Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (257)

Search Parameters:
Keywords = adipogenic markers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1394 KiB  
Article
Cucurbitacin E Suppresses Adipogenesis and Lipid Accumulation in 3T3-L1 Adipocytes Without Cytotoxicity
by Tien-Chou Soong, Kuan-Ting Lee, Yi-Chiang Hsu and Tai-Hsin Tsai
Biomedicines 2025, 13(8), 1826; https://doi.org/10.3390/biomedicines13081826 - 25 Jul 2025
Viewed by 307
Abstract
Background: Cucurbitacin E (CuE), a natural tetracyclic triterpenoid compound extracted from the melon stems of Cucurbitaceae plants, has been reported to exhibit anti-inflammatory and anti-cancer properties, along with the ability to enhance cellular immunity. However, its role and molecular mechanism in regulating [...] Read more.
Background: Cucurbitacin E (CuE), a natural tetracyclic triterpenoid compound extracted from the melon stems of Cucurbitaceae plants, has been reported to exhibit anti-inflammatory and anti-cancer properties, along with the ability to enhance cellular immunity. However, its role and molecular mechanism in regulating lipid metabolism and adipogenesis remain unclear. This study aims to investigate the potential anti-adipogenic and anti-obesity effects of CuE in 3T3-L1 adipocytes. Materials and Methods: 3T3-L1 preadipocytes were cultured and induced to differentiate using a standard adipogenic cocktail containing dexamethasone, 3-isobutyl-1-methylxanthine (IBMX), and insulin (DMI). CuE was administered during the differentiation process at various concentrations. Lipid accumulation was assessed using Oil Red O staining, and cell viability was evaluated via the MTT assay. To determine whether CuE induced apoptosis or necrosis, flow cytometry was performed using annexin V/PI staining. Additional molecular analyses, such as Western blotting and RT-PCR, were used to examine the expression of key adipogenic markers. Results: Treatment with CuE significantly reduced lipid droplet formation in DMI-induced 3T3-L1 adipocytes in a dose-dependent manner, as shown by decreased Oil Red O staining. Importantly, CuE did not induce apoptosis or necrosis in 3T3-L1 cells at effective concentrations, indicating its safety toward normal adipocytes. Moreover, CuE treatment downregulated the expression of adipogenic markers such as PPARγ and C/EBPα at both mRNA and protein levels. Discussion: Our findings suggest that CuE exerts a non-cytotoxic inhibitory effect on adipocyte differentiation and lipid accumulation. This anti-adipogenic effect is likely mediated through the suppression of key transcription factors involved in adipogenesis. The absence of cytotoxicity supports the potential application of CuE as a safe bioactive compound for obesity management. Further investigation is warranted to elucidate the upstream signaling pathways and in vivo efficacy of CuE. Conclusions: Cucurbitacin E effectively inhibits adipogenesis in 3T3-L1 adipocytes without inducing cytotoxic effects, making it a promising candidate for the development of functional foods or therapeutic agents aimed at preventing or treating obesity. This study provides new insights into the molecular basis of CuE’s anti-obesity action and highlights its potential as a natural lipogenesis inhibitor. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

22 pages, 1940 KiB  
Article
Equine Colostrum-Derived Mesenchymal Stromal Cells: A Potential Resource for Veterinary Regenerative Medicine
by Angelita Capone, Barbara Merlo, Fabiana Begni and Eleonora Iacono
Vet. Sci. 2025, 12(7), 681; https://doi.org/10.3390/vetsci12070681 - 19 Jul 2025
Viewed by 415
Abstract
Beyond its immunological role, colostrum has emerged as a promising, non-invasive source of bioactive factors, including mesenchymal stem/stromal cells (MSCs). This study represents the first attempt to isolate and characterize MSCs from equine colostrum (C-MSCs) to assess their potential use in veterinary regenerative [...] Read more.
Beyond its immunological role, colostrum has emerged as a promising, non-invasive source of bioactive factors, including mesenchymal stem/stromal cells (MSCs). This study represents the first attempt to isolate and characterize MSCs from equine colostrum (C-MSCs) to assess their potential use in veterinary regenerative medicine. Colostrum (n = 6) was collected from mares immediately after their delivery and centrifuged, and the recovered cells were cultured under standard conditions. The C-MSCs displayed plastic adherence and a heterogeneous morphology, including spindle-shaped and epithelial-like cells. The population doubling time (PDT) values varied among the samples, and four out of six showed rapid proliferation (<2 days). Colony-forming unit (CFU) assays confirmed their clonogenic potential, though significant inter-sample variability was observed (p < 0.05). Spheroid formation assays revealed differences in cell–cell adhesion: four out of six samples formed stable spheroids within four days. A migration assay showed significant variability (p < 0.05): one out of six achieved complete wound closure within 72 h, whereas five out of six reached ~30% at 96 h. All samples were positive for adipogenic, chondrogenic, and osteogenic differentiation as shown via staining. RT-PCR confirmed MSC marker expression, while hematopoietic markers were absent. MHC-I expression was weak in five out of six samples, whereas MHC-II was consistently negative. These findings support equine colostrum as a viable MSC source, though its variability requires further validation with larger samples. Additional research is needed to investigate C-MSCs’ immunomodulatory properties and therapeutic potential. Full article
Show Figures

