Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (245)

Search Parameters:
Keywords = adenosine transporters

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 475 KiB  
Article
Effect of Pre-IVM Duration with cAMP Modulators on the Production of Cloned Equine Embryos and Foals
by Jenin V. Cortez, Kylie Hardwicke, Carlos E. Méndez-Calderón and Christopher G. Grupen
Animals 2025, 15(13), 1961; https://doi.org/10.3390/ani15131961 - 3 Jul 2025
Viewed by 287
Abstract
The asynchrony of cytoplasmic and nuclear maturation in cumulus–oocyte complexes (COCs) due to prematurely declining concentrations of cyclic adenosine monophosphate (cAMP) has been shown to result in reduced oocyte developmental competence. The objective of this study was to evaluate the effect of pre-IVM [...] Read more.
The asynchrony of cytoplasmic and nuclear maturation in cumulus–oocyte complexes (COCs) due to prematurely declining concentrations of cyclic adenosine monophosphate (cAMP) has been shown to result in reduced oocyte developmental competence. The objective of this study was to evaluate the effect of pre-IVM treatment with cAMP modulators for different durations on the developmental potential of equine oocytes used for cloned embryo production. Collected COCs were transferred to cryovials filled with transport medium at 20–22 °C. Within the cryovials, the COCs were either untreated (Control) for 18 h or treated with 50 µM forskolin and 100 µM 3-isobutyl-1-methylxanthine for the first 4 h (Pre-IVM 4 h) or the entire 18 h (Pre-IVM 18 h). Oocytes were then transferred to maturation medium and incubated for a further 22–24 h at 38.5 °C in 5% CO2 in air. Somatic cell nuclear transfer embryos were then produced using the meiotically mature oocytes and donor cells from six different fibroblast cell lines. The rates of maturation and embryo development did not differ significantly between the groups, though blastocyst formation tended to be inferior in the Pre-IVM 4 h group compared with the Control group (p = 0.06). Of 67 blastocysts produced, 23 were transferred to recipient mares on Day 4 or 5 post-ovulation. Regarding the pregnancy outcomes, no significant differences were found between the groups, and four viable foals were born, each derived from a different donor cell line. The findings expand on those from previous evaluations of this biphasic IVM system, and indicate that the cAMP-modulating treatments exert limited effects under the pre-IVM conditions used here. Full article
Show Figures

Figure 1

19 pages, 2654 KiB  
Review
TSGA10 as a Model of a Thermal Metabolic Regulator: Implications for Cancer Biology
by Ali Amini, Farzad Taghizadeh-Hesary, John Bracht and Babak Behnam
Cancers 2025, 17(11), 1756; https://doi.org/10.3390/cancers17111756 - 23 May 2025
Viewed by 726
Abstract
TSGA10, a multifunctional protein critical for mitochondrial coupling and metabolic regulation, plays a paradoxical role in cancer progression and carcinogenesis. Here, we outline a potential mechanism by which TSGA10 mediates metabolism in oncogenesis and thermal modulation. Initially identified in spermatogenesis, TSGA10 interacts with [...] Read more.
TSGA10, a multifunctional protein critical for mitochondrial coupling and metabolic regulation, plays a paradoxical role in cancer progression and carcinogenesis. Here, we outline a potential mechanism by which TSGA10 mediates metabolism in oncogenesis and thermal modulation. Initially identified in spermatogenesis, TSGA10 interacts with mitochondrial Complex III: it directly binds cytochrome c1 (CytC1). In our model, TSGA10 optimizes electron transport to minimize reactive oxygen species (ROS) and heat production while enhancing Adenosine Triphosphate (ATP) synthesis. In cancer, TSGA10’s expression is context-dependent: Its downregulation in tumors like glioblastoma might disrupt mitochondrial coupling, promoting electron leakage, ROS accumulation, and genomic instability. This dysfunction would be predicted to contribute to a glycolytic shift, facilitating tumor survival under hypoxia. Conversely, TSGA10 overexpression in certain cancers suppresses HIF-1α, inhibiting glycolysis and metastasis. TSGA10 and HIF-1α engage in mutual counter-regulation—TSGA10 represses HIF-1α to sustain oxidative phosphorylation (OXPHOS), while HIF-1α suppression of TSGA10 under hypoxia or thermal stress amplifies glycolytic dependency. This interplay is pivotal in tumors adapting to microenvironmental stressors, such as cold-induced mitochondrial uncoupling, which mimics brown adipose tissue thermogenesis to reduce ROS and sustain proliferation. Tissue-specific TSGA10 expression further modulates cancer susceptibility: high levels in the testes and brain may protect against thermal and oxidative damage, whereas low expression in the liver permits HIF-1α-driven metabolic plasticity. Altogether, our model suggests that TSGA10 plays a central role in mitochondrial fidelity. We suggest that its crosstalk with oncogenic pathways position it as a metabolic rheostat, whose dysregulation fosters tumorigenesis through ROS-mediated mutagenesis, metabolic reprogramming, and microenvironmental remodeling. Targeting the hypothesized TSGA10-mediated mitochondrial coupling may offer therapeutic potential to disrupt cancer’s adaptive energetics and restore metabolic homeostasis. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Cancer Development and Metastasis)
Show Figures

