Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (634)

Search Parameters:
Keywords = adsorption and bonding mechanisms

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5100 KB  
Article
Fe-Doped g-C3N4 for Enhanced Photocatalytic Degradation of Brilliant Blue Dye
by Rongjun Su, Haoran Liang, Hao Jiang, Guangshan Zhang and Chunyan Yang
Water 2025, 17(22), 3220; https://doi.org/10.3390/w17223220 - 11 Nov 2025
Abstract
Brilliant blue, as a pigment food additive, has all the characteristics of printing and dyeing wastewater and belongs to persistent and refractory organic compounds. The photocatalysis–Fenton reaction system consists of two parts: photocatalytic reaction and Fenton reaction. Electrons promote the decomposition of H [...] Read more.
Brilliant blue, as a pigment food additive, has all the characteristics of printing and dyeing wastewater and belongs to persistent and refractory organic compounds. The photocatalysis–Fenton reaction system consists of two parts: photocatalytic reaction and Fenton reaction. Electrons promote the decomposition of H2O2 to produce •OH. In addition, the effective separation of e- and h+ by light strengthens the direct oxidation of h+, and h+ reacts directly with OH to produce •OH, which can further promote the removal of organic pollutants. In this paper, g-C3N4 and Fe/g-C3N4 photocatalysts were prepared by the thermal polycondensation method. Fe/g-C3N4 of 15 wt% can reach 98.59% under the best degradation environment, and the degradation rate of g-C3N4 is only 7.6% under the same conditions. The photocatalytic activity of the catalysts was further studied. Through active species capture experiments, it is known that •OH and •O2 are the main active species in the system, and the action intensity of •OH is greater than that of •O2. The degradation reaction mechanism is that H2O2 combines with Fe2+ in Fe/g-C3N4 to generate a large amount of •OH and Fe3+, and the combination of Fe-N bonds accelerates the cycle of Fe3+/Fe2+ and promotes the formation of •OH, thereby accelerating the degradation of target pollutants. •O2 can reduce Fe3+ to Fe2+, Fe2+ reacts with H2O2 to produce •OH, which promotes degradation, and •O2 itself also plays a role in degradation. In addition, under the optimal experimental conditions obtained by response surface experiments, the fitting degree of first-order reaction kinetics is 0.96642, and the fitting degree of second-order reaction kinetics is 0.57884. Therefore, this reaction is more in line with first-order reaction kinetics. The adsorption rate is only proportional to the concentration of Fe/g-C3N4. Full article
(This article belongs to the Special Issue Advanced Oxidation Technologies for Water and Wastewater Treatment)
Show Figures

Figure 1

20 pages, 2975 KB  
Article
Adsorption of Algal-Derived 2-Methylisoborneol (MIB) and Dimethyl Disulfide (DMDS) onto Activated Carbon: The Role of Pore Structure and Hydrophobicity
by Yuqin Zhao, Yulan Zhao, Hui Guo, Denghui Peng, Wenwen Kong, Fengjian Yan, Shumei Zhou, Quansheng Li, Boxiong Shen and Chongrui Lyu
Molecules 2025, 30(22), 4348; https://doi.org/10.3390/molecules30224348 - 10 Nov 2025
Abstract
2-methylisoborneol (MIB, d = 0.6 nm) and dimethyl disulfide (DMDS, d = 0.7 nm) produced by algal metabolism are the main olfactory contaminants of drinking water. Activated carbon (AC) adsorption is an effective method to remove MIB/DMDS, yet critical gaps remain regarding the [...] Read more.
2-methylisoborneol (MIB, d = 0.6 nm) and dimethyl disulfide (DMDS, d = 0.7 nm) produced by algal metabolism are the main olfactory contaminants of drinking water. Activated carbon (AC) adsorption is an effective method to remove MIB/DMDS, yet critical gaps remain regarding the dominant factors and mechanisms governing their different adsorption performance. The microporous filling mechanism is the dominant mechanism for the adsorption of MIB and DMDS by AC. Surface functional groups play a supporting role in the adsorption process by modulating the hydrophilicity/hydrophobicity of the carbon surface. This study systematically evaluated the adsorption performance of three ACs—coconut shell-derived (CSC), coal-based (CAC), and Sargassum-derived (SAC)—for MIB and DMDS removal. Comparative analysis revealed the superior adsorption performance of CSC, achieving 87.41% removal of MIB and 71.2% removal of DMDS at 20 mg/L. Both MIB and DMDS adsorption adhere to the Langmuir isotherm, indicating monolayer coverage with uniform energy. Kinetic studies demonstrated that the PSO model fits the MIB adsorption process best, while the PFO model fits the DMDS adsorption process best. The FTIR confirmed physical adsorption, with no new chemical bonds formed. Furthermore, regenerated CSC retains significant adsorption capacities, achieving 85.89% and 68.49% of the original capacity for MIB and DMDS, respectively, after five regeneration cycles. This research provides fundamental insights into the mechanistic role of AC properties in odorant removal processes, supporting its sustainable application in water treatment. Full article
Show Figures