Figure 1

12 pages, 2314 KiB  
Article
Production of Alternative Fat from Adipose-Derived Stem Cell from Bovine in 3D Culture
by Ildoo Jeong, Seyoung Hong, Do Young Kim, Yeon Ju Song, Bong Jong Seo, Heeyoun Hwang, Hyun Sook Hong and Ki Hyun Yoo
Appl. Sci. 2025, 15(13), 7333; https://doi.org/10.3390/app15137333 - 30 Jun 2025
Viewed by 362
Abstract
Cultivated meat, developed through cell culture technology, is emerging as a promising solution that closely mimics both the flavor and nutrient profiles of conventional meat. One key component that contributes to the flavor of meat is fat content. In this study, bovine adipose-derived [...] Read more.
Cultivated meat, developed through cell culture technology, is emerging as a promising solution that closely mimics both the flavor and nutrient profiles of conventional meat. One key component that contributes to the flavor of meat is fat content. In this study, bovine adipose-derived stem cells (bADSCs) were cultured for the production of alternative fat in vitro. The expression of mesenchymal stem cell (MSC) markers (CD29, CD73, and CD105) and colony forming efficiency were assessed to characterize bADSCs. bADSCs were differentiated into adipocytes to produce cultivated fat in 2D or 3D culture. The cultivated fat was analyzed by gas chromatography to verify the similarity of the fatty acids of animal-derived fat. Our results show that bADSCs have characteristics of MSC and could differentiate into adipocyte. The ratio of unsaturated fatty acids and saturated fatty acids in cultivated fat and adipose tissue was similar. Adipogenic differentiation of ADSCs using a textured vegetable protein (TVP) scaffold could form the lipid droplets in the TVP. This study demonstrated the establishment of a culture system for the fat production from bADSCs in vitro. The fat produced through bADSCs shows the potential to be used in the composition of hybrid-cultivated meat. Full article
Show Figures

Figure 1

17 pages, 10722 KiB  
Article
Fin Cells as a Promising Seed Cell Source for Sustainable Fish Meat Cultivation
by Zongyun Du, Jihui Lao, Yuyan Jiang, Jingyu Liu, Shili Liu, Jianbo Zheng, Fei Li, Yongyi Jia, Zhimin Gu, Jun Chen and Xiao Huang
Foods 2025, 14(12), 2075; https://doi.org/10.3390/foods14122075 - 12 Jun 2025
Viewed by 811
Abstract
Cell-cultured meat production relies on stable, proliferative seed cells, commonly sourced from muscle satellite cells (MuSCs) and adipose-derived mesenchymal stem cells (AD-MSCs). However, establishing such cell lines in fish species remains technically challenging. While pluripotent stem cells (e.g., ESCs/MSCs) offer alternatives, their differentiation [...] Read more.
Cell-cultured meat production relies on stable, proliferative seed cells, commonly sourced from muscle satellite cells (MuSCs) and adipose-derived mesenchymal stem cells (AD-MSCs). However, establishing such cell lines in fish species remains technically challenging. While pluripotent stem cells (e.g., ESCs/MSCs) offer alternatives, their differentiation efficiency and predictability are limited. Here, we developed TCCF2022, a novel caudal fin-derived cell line from Topmouth culter (Culter alburnus), which expresses pluripotency markers (AP, Oct4, Sox2, Klf4, and Nanog) and aggregated growth to form 3D spheroids. Forskolin supplementation enhanced pluripotency maintenance. The presence of adipogenic and myogenic lineage cells within the 3D spheroids was confirmed, demonstrating their potential as seed cells for cell-cultured meat. Using a small-molecule cocktail 5LRCF (5-Azacytidine, LY411575, RepSox, CHIR99021, and Forskolin), we successfully differentiated TCCF2022 cells into functional myotubes. Additionally, we established a method to induce the differentiation of TCCF2022 cells into adipocytes simultaneously. Thus, the TCCF2022 cell line can be used to improve muscle fiber formation and lipid composition, potentially enhancing the nutritional profile and flavor of cultured fish meat. Full article
(This article belongs to the Section Meat)
Show Figures

