Damphathik, C.; Prakobkij, A.; Jarujamrus, P. Colorimetric sensor comprising metal-organic frameworks and molecularly imprinted polymers for aflatoxin B1 detection in agricultural commodities. Food Chem. 2025, 474, 143105. [Google Scholar] [CrossRef]
- Ren, L.; Hong, F.; Wen, J. High-throughput colorimetry immunoassay for aflatoxin B1 detection using the synergistic regulation of click chemistry by polydopamine and metal-organic framework. Food Chem. 2025, 475, 143344. [Google Scholar] [CrossRef] [PubMed]
- Eaton, D.L.; Williams, D.E.; Coulombe, R.A. Species differences in the biotransformation of aflatoxin B1: Primary determinants of relative carcinogenic potency in different animal species. Toxins 2025, 17, 30. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Zhang, Q.; Chen, G. Mechanistic insights into ferroptosis and apoptosis pathways: Synergistic effects of multi-organ toxicity and transgenerational effects induced by co-exposure of epoxiconazole and aflatoxin B1 in zebrafish. J. Adv. Res. 2025; in press. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Yan, W.; Zhang, H. Antifungal and anti-aflatoxigenic mechanisms of dielectric barrier discharge cold plasma on Aspergillus flavus spores. Innov. Food Sci. Emerg. Technol. 2025, 102, 103964. [Google Scholar] [CrossRef]
- Saini, S.S.; Abdel-Rehim, M. Integrated extraction approach for trace analysis of aflatoxin B1 in domestic water tanks using HPLC. Sep. Sci. Plus 2020, 3, 167–174. [Google Scholar] [CrossRef]
- Teixeira, T.R.; Hoeltz, M.; Einloft, T.C. Determination of ochratoxin A in wine from the southern region of Brazil by thin layer chromatography with a charge-coupled detector. Food Addit. Contam. Part B 2011, 4, 289–293. [Google Scholar] [CrossRef]
- Tonon, K.M.; Savi, G.D.; Scussel, V.M. Application of a LC–MS/MS method for multi-mycotoxin analysis in infant formula and milk-based products for young children commercialized in Southern Brazil. J. Environ. Sci. Health Part B 2018, 53, 685–691. [Google Scholar] [CrossRef]
- Zhang, T.N.; Bai, W.J.; Zhao, K. Detection of aflatoxin B1 by a magnetic capture separator with time-resolved fluorescent microspheres. Microchem. J. 2024, 199, 110040. [Google Scholar] [CrossRef]
- Han, S.; Yang, Y.; Chen, T. Quantitative Determination of Aflatoxin B1 in Maize and Feed by ELISA and Time-Resolved Fluorescent Immunoassay Based on Monoclonal Antibodies. Foods 2024, 13, 319. [Google Scholar] [CrossRef]
- Hong, F.; Zhao, Y.; Pan, S. Click reaction-mediated fluorescent immunosensor based on Cu-MOF nanoparticles for ultrasensitive and high-throughput detection of aflatoxin B1 in food samples. J. Agric. Food Chem. 2024, 72, 5975–5982. [Google Scholar] [CrossRef]
- Askari, A.; Kota, S.; Ferrell, H. UTexas Aptamer Database: The collection and long-term preservation of aptamer sequence information. Nucleic Acids Res. 2023, 52, 351–359. [Google Scholar] [CrossRef]
- Yao, L.; Liu, T.; Sun, L. Selection of High-Affinity and Selectivity AFB1 Circular Aptamer for Biosensor Application. J. Agric. Food Chem. 2025, 73, 3222–3231. [Google Scholar] [CrossRef]
- Sun, J.; Ning, X.; Cui, L. Sensitive detection of aflatoxin B1 in foods by aptasensing-based qPCR. Food Chem. 2024, 432, 137240. [Google Scholar] [CrossRef]
- Quesada-González, D.; Merkoçi, A. Quantum dots for biosensing: Classification and applications. Biosens. Bioelectron. 2025, 273, 117180. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, C.; Liu, Z. Bioengineered two-dimensional nanomaterials (Bio-2DNMs) for cancer diagnosis and therapy: A comprehensive review. Chem. Eng. J. 2025, 507, 160430. [Google Scholar] [CrossRef]