Figure 1

23 pages, 4099 KB  
Article
Hydrothermal Modification of Activated Carbon Enhances Acetaminophen Adsorption: Experimental and Computational Evidence of π–π Interaction Dominance
by Astrid G. Cortés-Cruz, Marta Adame-Pereira, Carlos J. Durán-Valle and Ignacio M. López-Coca
Molecules 2025, 30(21), 4295; https://doi.org/10.3390/molecules30214295 - 5 Nov 2025
Viewed by 360
Abstract
Acetaminophen (APAP) is a widely used pharmaceutical increasingly detected as a contaminant in aquatic environments due to its persistent nature and incomplete removal by conventional wastewater treatment. This study investigates the adsorption performance and mechanisms of commercial activated carbon (M) and its hydrothermally [...] Read more.
Acetaminophen (APAP) is a widely used pharmaceutical increasingly detected as a contaminant in aquatic environments due to its persistent nature and incomplete removal by conventional wastewater treatment. This study investigates the adsorption performance and mechanisms of commercial activated carbon (M) and its hydrothermally modified form (MH) for APAP removal. Characterization via elemental analysis, X-ray photoelectron spectroscopy (XPS), and N2 adsorption isotherms revealed that hydrothermal treatment reduced oxygen content and enhanced micro- and mesopore volumes, resulting in a more homogeneous and carbon-rich surface. Batch adsorption experiments conducted under varying pH (5–7) and temperature (30–40 °C) conditions showed that MH achieved up to 94.3% APAP removal, outperforming the untreated carbon by more than 15%. Kinetic modeling indicated that adsorption followed a pseudo-second-order mechanism (R2 > 0.99), and isotherm data fitted best to the Langmuir model for MH and the Freundlich model for M, reflecting their differing surface properties. Adsorption was enhanced at lower pH and higher temperatures, consistent with an endothermic and pH-dependent mechanism. Complementary density functional theory (DFT) simulations confirmed that π–π stacking is the dominant interaction between APAP and the carbon surface. The most favorable configuration involved coplanar stacking with non-oxidized graphene (ΔG = −33 kJ/mol), while oxidized graphene models exhibited weaker interactions. Natural Bond Orbital (NBO) analysis further supported the prevalence of π–π interactions over dipole interactions. These findings suggest that surface deoxygenation and improved pore architecture achieved via hydrothermal treatment significantly enhance APAP adsorption, offering a scalable strategy for pharmaceutical pollutant removal in water treatment applications. Full article
(This article belongs to the Special Issue New Insights into Porous Materials in Adsorption and Catalysis)
Show Figures

