Hierarchically Porous Metal–Organic Frameworks-Based Controlled-Release Fertilizer: Improved Nutrient Loading and Rice Growth
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of MIL-156(X)
2.3. Material Characterization
2.4. Nutrient Loading Experiments
2.5. Nutrient Release Characteristics of N-P-MIL-156-H
2.6. Application of N-P-MIL-156-H in Rice
3. Results
3.1. Structural Characterization of MIL-156(X)
3.2. MIL-156(X)’s Loading Experiments on Nutrients
3.3. Potential Mechanisms of Urea and Phosphate Loading on MIL-156(X)
3.4. Nutrient Release Characteristics of N-P-MIL-156-H
3.5. Application of N-P-MIL-156-H in Rice
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- El-Shal, R.M.; El-Naggar, A.H.; El-Beshbeshy, T.R.; Mahmoud, E.K.; El-Kader, N.I.A.; Missaui, A.M.; Du, D.; Ghoneim, A.M.; El-Sharkawy, M.S. Effect of Nano-Fertilizers on Alfalfa Plants Grown under Different Salt Stresses in Hydroponic System. Agriculture 2022, 12, 1113. [Google Scholar] [CrossRef]
- Bouhadi, M.; Javed, Q.; Jakubus, M.; Elkouali, M.; Fougrach, H.; Ansar, A.; Ban, S.G.; Ban, D.; Heath, D.; Černe, M. Nanoparticles for Sustainable Agriculture: Assessment of Benefits and Risks. Agronomy 2025, 15, 1131. [Google Scholar] [CrossRef]
- Sarkar, A.; Wang, H.; Rahman, A.; Abdul Azim, J.; Hussain Memon, W.; Qian, L. Structural Equation Model of Young Farmers’ Intention to Adopt Sustainable Agriculture: A Aase Study in Bangladesh. Renew. Agric. Food Syst. 2022, 37, 142–154. [Google Scholar] [CrossRef]
- Lu, Y.; Xu, W.; Leng, J.; Liu, X.; Xu, H.; Ding, H.; Zhou, J.; Cui, L. Review and Research Prospects on Additive Manufacturing Technology for Agricultural Manufacturing. Agriculture 2024, 14, 1207. [Google Scholar] [CrossRef]
- Wang, Y.; Shaghaleh, H.; Hamoud, Y.A.; Zhang, S.; Li, P.; Xu, X.; Liu, H. Synthesis of a pH-Responsive Nano-Cellulose/Sodium Alginate/MOFs Hydrogel and its Application in the Regulation of Water and N-Fertilizer. Int. J. Biol. Macromol. 2021, 187, 262–271. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, Y.; Gao, B.; Wan, Y.; Li, Y.C.; Zhao, C. Biobased Interpenetrating Network Polymer Composites from Locust Sawdust as Coating Material for Environmentally Friendly Controlled Release Urea Fertilizers. J. Agric. Food Chem. 2016, 64, 5692–5700. [Google Scholar] [CrossRef]
- Lawrencia, D.; Wong, S.K.; Low, D.Y.S.; Goh, B.H.; Goh, J.K.; Ruktanonchai, U.R.; Soottitantawat, A.; Lee, L.H.; Tang, S.Y. Controlled Release Fertilizers: A Review on Coating Materials and Mechanism of Release. Plants 2021, 10, 238. [Google Scholar] [CrossRef]
- Cui, M.; Guo, Y.; Chen, J. Influence of Transfer Plot Area and Location on Chemical Input Reduction in Agricultural Production: Evidence from China. Agriculture 2023, 13, 1794. [Google Scholar] [CrossRef]
- El-Sharkawy, M.; Li, J.; AL-Huqail, A.A.; Hamed, M.A.; Du, D.; EL-Khamisy, R.R. Slow-Released Fertilizers Optimization and Experimental Impacts on Soil Fertility and Wheat- Maize Cropping System. Sci. Agric. 2024, 81, e20230234. [Google Scholar] [CrossRef]
- Hou, P.; Yuan, W.; Li, G.; Petropoulos, E.; Xue, L.; Feng, Y.; Xue, L.; Yang, L.; Ding, Y. Deep Fertilization with Controlled-Release Fertilizer for Higher Cereal Yield and N Utilization in Paddies: The Optimal Fertilization Depth. Agron. J. 2021, 113, 5027–5039. [Google Scholar] [CrossRef]