- Zheng, J.; Lian, Z.; Liu, T. A review for carbon dots-based fluorescent sensing tools for antibiotic and pesticide residues progress, challenge and perspective. Food Control 2025, 172, 111201. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, M.; Wu, Q. Engineering Two-Dimensional Nanomaterials for Photothermal Therapy. Adv. Healthc. Mater. 2024, 64, e202424768. [Google Scholar]
- Mei, Y.; Cao, Y.; Wang, W. Emerging Violet Phosphorus Nanomaterial for Biomedical Applications. Adv. Healthc. Mater. 2015, 14, e2403576. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, K.; Jiang, M. Bone tumor diagnosis: A FRET-based fluorescent osteocalcin sensor using palladium nanoparticles. Alex. Eng. J. 2025, 120, 87–94. [Google Scholar] [CrossRef]
- Chen, J.; Wu, H.; Zhang, W. Silica Coated Perovskite Quantum Dots with Single-Particle Level for Dual-Mode and Smartphone-Assisted Detection of Glutathione. Sens. Actuators B 2025, 432, 137489. [Google Scholar] [CrossRef]
- Qin, Z.; Xu, J.; Cao, Y. Visual detection of glyphosate by Al3+-regulated carbon dots/CdTe quantum dots ratiometric fluorescent sensing platform. Food Chem. 2025, 473, 143070. [Google Scholar] [CrossRef]
- Kong, W.C.; Wu, X.H.; Li, C.C. A Label-Free Fluorescence Aptasensor for the Detection of Ciprofloxacin in Actual Samples. ChemistrySelect 2025, 10, e202405539. [Google Scholar] [CrossRef]
- Lu, M.; Wang, T.; Li, T. Aptamer based ratiometric determination of DON by exploiting the FRET between carbon dots and graphene oxide. J. Food Compos. Anal. 2025, 141, 107384. [Google Scholar] [CrossRef]
- Zeng, Z.; Li, W.; Zhang, J. Highly sensitive and specific graphene oxide-based FRET aptasensor for quantitative detection of human soluble growth stimulating gene protein 2. Talanta 2024, 271, 125629. [Google Scholar] [CrossRef]
- Cai, Y.; Guo, G.; Fu, Y. A fluorescent aptasensor based on functional graphene oxide and FRET strategy simultaneously detects aflatoxins B1 and aflatoxins M1. Chin. J. Anal. Chem. 2024, 52, 100408. [Google Scholar] [CrossRef]
- Chen, J.; Wang, C.; Huang, X. Quantum Dots-Engineered Flexible Hydrogel as Plant-Wearable Sensor for on-Site Profiling Dynamic Pesticide Degradation. Adv. Funct. Mater. 2025, 2423643. [Google Scholar] [CrossRef]
- Cui, W.; Hu, C.; Zhu, R. Low-background fluorescent biosensor based on graphene oxide and aptamer biorecognition for sensitive detection of kanamycin. J. Food Compos. Anal. 2024, 131, 106261. [Google Scholar] [CrossRef]
- Fu, Z.; Chen, Z.; Yan, L. A RhB@ Tb-MOF sensor for selective detection of malachite green and leucomalachite green. J. Food Compos. Anal. 2025, 140, 107311. [Google Scholar] [CrossRef]
- Xue, Y.; Bao, C.; Liu, H. BSA-Assisted Synthesis of Au Nanoclusters/MnO2 Nanosheets for Fluorescence “Switch-On” Detection of Alkaline Phosphatase. Biosensors 2025, 15, 49. [Google Scholar] [CrossRef] [PubMed]
- Goud, K.Y.; Hayat, A.; Satyanarayana, M. Aptamer-based zearalenone assay based on the use of a fluorescein label and a functional graphene oxide as a quencher. Mikrochim. Acta 2017, 184, 4401. [Google Scholar] [CrossRef]
- Yoo, J.; Cho, Y.; Kim, D.H. Unraveling the role of Raman modes in evaluating the degree of reduction in graphene oxide via explainable artificial intelligence. Nano Today 2024, 57, 102366. [Google Scholar] [CrossRef]
- Singh, G.; Devi, S.; Singh, A. Organosilane Functionalized Graphene Oxide Nanocomposite as Fluorescent Chemosensor for the Detection of Tyrosine in Aqueous Medium. Appl. Organomet. Chem. 2025, 39, e70081. [Google Scholar] [CrossRef]