Graphical abstract

27 pages, 5100 KB  
Article
Electrochemical and Computational Analyses of Thiocolchicoside as a New Corrosion Inhibitor for Biomedical Ti6Al4V Alloy in Saline Solution: DFT, NBO, and MD Approaches
by Inam M. A. Omar, Ibrahim H. Elshamy, Shimaa Abdel Halim and Magdy A. M. Ibrahim
Surfaces 2025, 8(4), 77; https://doi.org/10.3390/surfaces8040077 - 30 Oct 2025
Viewed by 171
Abstract
The Ti6Al4V alloy is considered the most beneficial of the titanium alloys for use in biomedical applications. However, it corrodes when exposed to various biocompatible fluids. This investigation aims to evaluate the corrosion inhibition performance of the Ti6Al4V in a saline solution (SS) [...] Read more.
The Ti6Al4V alloy is considered the most beneficial of the titanium alloys for use in biomedical applications. However, it corrodes when exposed to various biocompatible fluids. This investigation aims to evaluate the corrosion inhibition performance of the Ti6Al4V in a saline solution (SS) using thiocolchicoside (TCC) drug as an environmentally acceptable corrosion inhibitor. The corrosion assessments were conducted using potentiodynamic polarization curves (PPCs), open-circuit potential (OCP), and electrochemical impedance spectroscopy (EIS) methodologies, supplemented by scanning electron microscopy (SEM), energy-dispersive X-ray (EDS) analysis, atomic force microscopy (AFM), and contact angle (CA) measurements. The outcomes indicated that the inhibitory efficacy improved with higher TCC concentrations (achieving 92.40% at 200 mg/L of TCC) and diminished with an increase in solution temperature. TCC’s physical adsorption onto the surface of the Ti6A14V, which adheres to the Langmuir adsorption isotherm, explains its mitigating power. The TCC acts as a mixed-type inhibitor. The adsorption and inhibitory impact of TCC were examined at various temperatures using PPC and EIS. When TCC is present, the corrosion’s apparent activation energy is higher (35.79 kJ mol−1) than when it is absent (14.46 kJ mol−1). In addition, the correlation between the structural properties of thiocolchicoside (TCC) and its corrosion inhibition performance was systematically analyzed. Density Functional Theory (DFT) calculations were utilized to characterize the adsorption mechanism, supported by Natural Bond Orbital (NBO) analysis and Molecular Dynamics (MD) simulations. The combined computational and electrochemical findings confirm that TCC provides effective and enhanced corrosion protection for the Ti6Al4V alloy in a saline environment. These characteristics provide compelling evidence for the suitability of these pharmaceutical compounds as promising corrosion inhibitors. Full article
Show Figures

Figure 1

24 pages, 9639 KB  
Article
Theoretical Study of the Adsorption of Li2S and Li2S2 Molecules on Multivacancy Defected Graphene
by Francisco Gaztañaga, Rubén E. Ambrusi, Alfredo Juan and Graciela P. Brizuela
Surfaces 2025, 8(4), 76; https://doi.org/10.3390/surfaces8040076 - 29 Oct 2025
Viewed by 320
Abstract
A theoretical study of the adsorption of lithium–sulfur molecules (Li2S and Li2S2) on graphene with three and four vacancies was conducted. The study analyzed the stability, adsorption geometry, electronic structure, charge distribution, and forming bonds between the [...] Read more.
A theoretical study of the adsorption of lithium–sulfur molecules (Li2S and Li2S2) on graphene with three and four vacancies was conducted. The study analyzed the stability, adsorption geometry, electronic structure, charge distribution, and forming bonds between the molecule and the substrates. It has been demonstrated that both types of defects result in stable adsorptions; however, the underlying mechanisms differ. The three-vacancy graphene exhibits a site that favors the adsorption through bonds between S atoms and the substrate, while the graphene with four vacancies promotes the anchoring of molecules through Li atoms. The mechanism associated with the three-vacancy graphene results in increased exothermic adsorption energies. Full article
Show Figures