Figure 1

21 pages, 7829 KiB  
Article
Cistanoside F Ameliorates Lipid Accumulation and Enhances Myogenic Differentiation via AMPK-Dependent Signaling in C2C12 Myotubes
by Meng-Ling Ma, Ze-Ling Tang, Li-Ping Chen, Xiang-Nan Qin, Ke-Fei Xiao, Wei-Liang Zhu, Yong Zhang and Zhang-Bin Gong
Cells 2025, 14(12), 874; https://doi.org/10.3390/cells14120874 - 10 Jun 2025
Viewed by 719
Abstract
Sarcopenic obesity (SO) is a metabolic disorder for which no effective pharmacological treatments are currently available. Cistanoside F (Cis), a phenoxyethanol-derived compound, remains relatively unexplored in the context of lipid metabolism regulation, as well as its potential mechanisms and therapeutic applications in metabolic [...] Read more.
Sarcopenic obesity (SO) is a metabolic disorder for which no effective pharmacological treatments are currently available. Cistanoside F (Cis), a phenoxyethanol-derived compound, remains relatively unexplored in the context of lipid metabolism regulation, as well as its potential mechanisms and therapeutic applications in metabolic disorders. Consequently, this study aimed to evaluate the potential of Cis in ameliorating the pathological manifestations of SO in C2C12 cells. Two classical adipogenic differentiation models using C2C12 cells were employed to quantitatively assess the ability of Cis to inhibit lipid droplet formation, utilizing Oil Red O staining coupled with high-content imaging analysis. Markers associated with adipogenic and myogenic differentiation were examined using quantitative real-time PCR and Western blotting. Our experimental findings demonstrated that Cis significantly attenuated lipid droplet accumulation and promoted muscle protein synthesis via the modulation of PPARγ, ATGL, CPT1b, and UCP1 expression during lipogenic differentiation of C2C12 cells. Cis significantly upregulated the phosphorylation and expression levels of key metabolic regulators, including p-AMPK/AMPK, p-ACC1/ACC1, and MHC. We identified a positive regulatory feedback mechanism between AMPK signaling and MHC expression in the adipogenic differentiation model, suggesting that Cis exerts its therapeutic effects through AMPK-dependent pathways. This is the first study to provide the first experimental evidence supporting the therapeutic potential of Cis for metabolic regulation, targeting adiposity reduction and muscle mass enhancement. Furthermore, Cis exhibited potent anti-inflammatory properties, as demonstrated by its ability to significantly downregulate proinflammatory mediators, including IL-6 and p-NF-κB/NF-κB, during adipogenic differentiation. These novel findings regarding the anti-inflammatory mechanisms of Cis will form the basis for our subsequent in-depth mechanistic investigations. Full article
Show Figures

Figure 1

18 pages, 7997 KiB  
Article
Cannabidiol as Modulator of Spontaneous Adipogenesis in Human Adipose-Derived Stem Cells
by Giovannamaria Petrocelli, Luca Pampanella, Provvidenza Maria Abruzzo, Sara Cruciani, Carlo Ventura, Silvia Canaider and Federica Facchin
Molecules 2025, 30(11), 2367; https://doi.org/10.3390/molecules30112367 - 29 May 2025
Viewed by 453
Abstract
Mesenchymal stem cells isolated from human adipose tissue (hASCs) are a promising tool for tissue repair due to their ability to differentiate into specific cell lineages. The possibility of modulating the adipogenic differentiation of hASCs is crucial in improving their therapeutic potential. This [...] Read more.
Mesenchymal stem cells isolated from human adipose tissue (hASCs) are a promising tool for tissue repair due to their ability to differentiate into specific cell lineages. The possibility of modulating the adipogenic differentiation of hASCs is crucial in improving their therapeutic potential. This study aimed to investigate the effects of cannabidiol (CBD), a phytocannabinoid isolated from Cannabis sativa L., on hASCs. Few studies have evaluated its role in stem cell (SC) properties and their differentiation potential. hASCs were first treated with different concentrations of CBD (ranging from 0.1 to 10 μM) to assess its effects on viability, demonstrating that this molecule is non-toxic, except at the concentration of 10 μM. Subsequently, the role of CBD in the proliferation, metabolism and adipogenic potential of hASCs was analyzed. CBD promoted adipogenesis in a dose-dependent manner, even in the absence of differentiation medium. This result was evidenced by the presence of lipid vacuoles, the expression of adipogenic markers, cytoskeletal actin rearrangement and modulation in the expression of osteogenic genes. Although the results indicated a role of CBD in promoting hASC adipogenesis, further research will be needed to explore the mechanism of action of CBD in SC differentiation and to deepen its utility in SC-based approaches. Full article
(This article belongs to the Special Issue Natural Compounds in Modern Therapies, 2nd Edition)
Show Figures