- Tian, H.; Liu, Z.; Zhang, M.; Guo, Y.; Zheng, L.; Li, Y.C. Biobased Polyurethane, Epoxy Resin, and Polyolefin Wax Composite Coating for Controlled-Release Fertilizer. ACS Appl. Mater. Interfaces 2019, 11, 5380–5392. [Google Scholar] [CrossRef]
- Katsumi, N.; Kusube, T.; Nagao, S.; Okochi, H. Accumulation of Microcapsules Derived from Coated Fertilizer in Paddy Fields. Chemosphere 2021, 267, 129185. [Google Scholar] [CrossRef] [PubMed]
- Xun, L.; Dong, L.; Duan, J.; Shen, W.; Duan, Z. Nitrogen slow-release behavior of oxamide granules in two different types of paddy soils. Pedosphere 2022, 32, 856–865. [Google Scholar] [CrossRef]
- Naz, M.Y.; Sulaiman, S.A. Slow Release Coating Remedy for Nitrogen Loss from Conventional Urea: A Review. J. Control. Release 2016, 225, 109–120. [Google Scholar] [CrossRef]
- Kang, L.; Liang, Q.; Abdul, Q.; Rashid, A.; Ren, X.; Ma, H. Preparation technology and preservation mechanism of γ-CD-MOFs biological packaging film loaded with curcumin. Food Chem. 2023, 420, 136142. [Google Scholar] [CrossRef]
- Lu, W.J.; Dai, X.L.; Yang, R.Q.; Liu, Z.Y.; Chen, H.L.; Zhang, Y.F.; Zhang, X.N. Fenton-like catalytic MOFs driving electrochemical aptasensing toward tracking lead pollution in pomegranate fruit. Food Control. 2025, 169, 111006. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, R.; Ke, L.; Li, J.; Jayan, H.; El-Seedi, H.R.; Zou, X.; Guo, Z. Development of multifunctional metal-organic frameworks (MOFs)-based nanofiller materials in food packaging: A comprehensive review. Trends. Food Sci. Tech. 2024, 154, 104771. [Google Scholar] [CrossRef]
- Abdelhameed, R.M.; Abdelhameed, R.E.; Kamel, H.A. Iron-Based Metal-Organic Frameworks as Fertilizers for Hydroponically Grown Phaseolus Vulgaris. Mater. Lett. 2019, 237, 72–79. [Google Scholar] [CrossRef]
- Anstoetz, M.; Rose, T.J.; Clark, M.W.; Yee, L.H.; Raymond, C.A.; Vancov, T. Novel Applications for Oxalate-Phosphate-Amine Metal-Organic-Frameworks (OPA-MOFs): Can an Iron-Based OPA-MOF be Used as Slow-Release Fertilizer? PLoS ONE 2015, 10, e0144169. [Google Scholar] [CrossRef]
- Wu, K.; Li, W.; Ma, F.; Gan, F.; Zhou, J.; Zeng, H.; Du, C. Urea-loaded core–shell MOF/silica nanocarriers for continuous nitrogen release to crops. ACS Appl. Nano Mater. 2024, 7, 11645–11654. [Google Scholar] [CrossRef]
- Lan, X.; Huang, N.; Wang, J.; Wang, T. A general and Facile Strategy for Precisely Controlling the Crystal Size of Monodispersed Metal-Organic Frameworks Via Separating the Nucleation and Growth. Chem. Commun. 2018, 54, 584–587. [Google Scholar] [CrossRef]
- Stock, N.; Biswas, S. Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chem. Rev. 2012, 112, 933–969. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Yang, J.-M.; Jin, L.-N.; Sun, W.-Y. Metal Ion Induced Porous HKUST-1 Nano/ Microcrystals with Controllable Morphology and Size. CrystEngComm 2016, 18, 4127–4132. [Google Scholar] [CrossRef]
- Tao, Y.; Yang, B.G.; Wang, F.Y.; Yan, Y.H.; Hong, X.Y.; Xu, H.H.; Xia, M.Z.; Wang, F.Y. Green Synthesis of MOF-808 with Modulation of Particle Sizes and Defects for Efficient Phosphate Sequestration. Sep. Purif. Technol. 2022, 300, 121825. [Google Scholar] [CrossRef]