Figure 1

12 pages, 4827 KB  
Article
DFT Insights into the Adsorption of Organophosphate Pollutants on Mercaptobenzothiazole Disulfide-Modified Graphene Surfaces
by Kayim Pineda-Urbina, Gururaj Kudur Jayaprakash, Juan Pablo Mojica-Sánchez, Andrés Aparicio-Victorino, Zeferino Gómez-Sandoval, José Manuel Flores-Álvarez and Ulises Guadalupe Reyes-Leaño
Compounds 2025, 5(4), 43; https://doi.org/10.3390/compounds5040043 - 22 Oct 2025
Viewed by 211
Abstract
Organophosphate pesticides are among the most persistent and toxic contaminants in aquatic environments, requiring effective strategies for detection and remediation. In this work, density functional theory (DFT) calculations were employed to investigate the adsorption of nine representative organophosphates (glyphosate, malathion, diazinon, azinphos-methyl, fenitrothion, [...] Read more.
Organophosphate pesticides are among the most persistent and toxic contaminants in aquatic environments, requiring effective strategies for detection and remediation. In this work, density functional theory (DFT) calculations were employed to investigate the adsorption of nine representative organophosphates (glyphosate, malathion, diazinon, azinphos-methyl, fenitrothion, parathion-methyl, disulfoton, tokuthion, and ethoprophos) on mercaptobenzothiazole disulfide (MBTS) and MBTS-functionalized graphene (G–MBTS). All simulations were performed in aqueous solution using the SMD solvation model with dispersion corrections and counterpoise correction for basis set superposition error. MBTS alone displayed a range of affinities, suggesting potential selectivity across the organophosphates, with adsorption energies ranging from 0.27 to 1.05 eV, malathion being the strongest binder and glyphosate the weakest. Anchoring of MBTS to graphene was found to be highly favorable (1.26 eV), but the key advantage is producing stable adsorption platforms that promote planar orientations and ππ/dispersive interactions. But the key advantage is not stronger binding but the tuning of interfacial electronic properties: all G–MBTS–OP complexes show uniform, narrow HOMO-LUMO gaps (∼0.79 eV) and systematically larger charge redistribution. These features are expected to enhance electrochemical readout even when adsorption strength was comparable or slightly lower (0.47–0.88 eV) relative to MBTS alone. A Quantum Theory of Atoms in Molecules (QTAIM) analysis of the G–MBTS–malathion complex revealed a dual stabilization mechanism: multiple weak C–H⋯π interactions with graphene combined with stronger S⋯O and hydrogen-bonding interactions with MBTS. These results advance the molecular-level understanding of pesticide–surface interactions and highlight MBTS-functionalized graphene as a promising platform for the selective detection of organophosphates in water. Full article
Show Figures

Figure 1

17 pages, 4247 KB  
Article
Behavior of Formaldehyde Adsorption on ZnO [1011] Facets: A DFT Study
by Chao Ma, Jingze Yao, Liqin Ding, Xuefeng Xiao, Weiyin Li, Yujie He and Meng Wang
Crystals 2025, 15(11), 911; https://doi.org/10.3390/cryst15110911 - 22 Oct 2025
Viewed by 306
Abstract
Formaldehyde is a toxic gas commonly found in industrial emissions, and ZnO is widely used for its detection due to its excellent gas-sensing properties. Most studies focus on non-polar or low-index ZnO surfaces, whereas investigations on high-index polar surfaces remain limited. In this [...] Read more.
Formaldehyde is a toxic gas commonly found in industrial emissions, and ZnO is widely used for its detection due to its excellent gas-sensing properties. Most studies focus on non-polar or low-index ZnO surfaces, whereas investigations on high-index polar surfaces remain limited. In this work, density functional theory (DFT) was employed to study CH2O adsorption on the ZnO [1011¯] surface. By exploring various coverages, adsorption sites, and unit cell dimensions, ten stable configurations were identified. A maximum adsorption energy of −2.19 eV/CH2O on configuration S1 was obtained, surpassing reported low-index surfaces. Strong adsorption originated from dual unsaturated Zn bonds, which promoted C–C formation between CH2O molecules and induced synergistic Zn–O bonding. Adsorption further led to sp3-like hybridization and O 2p/Zn 3d orbital interactions, significantly narrowing the band gap. Electron redistribution, as evidenced by charge density analysis, revealed strong electronic modulation. This work clarifies the microscopic mechanism of ZnO high-index surfaces, offering insights for optimizing gas-sensing materials. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