Graphical abstract

17 pages, 2636 KiB  
Article
Withania somnifera and Chrysanthemum zawadskii Herbich var. latilobum (Maxim.) Kitamura Complex Attenuates Obesity in High-Fat-Diet-Induced Obese Mice
by Seong-Hoo Park, Jeongjin Park, Eunhee Yoo, Jaeeun Jung, Mi-Ryeong Park, Soyoung Kim, Jong-Lae Kim, Jong Wook Lee, Ok-kyung Kim and Minhee Lee
Int. J. Mol. Sci. 2025, 26(11), 5230; https://doi.org/10.3390/ijms26115230 - 29 May 2025
Viewed by 527
Abstract
This study aims to evaluate the anti-obesity effects of Ashwagandha (Withania somnifera, AS), Chrysanthemum zawadskii Herbich var. latilobum (Maxim.) Kitamura (C), and their combination (AS:C = 3:1, ASC) in high-fat-diet (HFD)-induced obese animal models. Key metabolic parameters, including body weight, lipid [...] Read more.
This study aims to evaluate the anti-obesity effects of Ashwagandha (Withania somnifera, AS), Chrysanthemum zawadskii Herbich var. latilobum (Maxim.) Kitamura (C), and their combination (AS:C = 3:1, ASC) in high-fat-diet (HFD)-induced obese animal models. Key metabolic parameters, including body weight, lipid metabolism, adipogenesis, energy expenditure, and glucose homeostasis, were assessed. HFD-fed mice were supplemented with AS25, C25, or ASC at different concentrations (ASC25, ASC50, and ASC100). Body weight, food efficiency ratio (FER), organ and adipose tissue weights were measured. Serum biochemical markers, including lipid profiles, glucose, insulin, and liver enzymes, were analyzed. Western blot analysis was conducted to assess the expression of key proteins involved in adipogenesis, lipogenesis, lipolysis, and energy metabolism. ASC complex supplementation, particularly at higher doses (ASC100), significantly reduced body weight gain, liver weight, and total white adipose tissue (WAT) accumulation. ASC complex groups exhibited improved lipid profiles, with reductions in triglycerides, total cholesterol, and low-density lipoprotein (LDL). Serum glucose, insulin, and HbA1c levels were significantly reduced, suggesting improved insulin sensitivity. Western blot analysis revealed that ASC complex supplementation downregulated key adipogenic markers, including PPARγ, C/EBPα, and SREBP1c, while enhancing adiponectin levels. ASC complex also promoted energy metabolism by increasing the phosphorylation of AMPK and UCP1 expression, indicative of enhanced thermogenesis and lipid oxidation. ASC complex supplementation demonstrates a potent anti-obesity effect by modulating adipogenesis, lipid metabolism, and energy expenditure. The findings suggest that ASC complex could serve as a promising natural therapeutic strategy for obesity and metabolic disorders. Further research, including clinical trials, is warranted to validate its efficacy and safety in human populations. Full article
Show Figures

Figure 1

13 pages, 2636 KiB  
Article
Decoding the Function of FGFBP1 in Sheep Adipocyte Proliferation and Differentiation
by Liming Tian, Zhaohua He, Guan Wang, Shuhong Zhang, Tenggang Di, Menghan Chang, Wei Han, Jingyi Gao, Meng Li, Ziyi Wang, Huan Zhang, Shaobin Li and Guangli Yang
Animals 2025, 15(10), 1456; https://doi.org/10.3390/ani15101456 - 18 May 2025
Viewed by 471
Abstract
Tail adipose deposition in sheep is an economically significant trait that has an impact on meat quality and reproductive performance. This study elucidates the regulatory mechanism of FGFBP1 in the proliferation and differentiation of ovine tail-derived preadipocytes. Overexpression and knockdown methods were used [...] Read more.
Tail adipose deposition in sheep is an economically significant trait that has an impact on meat quality and reproductive performance. This study elucidates the regulatory mechanism of FGFBP1 in the proliferation and differentiation of ovine tail-derived preadipocytes. Overexpression and knockdown methods were used to establish gain- and loss-of-function models, and the biological effects of FGFBP1 on adipocyte dynamics were systematically assessed. FGFBP1 overexpression significantly inhibited cellular proliferation by cell cycle arrest in the G2/M phase, and, at the same time, promoted adipocyte differentiation by upregulating key adipogenic markers (PPARγ, Adiponectin, C/EBPα, and FABP4). In contrast, gene silencing enhanced the proliferative capacity and decreased lipid droplet accumulation, confirming its inhibitory role in adipogenesis. Our findings indicate that FGFBP1 is a key regulator of tail adipogenesis. This discovery enhances our understanding of the mechanisms of adipocyte differentiation and provides theoretical bases and potential therapeutic targets for optimizing lipid deposition traits in livestock production. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