- Wu, K.; Zhang, X.; Du, C.; Zhang, R.; Zhou, R.; Wang, S.; Guan, Y.; Jiang, L.; Li, Y.; Gan, F. Enhanced Phosphate Removal from Water Via Hierarchically Porous Metal-Organic Frameworks. J. Environ. Chem. Eng. 2025, 13, 115311. [Google Scholar] [CrossRef]
- Gaikwad, S.; Kim, Y.; Gaikwad, R.; Han, S. Enhanced VOC Adsorption Capacity on MOF Thin Layer with Reduced Particle Size by Cryogrinding and Microwave Method. J. Environ. Chem. Eng. 2022, 10, 107567. [Google Scholar] [CrossRef]
- Hidalgo, T.; Cooper, L.; Gorman, M.; Lozano-Fernández, T.; Simón-Vázquez, R.; Mouchaham, G.; Marrot, J.; Guillou, N.; Serre, C.; Fertey, P. Crystal Structure Dependent In Vitro Antioxidant Activity of Biocompatible Calcium Gallate MOFs. J. Mater. Chem. B 2017, 5, 2813–2822. [Google Scholar] [CrossRef]
- Kumar, P.; Dkhar, D.S.; Chandra, P.; Kayastha, A.M. Watermelon Derived Urease Immobilized Gold Nanoparticles-Graphene Oxide Transducer for Direct Detection of Urea in Milk Samples. ACS Appl. Bio Mater. 2024, 7, 6357–6370. [Google Scholar] [CrossRef]
- Wei, H.L.; Wang, H.; Chu, H.J.; Li, J.J. Preparation and Characterization of Slow-Release and Water-Retention Fertilizer Based on Starch and Halloysite. Int. J. Biol. Macromol. 2019, 133, 1210–1218. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.W.; Zhang, G.L.; Dai, Z.Y.; Xiang, Y.B.; Liu, B.; Bian, P.; Zheng, K.; Wu, Z.Y.; Cai, D.Q. Fabrication of Light-Responsively Controlled-Release Herbicide Using a Nanocomposite. Chem. Eng. J. 2018, 349, 101–110. [Google Scholar] [CrossRef]
- Wu, K.; Du, C.; Ma, F.; Shen, Y.; Zhou, J. Optimization of Metal–Organic (citric acid) Frameworks for Controlled Release of Nutrients. RSC Adv. 2019, 9, 32270–32277. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Wang, Y.; Wang, M.; Shaghaleh, H.; Hamoud, Y.A.; Xu, X.; Liu, H. Synthesis of Bio-Based MIL-100(Fe)@CNF-SA Composite Hydrogel and its Application in Slow-Release N-Fertilizer. J. Clean. Prod. 2021, 324, 129274. [Google Scholar] [CrossRef]
- Du, Y.; Xu, X.; Ma, F.; Du, C. Solvent-Free Synthesis of Iron-Based Metal-Organic Frameworks (MOFs) as Slow-Release Fertilizers. Polymers 2021, 13, 561. [Google Scholar] [CrossRef]
- Wu, C.; Dan, Y.; Tian, D.; Zheng, Y.; Wei, S.; Xiang, D. Facile Fabrication of MOF (Fe)@alginate Aerogel and its Application for a High-Performance Slow-Release N- Fertilizer. Int. J. Biol. Macromol. 2020, 145, 1073–1079. [Google Scholar] [CrossRef]
- Bindra, P.; Sharma, S.; Sahu, B.K.; Bagdwal, H.; Shanmugam, V.; Singh, M. Targeted Nutrient Application to Tomato Plant with MOF/Zeolite Composite Wrapped with Stimuli-Responsive Biopolymer. Mater. Today Commun. 2023, 34, 105264. [Google Scholar] [CrossRef]
- Rozenberg, M.; Loewenschuss, A.; Marcus, Y. An Empirical Correlation Between Stretching Vibration Redshift and Hydrogen Bond Length. Phys. Chem. Chem. Phys. 2000, 2, 2699–2702. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, J. Facile Design of UiO-66-NH2@La(OH)3 Composite with Enhanced Efficiency for Phosphate Removal. J. Environ. Chem. Eng. 2021, 9, 104632. [Google Scholar] [CrossRef]
- Choudhary, V.; Boukhvalov, D.W.; Philip, L. Role of Inner-Sphere Complexation in Phosphate Removal by Metal–Organic Frameworks: Experimental and Theoretical Investigation. Environ. Sci. Water Res. Technol. 2023, 9, 572–585. [Google Scholar] [CrossRef]