22 pages, 18454 KB  
Article
Effective Treatment of Wastewater Containing Ni (II) and Pb (II) Using Modified Kaolin: Experimental and Simulation Study
by Zhengtian Yin, Yuxuan Yang, Guanjie Wang and Renzhi Qi
Water 2025, 17(20), 3015; https://doi.org/10.3390/w17203015 - 20 Oct 2025
Viewed by 303
Abstract
With the expansion of industrial production capacity, a substantial volume of hazardous wastewater containing Pb (II) and Ni (II) requires treatment. Kaolin, a low-cost adsorbent with strong adsorption properties, was modified through thermal activation at 750 °C, 850 °C, and 950 °C to [...] Read more.
With the expansion of industrial production capacity, a substantial volume of hazardous wastewater containing Pb (II) and Ni (II) requires treatment. Kaolin, a low-cost adsorbent with strong adsorption properties, was modified through thermal activation at 750 °C, 850 °C, and 950 °C to enhance its adsorption capacity. Following the optimization of pH, reaction time, temperature, heavy metal concentrations, and adsorbent amount, the 850-K was found to have the best removal efficiency, achieving removal rates > 90% for both PbCl2 and NiCl2, and the removal efficiency of PbCl2 was higher compared to NiCl2. The pseudo-second-order kinetics and Langmuir model could reasonably match the adsorption processes of PbCl2/NiCl2. The experimental findings were corroborated through simulations of adsorption distance, variations in bond length/bond angle, adsorption energy, frontier molecular orbital, charge density, and differential charge density. The differences in reactions between adsorbents and PbCl2/NiCl2 were primarily due to the electron transfer direction and bonding mechanisms. The O atoms were the main reactive atoms of the adsorbents, capable of forming covalent bonds with both PbCl2 and NiCl2, and the Cl atoms could form either ionic or covalent bonds with the adsorbent. Pb could form covalent bonds with the adsorbent, while Ni might be adsorbed through electrostatic interactions. Full article
(This article belongs to the Special Issue Research on Adsorption Technologies in Water Treatment)
Show Figures

Figure 1

24 pages, 22342 KB  
Article
Study on the Adsorption Characteristics of Microbial-Reed Fiber and Its MICP Solidified Saline Soil Test
by Yimo Du, Zhenyu Bai, Xiaoli Wang, Ruze Wang and Wen Zhang
Appl. Sci. 2025, 15(20), 11198; https://doi.org/10.3390/app152011198 - 19 Oct 2025
Viewed by 322
Abstract
In response to the issues of increased brittleness and insufficient toughness in microbially solidified saline sandy soils in cold and arid plateau regions, this study investigated saline sandy soils and indigenous microorganisms from the Qaidam Basin, Qinghai. A dual-reinforcement method combining microbial-induced calcium [...] Read more.
In response to the issues of increased brittleness and insufficient toughness in microbially solidified saline sandy soils in cold and arid plateau regions, this study investigated saline sandy soils and indigenous microorganisms from the Qaidam Basin, Qinghai. A dual-reinforcement method combining microbial-induced calcium carbonate precipitation (MICP) with alkali-modified reed fiber (ARF) was proposed to enhance both strength and ductility. The study explored the adsorption characteristics and solidification mechanisms of this approach. Key innovations include: (1) alkali modification significantly improved the interfacial bonding between reed fibers and sand particles, with pull-out tests indicating a 1.24-fold increase in adhesion strength; (2) an orthogonal experimental design identified optimal parameters—fiber length of 15 mm, fiber content of 0.5%, and cementation solution concentration of 3 mol/L—leading to the development of a synergistic “microbial cementation–fiber bridging” enhancement model. Experimental results showed that the proposed method increased the unconfined compressive strength (UCS) of the solidified soil to 2082.85 kPa, 2.99 times higher than that of traditional MICP-treated soil, while it significantly enhanced the ductility of the soil. This approach offers a mechanically robust and environmentally adaptive solution within the ambient temperature range of 0–35 °C for the ecological restoration of saline soils in high-altitude regions. Full article
(This article belongs to the Special Issue Advanced Technology in Geotechnical Engineering)
Show Figures