16 pages, 1573 KiB  
Article
Peumus boldus Extract Inhibits Lipid Accumulation in 3T3-L1 Adipocytes
by Laura Montaldo, Llerson Bendezu Meza, Mauricio De Marzi and Liliana Noemi Guerra
Int. J. Mol. Sci. 2025, 26(9), 4326; https://doi.org/10.3390/ijms26094326 - 2 May 2025
Viewed by 501
Abstract
Obesity is a metabolic condition of epidemic scale. Previously, we showed that antioxidant extracts from Ribes nigrum had antioxidant and anti-adipogenic effects in mature adipocytes (AD). Here, we evaluated an aqueous extract from Peumus boldus (Boldo) in AD and studied its effect on [...] Read more.
Obesity is a metabolic condition of epidemic scale. Previously, we showed that antioxidant extracts from Ribes nigrum had antioxidant and anti-adipogenic effects in mature adipocytes (AD). Here, we evaluated an aqueous extract from Peumus boldus (Boldo) in AD and studied its effect on reactive oxygen species (ROS) and lipid production. We analyzed the antioxidant activity (AA) of the Boldo extract using the DPPH technique and polyphenol (Pph) content via Folin’s reagent. In AD, we evaluated ROS production, catalase (CAT) activity, intracellular triglyceride (Tg) and cholesterol (Chol) contents, nitric oxide (NO) production via Griess reagent, and the levels of glycerol (Gly) and TNF-α released in the culture medium. We showed that the Boldo extract has high AA. In vitro, Boldo treatment decreased ROS intracellular production and CAT activity. In addition, the Boldo extract was effective in reducing Tg and Chol levels and NO production. We did not identify significant differences in Gly released or TNF-α secreted. We suggest that the Boldo extract has antioxidant and anti-adipogenic effects, but we did not observe lipolytic effects. Boldo did not modify inflammatory markers. Full article
(This article belongs to the Special Issue The Role of Oxidative Stress and Antioxidants in Human Disease)
Show Figures

Figure 1

15 pages, 2676 KiB  
Article
Ssc-miR-130b Enhances Cell Proliferation and Represses Adipogenesis of Primary Cultured Intramuscular Preadipocytes in Pigs
by Yunqiu Yang, Yongfang Chen, Lijun Wang, Min Du, Rui Zhang, Yao Lu and Shifeng Pan
Vet. Sci. 2025, 12(4), 375; https://doi.org/10.3390/vetsci12040375 - 17 Apr 2025
Viewed by 546
Abstract
In the efforts towards germplasm innovation of livestock and poultry, strategies to improve meat quality have faced some increasingly challenging and dynamic concerns. Intramuscular fat (IMF) content and backfat thickness are two important traits contributing to meat quality. MicroRNAs (miRNAs)—a class of endogenous [...] Read more.
In the efforts towards germplasm innovation of livestock and poultry, strategies to improve meat quality have faced some increasingly challenging and dynamic concerns. Intramuscular fat (IMF) content and backfat thickness are two important traits contributing to meat quality. MicroRNAs (miRNAs)—a class of endogenous noncoding RNAs maintaining cell homeostasis by inhibiting target gene expression—have been proven as critical regulators of body fat deposition, thus affecting farm animal production. Our previous in vitro and in vivo models of pigs have clarified that miR-130b overexpression can obviously suppress adipogenesis of subcutaneous preadipocytes and lower backfat thickness. However, the way miR-130b regulates proliferation and adipogenesis of primary cultured porcine intramuscular preadipocytes (PIMPA) and the underlying mechanism are still unknown. PIMPA derived from longissimus dorsi muscle were employed to examine the role of miR-130b in proliferation and adipogenesis and to further elucidate its underlying mechanism. Lipid deposition in cytoplasm was evaluated by TG quantification and ORO-staining, and EDU-staining was employed to measure cell proliferation. Adipogenic and proliferation-related gene expression were conducted by qPCR and Western blot. MiR-130b overexpression markedly stimulated proliferation of PIMPA by increasing cell cycle-related gene expression. Furthermore, overexpression of miR-130b significantly inhibited adipogenic differentiation of PIMPA, mainly by inhibiting expression of adipogenic differentiation marker genes PPAR-γ and SREBP1. In addition, we proved that miR-130b significantly inhibited expression of PPAR-γ downstream target genes and ultimately repressed adipogenesis. Ssc-miR-130b accelerated proliferation but inhibited adipogenic differentiation of PIMPA, contributing to an enhanced knowledge of the function of ssc-miR-130b in lipid deposition, and providing potential implications for enhancing pork quality. Full article
Show Figures