- Zhao, J.; Sun, Y.; Chen, Z.; Cai, Z.; Chen, F.; Hu, J. Defect-Engineered Cerium-Based Metal-Organic Frameworks via Dynamic Ligand Competition: Increasing Coordinatively Unsaturated Sites for Enhanced Phosphate Adsorption. J. Colloid. Interf. Sci. 2025, 701, 138784. [Google Scholar] [CrossRef]
- Fan, G.; Hong, L.; Zheng, X.; Zhou, J.; Zhan, J.; Chen, Z.; Liu, S. Growth Inhibition of Microcystic aeruginosa by Metal-Organic Frameworks: Effect of Variety, Metal ion and Organic Ligand. RSC Adv. 2018, 8, 35314–35326. [Google Scholar] [CrossRef]
- Baati, T.; Njim, L.; Neffati, F.; Kerkeni, A.; Bouttemi, M.; Gref, R.; Najjar, M.F.; Zakhama, A.; Couvreur, P.; Serre, C.; et al. In Depth Analysis of The In Vivo Toxicity of Nanoparticles of Porousiron(iii) Metal-Organic Frameworks. Chem. Sci. 2013, 4, 1597–1607. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, L.; Wang, W.; Min, K.; Ling, W.; Ma, W.; Zhang, W.; Hou, X.; Wei, L.; Liu, Q.; et al. Dose-Dependent Effect on Plant Growth of Exposure to Metal–Organic Framework MIL-101(Cr). Environ. Sci. Technol. 2024, 58, 8009–8019. [Google Scholar] [CrossRef] [PubMed]
Materials | Nutrient Content (%) | Literatures |
---|---|---|
OPA-MOF | 15.6 (N—3.1, P2O5—12.5) | Reference [19] |
Urea@MIL-100(Fe)@silica | 25.5 (N) | Reference [20] |
Citric acid-MOF | 24.8 (N—10.7, P2O5—14.1) | Reference [31] |
MIL-100(Fe)@CNF-SA | 27.3 (N) | Reference [32] |
Fe-based MOF | 21.6 (N—4.9, P2O5—15.7) | Reference [33] |
MOF(Fe)/NaAlg | 3.0 (N) | Reference [34] |
MOF/Zeolite | 22.3 (N) | Reference [35] |
N-P-MIL-156-H | 32.3 (N—10.8, P2O5—16.3, K2O—5.2) | This study |
Agronomic Traits | Treatments | |||
---|---|---|---|---|
CK | CF | MIL-156-H | N-P-MIL-156-H | |
Yields (g/pot) | 52.78 ± 4.25 c | 72.65 ± 2.23 b | 56.32 ± 3.65 c | 81.53 ± 3.59 a |
Number of kernels per ear | 76.23 ± 4.32 d | 88.35 ± 3.31 b | 82.56 ± 3.53 c | 93.53 ± 6.24 a |
1000-kernel weight (g) | 30.56 ± 0.27 c | 31.65 ± 0.63 b | 30.68 ± 0.39 c | 32.79 ± 0.32 a |
Aboveground biomass (g/pot) | 47.56 ± 2.63 d | 90.53 ± 3.62 b | 63.65 ± 4.12 c | 96.76 ± 5.32 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Lv, G.; Du, C.; Ma, F.; Liu, S.; Gan, F.; Wu, K. Hierarchically Porous Metal–Organic Frameworks-Based Controlled-Release Fertilizer: Improved Nutrient Loading and Rice Growth. Agronomy 2025, 15, 2334. https://doi.org/10.3390/agronomy15102334
Zhang R, Lv G, Du C, Ma F, Liu S, Gan F, Wu K. Hierarchically Porous Metal–Organic Frameworks-Based Controlled-Release Fertilizer: Improved Nutrient Loading and Rice Growth. Agronomy. 2025; 15(10):2334. https://doi.org/10.3390/agronomy15102334
Chicago/Turabian StyleZhang, Ruimin, Gaoqiang Lv, Changwen Du, Fei Ma, Shanshan Liu, Fangqun Gan, and Ke Wu. 2025. "Hierarchically Porous Metal–Organic Frameworks-Based Controlled-Release Fertilizer: Improved Nutrient Loading and Rice Growth" Agronomy 15, no. 10: 2334. https://doi.org/10.3390/agronomy15102334
APA StyleZhang, R., Lv, G., Du, C., Ma, F., Liu, S., Gan, F., & Wu, K. (2025). Hierarchically Porous Metal–Organic Frameworks-Based Controlled-Release Fertilizer: Improved Nutrient Loading and Rice Growth. Agronomy, 15(10), 2334. https://doi.org/10.3390/agronomy15102334