Figure 1

15 pages, 10603 KB  
Article
Atomistic Doping Effects on the Ideal Strength of Graphene/Aluminum Interfaces
by Wei Wang, Can Cui, Fangfang Xia, Weiwei Xu, Tieqiang Gang and Lijie Chen
Materials 2025, 18(20), 4753; https://doi.org/10.3390/ma18204753 - 16 Oct 2025
Viewed by 357
Abstract
Generally, atomic doping is an effective method to address the weak bonding strength of the graphene/aluminum (Gr/Al) composite interface structure caused by physical adsorption, thereby enhancing the mechanical properties of the interface structure. In this paper, the nanoscopic influence mechanisms of atomic (M, [...] Read more.
Generally, atomic doping is an effective method to address the weak bonding strength of the graphene/aluminum (Gr/Al) composite interface structure caused by physical adsorption, thereby enhancing the mechanical properties of the interface structure. In this paper, the nanoscopic influence mechanisms of atomic (M, including 12 types of atoms (elements)) doping in the aluminum matrix (Al) on the ideal strength of the Gr/Al interface structures are investigated based on density functional theory. The analysis of the electronic properties of the typical interface structures reveals that doping with scandium (Sc), copper (Cu) and manganese (Mn) atoms can all improve the interface binding energy of the Gr/Al structures, but their effects on the ideal strength are different. Sc doping disrupts the symmetry of the graphene structure so as to enhance the interface binding energy, but the ideal strength of the Gr/Al structures is decreased. For Cu doping it shows good compatibility with the Al matrix and the interface binding energy is enhanced through Cu alloying with the Al matrix, while the ideal strength of the interface remains basically unchanged. As for Mn doping, it causes the charge to accumulate around the Mn atoms and a resonance peak between the dZ2 orbitals of Mn and the px orbitals of Al to form, thereby improving the ideal strength of the interface structure. This study provides valuable insights for the design of Gr/Al composites by elucidating the underlying mechanisms for enhancing interface mechanical properties. Full article
(This article belongs to the Topic Advances in Computational Materials Sciences)
Show Figures

Figure 1

30 pages, 6082 KB  
Review
Metal–Organic Framework for Plastic Depolymerization and Upcycling
by Kisung Lee, Sumin Han, Minse Kim, Byoung-su Kim, Jeong-Ann Park, Kwang Suk Lim, Suk-Jin Ha and Hyun-Ouk Kim
Crystals 2025, 15(10), 897; https://doi.org/10.3390/cryst15100897 - 16 Oct 2025
Viewed by 621
Abstract
Plastics are essential in modern life but accumulate as waste. Mechanical reprocessing reduces material quality, whereas thermochemical routes require harsh conditions and are costly to upgrade. Together, these factors hinder the large-scale recovery of plastics into equivalent materials. Metal–organic frameworks provide a programmable [...] Read more.
Plastics are essential in modern life but accumulate as waste. Mechanical reprocessing reduces material quality, whereas thermochemical routes require harsh conditions and are costly to upgrade. Together, these factors hinder the large-scale recovery of plastics into equivalent materials. Metal–organic frameworks provide a programmable platform where reticular design fixes porosity and positions well-defined Lewis, Brønsted, redox, and photoredox sites that can preconcentrate oligomers and align scissile bonds for activation. These attributes enable complementary pathways spanning hydrolysis, alcoholysis, aminolysis, photo-oxidation, electrocatalysis, and MOF-derived transformations, with adsorption-guided capture-to-catalysis workflows emerging as integrative schemes. In this review, we establish common figures of merit such as space–time yield, monomer selectivity and purity, energy intensity, site-normalized turnover, and solvent or corrosion footprints. These metrics are connected to design rules that involve active-site chemistry and transport through semi-crystalline substrates. We also emphasize durability under hot aqueous, alcoholic, or oxidative conditions as essential for producing polymer-grade products. Full article
(This article belongs to the Section Macromolecular Crystals)
Show Figures