Figure 1

21 pages, 9799 KiB  
Article
Bioinformatics-Based Analysis of Ferroptosis-Related Biomarkers and the Prediction of Drugs Affecting the Adipogenic Differentiation of MSCs
by Jiahao Jin, Zihao Yuan, Xinglang Wang, Quanfeng Li, Yunhui Zhang, Yibin Zhang, Pengfei Ji, Yanfeng Wu, Peng Wang and Wenjie Liu
Biomedicines 2025, 13(4), 940; https://doi.org/10.3390/biomedicines13040940 - 11 Apr 2025
Viewed by 605
Abstract
Background: The imbalance between the osteogenic and adipogenic differentiation of mesenchymal stem cells (MSCs) is a key factor in the progression of osteoporosis; therefore, it is crucial to study the regulatory mechanisms that maintain this balance. Ferroptosis is a form of regulated [...] Read more.
Background: The imbalance between the osteogenic and adipogenic differentiation of mesenchymal stem cells (MSCs) is a key factor in the progression of osteoporosis; therefore, it is crucial to study the regulatory mechanisms that maintain this balance. Ferroptosis is a form of regulated cell death caused by the accumulation of lipid peroxides and is closely associated with various diseases. Changes in intracellular oxidative stress levels can affect the lineage allocation of MSCs. However, it remains unclear whether the disruption of intracellular oxidative stress levels caused by ferroptosis can influence the osteogenic–adipogenic differentiation balance of MSCs, and the mechanism underlying this influence in osteoporosis has not been fully elucidated. This study is the first to demonstrate through in vitro cell experiments that inhibiting ferroptosis can decrease the adipogenic differentiation of MSCs. Methods and Results: Through bioinformatics analysis, differentially expressed genes (DEGs) associated with the adipogenic differentiation of MSCs were identified from the GEO database. We then intersected these differentially expressed genes with a ferroptosis-related gene dataset and identified 118 ferroptosis-related differentially expressed genes (FRDEGs). Additionally, we explored the functional roles of FRDEGs through GO and KEGG analyses and found that these genes significantly impacted intracellular oxidative stress. Furthermore, we identified 10 key FRDEGs via protein-protein interaction (PPI) analysis. The diagnostic performance of these genes was evaluated by plotting receiver operating characteristic (ROC) curves, and the reliability of the diagmodel was validated using data from osteoporosis patients. We then constructed a mouse osteoporosis model and validated the mRNA expression levels of key FRDEGs via qRT-PCR, which revealed significant differences in expression in the osteoporosis group. Finally, molecular docking technology was used to identify two small molecules from the DrugBank database that are able to negatively regulate MSC adipogenic differentiation by inhibiting ferroptosis. Conclusions: The identified FRDEGs and small molecules offer novel diagnostic markers and therapeutic candidates for osteoporosis. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

18 pages, 3245 KiB  
Article
Electrical Phenotyping of Aged Human Mesenchymal Stem Cells Using Dielectrophoresis
by Lexi L. C. Simpkins, Tunglin Tsai, Emmanuel Egun and Tayloria N. G. Adams
Micromachines 2025, 16(4), 435; https://doi.org/10.3390/mi16040435 - 3 Apr 2025
Cited by 1 | Viewed by 626
Abstract
Human mesenchymal stem cells (hMSCs) are widely used in regenerative medicine, but large-scale in vitro expansion alters their function, impacting proliferation and differentiation potential. Currently, a predictive marker to assess these changes is lacking. Here, we used dielectrophoresis (DEP) to characterize the electrical [...] Read more.
Human mesenchymal stem cells (hMSCs) are widely used in regenerative medicine, but large-scale in vitro expansion alters their function, impacting proliferation and differentiation potential. Currently, a predictive marker to assess these changes is lacking. Here, we used dielectrophoresis (DEP) to characterize the electrical phenotype of hMSCs derived from bone marrow (BM), adipose tissue (AT), and umbilical cord (UC) as they aged in vitro from passage 4 (P4) to passage 9 (P9). The electrical phenotype was defined by the DEP spectra, membrane capacitance, and cytoplasm conductivity. Cell morphology and size, growth characteristics, adipogenic differentiation potential, and osteogenic differentiation potential were assessed alongside label-free biomarker membrane capacitance and cytoplasm conductivity. Differentiation was confirmed by histological staining and RT-qPCR. All hMSCs exhibited typical morphology, though cell size varied, with UC-hMSCs displaying the largest variability across all size metrics. Growth analysis revealed that UC-hMSCs proliferated the fastest. The electrical phenotype varied with cell source and in vitro age, with high passage hMSCs showing noticeable shifts in DEP spectra, membrane capacitance, and cytoplasm conductivity. Correlation analysis revealed that population doubling level (PDL) correlated with membrane capacitance and cytoplasm conductivity, indicating PDL as a more precise marker of in vitro aging than passage number. Additionally, we demonstrate that membrane capacitance correlates with the osteogenic marker COL1A1 and that cytoplasm conductivity correlates with the adipogenic markers ADIPOQ and FABP4, suggesting that DEP-derived electrical properties serve as label-free biomarkers of differentiation potential. While DEP has previously been applied to BM-hMSCs and AT-hMSCs, and more recently to UC-hMSCs, few studies have provided a direct comparison across all three sources or tracked changes across continuous expansion. These findings underscore the utility of DEP as a label-free approach for assessing hMSC aging and function, offering practical applications for optimizing stem cell expansion and stem cell banking in clinical settings. Full article
(This article belongs to the Special Issue Micro/Nanotechnology for Cell Manipulation, Detection and Analysis)
Show Figures