- Wang, B.; Liu, S.; Gao, M. A highly sensitive tapered fiber biosensor modified by PDMS combustion product and graphene oxide for MUC1 detection. Sens. Actuators Rep. 2025, 9, 100287. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, J.; Wang, X. Graphene oxide mediated CdSe quantum dots fluorescent aptasensor for high sensitivity detection of fluoroquinolones. Spectrochim. Acta Part A 2024, 305, 123497. [Google Scholar] [CrossRef]
- Yu, W.; Hao, A.; Mei, Y. A turn-on fluorescent aptasensor for ampicillin detection based on gold nanoparticles and CdTe QDs. Microchem. J. 2022, 179, 107454. [Google Scholar] [CrossRef]
- Jia, Y.; Zhou, G.; Wang, X. A metal-organic framework/aptamer system as a fluorescent biosensor for determination of aflatoxin B1 in food samples. Talanta 2020, 219, 121342. [Google Scholar] [CrossRef]
- Sabet, F.S.; Hosseini, M.; Khabbaz, H. FRET-based aptamer biosensor for selective and sensitive detection of aflatoxin B1 in peanut and rice. Food Chem. 2017, 220, 527–532. [Google Scholar] [CrossRef]
- Jia, Y.; Wu, F.; Liu, P. A label-free fluorescent aptasensor for the detection of Aflatoxin B1 in food samples using AIEgens and graphene oxide. Talanta 2019, 198, 71–77. [Google Scholar] [CrossRef]
- Setlem, K.; Mondal, B.; Shylaja, R. Dual Aptamer-DNAzyme based colorimetric assay for the detection of AFB1 from food and environmental samples. Anal. Biochem. 2020, 608, 113874. [Google Scholar]
- Li, Y.; Sun, Q.; Chen, X. Simultaneous detection of AFB1 and aflD gene by “Y” shaped aptamer fluorescent biosensor based on double quantum dots. Anal. Bioanal. Chem. 2023, 416, 223–893. [Google Scholar]
Mycotoxin | Method | Detection Range | LOD | Reference |
---|---|---|---|---|
AFB1 | UiO-66-NH2/TAMRA/Apt | 180 ng/mL | 0.35 ng/mL | [38] |
QDs/AuNPs/Apt | 10–400 nM | 3.4 nM | [39] | |
Ammonium Tetrastyrene/GO/Apt | 0–3 ng/mL | 0.25 ng/mL | [40] | |
DNase/streptavidin magnetic beads/biotin/apt | 0–200 ng/mL | 22.6 ng/mL | [41] | |
Si CDs/CdTe QDs/BHQ1/BHQ3/Apt | 0.5–500 ng/mL | 0.64 ng/mL | [42] | |
CdTe-Apt/FGO | 0.05–150 ng/mL | 8.2 pg/mL | This work |
Aptasensor | HPLC | ||||
---|---|---|---|---|---|
Added (ng/mL) | Found (ng/mL) | Recovery (%) | RSD (%, n = 3) | Found (ng/mL) | |
Peanut | 0 | - | - | - | - |
0.1 | 0.95 ± 0.03 | 94.5 | 4.9 | - | |
1 | 1.03 ± 0.11 | 103.4 | 2.7 | 1.02 ± 0.04 | |
10 | 9.76 ± 0.39 | 97.6 | 4.4 | 10.22 ± 0.12 | |
Pure milk | 0 | - | - | - | - |
0.1 | 0.11 ± 0.04 | 107.0 | 4.7 | - | |
1 | 0.98 ± 0.16 | 98.1 | 1.7 | 1.03 ± 0.03 | |
10 | 10.48 ± 0.33 | 104.8 | 2.3 | 9.99 ± 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, P.; Liu, S.; Han, Q.; Zhou, K.; Li, T.; Huang, X.; Song, L.; Wang, T. Sensitive Detection of Aflatoxin B1 in Foods Using Aptasensing Based on FGO-Mediated CdTe QDs. Chemosensors 2025, 13, 141. https://doi.org/10.3390/chemosensors13040141
Liang P, Liu S, Han Q, Zhou K, Li T, Huang X, Song L, Wang T. Sensitive Detection of Aflatoxin B1 in Foods Using Aptasensing Based on FGO-Mediated CdTe QDs. Chemosensors. 2025; 13(4):141. https://doi.org/10.3390/chemosensors13040141
Chicago/Turabian StyleLiang, Puye, Sihan Liu, Qinqing Han, Kaixuan Zhou, Tiange Li, Xianqing Huang, Lianjun Song, and Tianlin Wang. 2025. "Sensitive Detection of Aflatoxin B1 in Foods Using Aptasensing Based on FGO-Mediated CdTe QDs" Chemosensors 13, no. 4: 141. https://doi.org/10.3390/chemosensors13040141
APA StyleLiang, P., Liu, S., Han, Q., Zhou, K., Li, T., Huang, X., Song, L., & Wang, T. (2025). Sensitive Detection of Aflatoxin B1 in Foods Using Aptasensing Based on FGO-Mediated CdTe QDs. Chemosensors, 13(4), 141. https://doi.org/10.3390/chemosensors13040141