Graphical abstract

23 pages, 5923 KB  
Article
Mechanistic Study of Methyl Orange Removal by Fe3O4@MIL-53(Fe Cu) Composite Material
by Xiuzhen Yang, Xiaochen Yue, Tianjiao He and Changye Wang
Water 2025, 17(20), 2980; https://doi.org/10.3390/w17202980 - 16 Oct 2025
Viewed by 492
Abstract
A novel magnetic composite, Fe3O4@MIL-53(Fe Cu), was successfully synthesized and applied for the efficient removal of methyl orange (MO) from aqueous solutions. The ad sorption performance was systematically evaluated under various conditions, including adsorbent dosage, solution pH, coexisting anions, [...] Read more.
A novel magnetic composite, Fe3O4@MIL-53(Fe Cu), was successfully synthesized and applied for the efficient removal of methyl orange (MO) from aqueous solutions. The ad sorption performance was systematically evaluated under various conditions, including adsorbent dosage, solution pH, coexisting anions, and regeneration cycles. The results demonstrated that an optimal dosage of 20 mg achieved a removal efficiency exceeding 85%, with maximum adsorption observed at pH 3. The presence of common anions (Cl, SO42−, CO32−, and PO43−) showed negligible effects on MO removal. Kinetic studies revealed that the adsorption process followed the pseudo-second-order model. Although minor chemisorption contributions were observed, the Dubinin–Radushkevich (D–R) model confirmed the predominance of physical adsorption. The Freundlich isotherm provided the best fit to the equilibrium data, indicating a maximum adsorption capacity of 193.65 mg/g and suggesting multilayer adsorption on a heterogeneous surface. Thermodynamic analysis confirmed the spontaneous and endothermic nature of the adsorption process. The primary mechanisms governing MO adsorption were identified as electrostatic attraction, π–π interactions, and hydrogen bonding. The composite exhibited excellent reusability over multiple cycles, demonstrating its potential for practical wastewater treatment applications. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

15 pages, 5059 KB  
Article
Unravelling the Regulation of Asphaltene Deposition by Dispersants Through Macro-Stability in Micro-Mechanism
by Qiuxia Wang, Jianhua Bai, Hongyu Wang, Xiaodong Han, Hongwen Zhang, Zijuan Cao and Longli Zhang
Processes 2025, 13(10), 3220; https://doi.org/10.3390/pr13103220 - 10 Oct 2025
Viewed by 434
Abstract
The deposition of asphaltenes poses a critical challenge to the petroleum industry, reducing the efficiency of oil wells and, in severe cases, clogging pipelines. Dispersants are widely used to enhance asphaltene stability, but asphaltenes are complex, solubility-defined compounds with variable properties, leading to [...] Read more.
The deposition of asphaltenes poses a critical challenge to the petroleum industry, reducing the efficiency of oil wells and, in severe cases, clogging pipelines. Dispersants are widely used to enhance asphaltene stability, but asphaltenes are complex, solubility-defined compounds with variable properties, leading to uncertainties in dispersant microscopic mechanisms, macroscopic effects, and their relationships—requiring further study. This work investigated two anionic dispersants (sodium dodecyl benzene sulfonate (SDBS) and dodecyl benzene sulfonic acid (DBSA)) for dispersing GT asphaltene (GT-ASP, isolated from offshore heavy oil), aiming to improve offshore heavy oil stability. Using an asphaltene–toluene system, it analyzed dispersant effects on GT-ASP stability, particle size, and adsorption and underlying mechanisms. DBSA showed superior performance: at 1000 ppm (w/v), it reduced GT-ASP average particle size from ~160 nm to ~29 nm and increased the onset of the flocculation point (OFP) from 33.5 vol% to 63.0 vol%, driven by chemical adsorption, hydrogen bonding, and π–π conjugation. In contrast, SDBS promoted aggregation: particle size reached 257 nm (1000 ppm (w/v)) and 1271 nm (5000 ppm (w/v)), with OFP at 54.6 vol%, likely due to Na+-induced charge neutralization, insufficient steric hindrance, and “micellar bridges” via SDBS self-aggregation. Finally, this study makes a valuable contribution to both the theoretical guidance and the practical application of asphaltene dispersants. Full article
Show Figures