Figure 1

22 pages, 6713 KiB  
Article
The Presence of Adipose Tissue in Aortic Valves Influences Inflammation and Extracellular Matrix Composition in Chronic Aortic Regurgitation
by Alba Sádaba, Mattie Garaikoetxea, Carolina Tiraplegui, Susana San-Ildefonso-García, Miriam Goñi-Olóriz, Amaya Fernández-Celis, Ernesto Martín-Núñez, Paula Castillo, Virginia Álvarez, Rafael Sádaba, Eva Jover, Adela Navarro and Natalia López-Andrés
Int. J. Mol. Sci. 2025, 26(7), 3128; https://doi.org/10.3390/ijms26073128 - 28 Mar 2025
Viewed by 559
Abstract
Adipose tissue is present in aortic valves (AVs). Valve interstitial cells (VICs) could differentiate into adipogenic lineages. We here characterize whether the presence of adipose tissue in the AV influences inflammation and extracellular matrix (ECM) composition in patients with aortic regurgitation (AR). A [...] Read more.
Adipose tissue is present in aortic valves (AVs). Valve interstitial cells (VICs) could differentiate into adipogenic lineages. We here characterize whether the presence of adipose tissue in the AV influences inflammation and extracellular matrix (ECM) composition in patients with aortic regurgitation (AR). A total of 144 AVs were analyzed by histological and molecular techniques. We performed discovery studies using Olink Proteomics® technology in 40 AVs (N = 16 without and N = 24 with adipose tissue). In vitro, human white adipocytes (HWAs) or VICs were cultured with adipogenic media and co-cultured with control VICs. Of Avs, 67% presented white-like adipocytes within the spongiosa. Discovery studies revealed increased levels of inflammatory and ECM molecules in AVs containing adipocytes. Interestingly, the presence of adipocytes was associated with greater AV thickness, higher inflammation, and ECM remodeling, which was characterized by increased proinflammatory molecules, collagen, fibronectin, proteoglycans, and metalloproteinases. AV thickness positively correlated with markers of adipose tissue, inflammation, and ECM. In vitro, adipocyte-like VICs expressed higher levels of adipocyte markers, increased cytokines, fibronectin, decorin, and MMP-13. Analyses of supernatants from co-cultured control VICs with HWA or adipocyte-like VICs showed higher expression of inflammatory mediators, collagen type I, proteoglycans, and metalloproteinases. AVs presenting adipocytes were thicker and exhibited changes characterized by increased inflammation accompanied by aberrant expression of collagen, proteoglycans, and metalloproteinases. VICs could differentiate into adipogenic pathway, affect neighbor VICs, and contribute to inflammation, collagen and proteoglycan accumulation, as well as to metalloproteinases secretion. In summary, the presence of adipose tissue in AV could modify its composition, favoring inflammation and remodeling with an impact on AV thickness. Full article
Show Figures