Figure 1

16 pages, 6983 KB  
Article
Hierarchically Porous Metal–Organic Frameworks-Based Controlled-Release Fertilizer: Improved Nutrient Loading and Rice Growth
by Ruimin Zhang, Gaoqiang Lv, Changwen Du, Fei Ma, Shanshan Liu, Fangqun Gan and Ke Wu
Agronomy 2025, 15(10), 2334; https://doi.org/10.3390/agronomy15102334 - 4 Oct 2025
Viewed by 770
Abstract
Nitrogen (N) and phosphorus (P) play vital roles in crop growth. However, conventional fertilizers exhibit low utilization efficiency, making them prone to causing resource wastage and water eutrophication. Although metal–organic frameworks (MOFs) have shown great potential for application in controlled-release fertilizers (CRFs), currently [...] Read more.
Nitrogen (N) and phosphorus (P) play vital roles in crop growth. However, conventional fertilizers exhibit low utilization efficiency, making them prone to causing resource wastage and water eutrophication. Although metal–organic frameworks (MOFs) have shown great potential for application in controlled-release fertilizers (CRFs), currently reported MOF-based CRFs suffer from low nutrient content, which limits their further application. To address this issue, this study synthesized a series of hierarchically porous MOFs, denoted as MIL-156(X), using sodium acetate as a modulator under hydrothermal conditions. These materials were subsequently loaded with urea and phosphate from aqueous solution to form MOFs-based CRFs (N-P-MIL-156(X)). Results indicate that MIL-156(X) retain microporous integrity while incorporating abundant mesopores. Increasing modulator content reduced particle size and average pore diameter but increased specific surface area and adsorption capacity for urea and phosphate. MIL-156-H (with a high modulator content addition) exhibited the highest adsorption capacity, conforming to Langmuir isotherm and pseudo-second-order kinetics. The adsorption mechanisms of urea and phosphate involved hydrogen bonding and the formation of Ca intra-spherical complexes, respectively. N-P-MIL-156-H contained 10.8% N and 16.3% P2O5, with sustained release durations exceeding 42 days (N) and 56 days (P2O5) in an aqueous solution. Pot trials demonstrated significantly higher nutrient use efficiency (N-44.8%, P2O5-16.56%) and a 12.22% yield increase compared to conventional fertilization (N-35.6%, P2O5-13.32%). Thus, N-P-MIL-156-H-based fertilization significantly promotes rice growth and N/P utilization efficiency, offering a promising strategy for developing controlled-release fertilizers and improving nutrient management. Full article
Show Figures

Figure 1

14 pages, 9892 KB  
Article
Research on Chromium-Free Passivation and Corrosion Performance of Pure Copper
by Xinghan Yu, Ziye Xue, Haibo Chen, Wei Li, Hang Li, Jing Hu, Jianli Zhang, Qiang Chen, Guangya Hou and Yiping Tang
Materials 2025, 18(19), 4585; https://doi.org/10.3390/ma18194585 - 2 Oct 2025
Viewed by 687
Abstract
In response to the actual needs of pure copper bonding wires, it is crucial to develop a chromium-free passivator that is environmentally friendly and has excellent corrosion resistance. In this study, three different composite organic formulations of chromium-free passivation solutions are selected: 2-Amino-5-mercapto-1,3,4 [...] Read more.
In response to the actual needs of pure copper bonding wires, it is crucial to develop a chromium-free passivator that is environmentally friendly and has excellent corrosion resistance. In this study, three different composite organic formulations of chromium-free passivation solutions are selected: 2-Amino-5-mercapto-1,3,4 thiadiazole (AMT) + 1-phenyl-5-mercapto tetrazolium (PMTA), 2-mercaptobenzimidazole (MBI) + PMTA, and Hexadecanethiol (CHS) + sodium dodecyl sulfate (SDS). The performance analysis and corrosion mechanism were compared with traditional hexavalent chromium passivation through characterization techniques such as XRD, SEM, and XPS. The results show that the best corrosion resistance formula is the combination of the PMTA and MBI passivation agent, and all its performances are superior to those of hexavalent chromium. The samples treated with this passivation agent corrode within 18 s in the nitric acid drop test, which is better than the 16 s for Cr6+ passivation. The samples do not change color after being immersed in salt water for 48 h. Electrochemical tests and high-temperature oxidation test also indicate better corrosion resistance than Cr6+ passivation. Through the analysis of functional groups and bonding, the excellent passivation effect is demonstrated to be achieved by the synergistic action of the chemical adsorption film formation of PMTA and the anchoring effect of MBI. Eventually, a dense Cu-PMTA-BMI film is formed on the surface, which effectively blocks the erosion of the corrosive medium and significantly improves the corrosion resistance. Full article
(This article belongs to the Special Issue Antibacterial and Corrosion-Resistant Coatings for Marine Application)
Show Figures

Figure 1

Back to TopTop