Graphical abstract

18 pages, 2722 KiB  
Article
5G Radiofrequency Exposure Reduces PRDM16 and C/EBP β mRNA Expression, Two Key Biomarkers for Brown Adipogenesis
by Chandreshwar Seewooruttun, Bélir Bouguila, Aurélie Corona, Stéphane Delanaud, Raphaël Bodin, Véronique Bach, Rachel Desailloud and Amandine Pelletier
Int. J. Mol. Sci. 2025, 26(6), 2792; https://doi.org/10.3390/ijms26062792 - 20 Mar 2025
Cited by 1 | Viewed by 1212
Abstract
The widespread use of wireless technologies has raised public health concerns about the biological effects of radiofrequency (RF) exposure. Children have a higher specific absorption rate (SAR) of radiation energy compared to adults. Furthermore, brown adipose tissue (BAT) is more prevalent in infants [...] Read more.
The widespread use of wireless technologies has raised public health concerns about the biological effects of radiofrequency (RF) exposure. Children have a higher specific absorption rate (SAR) of radiation energy compared to adults. Furthermore, brown adipose tissue (BAT) is more prevalent in infants and tends to decrease with age. Previous animal studies demonstrated a cold sensation in rats exposed to 900 MHz (second generation, 2G). UCP1-dependent thermogenesis and BAT hyperplasia are two fundamental adaptive mechanisms initiated in response to cold. This study investigated the impact of short-term exposure to 2G and fifth generation (5G) on key thermogenic and adipogenic markers related to these mechanisms while considering age and exposure duration. Juvenile and young adult Wistar rats were randomized into three subgroups: a 5G group (3.5 GHz), 2G group (900 MHz), and a control group (SHAM). They were exposed to their respective continuous-wave RF signals for 1 or 2 weeks at an intensity of 1.5 V/m, with two exposure sessions of 1 h per day. After the exposure period, a RT-qPCR was carried out to evaluate the genetic markers involved in BAT thermogenesis and adipogenesis. Two adipogenic biomarkers were affected; a fold change reduction of 49% and 32% was detected for PRDM16 (p = 0.016) and C/EBP β (p = 0.0002), respectively, after 5G exposure, regardless of age and exposure duration. No significant RF effect was found on UCP1-dependent thermogenesis at a transcriptional level. These findings suggest that exposure to a 5G radiofrequency may partially disrupt brown adipocyte differentiation and thermogenic function by downregulating PRDM16 and C/EBP β, possibly leading to higher cold sensitivity. Full article
(This article belongs to the Special Issue Oxidative Stress: Cell Biology and Signal Transduction)
Show Figures

Graphical abstract

19 pages, 5703 KiB  
Article
Establishment and Molecular Characterization of a Human Stem Cell Line from a Primary Cell Culture Obtained from an Ectopic Calcified Lesion of a Tumoral Calcinosis Patient Carrying a Novel GALNT3 Mutation
by Simone Donati, Gaia Palmini, Cinzia Aurilia, Irene Falsetti, Francesca Marini, Gianna Galli, Roberto Zonefrati, Teresa Iantomasi, Lorenzo Margheriti, Alessandro Franchi, Giovanni Beltrami, Laura Masi, Arcangelo Moro and Maria Luisa Brandi
Genes 2025, 16(3), 263; https://doi.org/10.3390/genes16030263 - 24 Feb 2025
Viewed by 735
Abstract
Background/Objectives: Tumoral calcinosis (TC) is an extremely rare inherited disease characterized by multilobulated, dense ectopic calcified masses, usually in the periarticular soft tissue regions. In a previous study, we isolated a primary cell line from an ectopic lesion of a TC patient carrying [...] Read more.
Background/Objectives: Tumoral calcinosis (TC) is an extremely rare inherited disease characterized by multilobulated, dense ectopic calcified masses, usually in the periarticular soft tissue regions. In a previous study, we isolated a primary cell line from an ectopic lesion of a TC patient carrying a previously undescribed GALNT3 mutation. Here, we researched whether a stem cell (SC) subpopulation, which may play a critical role in TC progression, could be present within these lesions. Methods: A putative SC subpopulation was initially isolated by the sphere assay (marked as TC1-SC line) and characterized for its stem-like phenotype through several cellular and molecular assays, including colony forming unit assay, immunofluorescence staining for mesenchymal SC (MSC) markers, gene expression analyses for embryonic SC (ESC) marker genes, and multidifferentiation capacity. In addition, a preliminary expression pattern of osteogenesis-related pathways miRNAs and genes were assessed in the TC1-SC by quantitative Real-Time PCR (qPCR). Results: These cells were capable of differentiating into both the adipogenic and the osteogenic lineages. Moreover, they showed the presence of the MSC and ESC markers, confirmed respectively by using immunofluorescence and qualitative reverse transcriptase PCR (RT-PCR), and a good rate of clonogenic capacity. Finally, qPCR data revealed a signature of miRNAs (i.e., miR-21, miR-23a-3p, miR-26a, miR-27a-3p, miR-27b-3p, and miR-29b-3p) and osteogenic marker genes (i.e., ALP, RUNX2, COLIA1, OPG, OCN, and CCN2) characteristic for the established TC1-SC line. Conclusions: The establishment of this in vitro cell model system could advance the understanding of mechanisms underlying TC pathogenesis, thereby paving the way for the discovery of new diagnostic and novel gene-targeted therapeutic approaches for TC. Full article
(This article belongs to the Special Issue MicroRNA in Cancers)
Show Figures

Figure 1

Back to TopTop