Figure 1

25 pages, 2761 KiB  
Review
The Importance of Vitamin D and Magnesium in Athletes
by Ligia J. Dominguez, Nicola Veronese, Francesco Saverio Ragusa, Salvatore Maria Baio, Francesco Sgrò, Arcangelo Russo, Giuseppe Battaglia, Antonino Bianco and Mario Barbagallo
Nutrients 2025, 17(10), 1655; https://doi.org/10.3390/nu17101655 - 13 May 2025
Cited by 2 | Viewed by 7245
Abstract
Vitamin D and magnesium are essential nutrients that play key roles in an athlete’s performance, recovery, and overall health. Vitamin D is crucial for bone health (aiding calcium absorption and preventing stress fractures), muscle function (preventing weakness and injury), and reducing respiratory infections. [...] Read more.
Vitamin D and magnesium are essential nutrients that play key roles in an athlete’s performance, recovery, and overall health. Vitamin D is crucial for bone health (aiding calcium absorption and preventing stress fractures), muscle function (preventing weakness and injury), and reducing respiratory infections. Magnesium is fundamental in muscle function, adenosine triphosphate production for muscle contraction, electrolyte balance, bone strength, and cardiovascular health. The magnesium requirement of healthy adults is estimated at 300–400 mg/day, but there is evidence that athletes may have higher magnesium needs compared to sedentary persons. Magnesium and vitamin D are closely linked—vitamin D aids magnesium absorption, while magnesium is vital for vitamin D synthesis, transport, and activation. Given their importance in athletes, this article explores their functions, interactions, and the effects of deficiencies and supplementation in athletic populations. Full article
(This article belongs to the Special Issue Dietary Strategies for Athletes)
Show Figures

Figure 1

27 pages, 3093 KiB  
Article
Acridine-Based Chalcone 1C and ABC Transporters
by Ondrej Franko, Martina Čižmáriková, Martin Kello, Radka Michalková, Olga Wesołowska, Kamila Środa-Pomianek, Sérgio M. Marques, David Bednář, Viktória Háziková, Tomáš Ján Liška and Viera Habalová
Int. J. Mol. Sci. 2025, 26(9), 4138; https://doi.org/10.3390/ijms26094138 - 27 Apr 2025
Viewed by 823
Abstract
Chalcones, potential anticancer agents, have shown promise in the suppression of multidrug resistance due to the inhibition of drug efflux driven by certain adenosine triphosphate (ATP)-binding cassette (ABC) transporters. The gene and protein expression of chosen ABC transporters (multidrug resistance protein 1, ABCB1; [...] Read more.
Chalcones, potential anticancer agents, have shown promise in the suppression of multidrug resistance due to the inhibition of drug efflux driven by certain adenosine triphosphate (ATP)-binding cassette (ABC) transporters. The gene and protein expression of chosen ABC transporters (multidrug resistance protein 1, ABCB1; multidrug resistance-associated protein 1, ABCC1; and breast cancer resistance protein, ABCG2) in human colorectal cancer cells (COLO 205 and COLO 320, which overexpress active ABCB1) was mainly studied in this work under the influence of a novel synthetic acridine-based chalcone, 1C. While gene expression dropped just at 24 h, compound 1C selectively suppressed colorectal cancer cell growth and greatly lowered ABCB1 protein levels in COLO 320 cells at 24, 48, and 72 h. It also reduced ABCC1 protein levels after 48 h. Molecular docking and ATPase tests show that 1C probably acts as an allosteric modulator of ABCB1. It also lowered galectin-1 (GAL1) expression in COLO 205 cells at 24 h. Functional tests on COLO cells revealed ABCB1 and ABCC1/2 to be major contributors to multidrug resistance in both. Overall, 1C transiently lowered GAL1 in COLO 205 while affecting important functional ABC transporters, mostly ABCB1 and to a lesser extent ABCC1 in COLO 320 cells. COLO 320’s absence of GAL1 expression points to a possible yet unknown interaction between GAL1 and ABCB1. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

19 pages, 4684 KiB  
Article
Comprehensive Transcriptomic Analysis of the Isolated Candida tropicalis with Enhanced Tolerance of Furfural Inhibitor
by Jianguang Liu, Zifu Ni, Bingyu Jiao, Yuansen Hu, Zhongke Sun, Dapeng Wu, Qipeng Yuan, Yuhuan Han and Le Wang
Int. J. Mol. Sci. 2025, 26(7), 2999; https://doi.org/10.3390/ijms26072999 - 25 Mar 2025
Viewed by 451
Abstract
The Candida tropicalis (C. tropicalis) named YB-3 was isolated by the Atmospheric and room temperature plasma mutagenesis from 6.5 g/L furfural tolerance. The comprehensive transcriptomic analysis of YB-3 was performed. During the stress of furfural treatment, C. tropicalis YB-3 protected cells [...] Read more.
The Candida tropicalis (C. tropicalis) named YB-3 was isolated by the Atmospheric and room temperature plasma mutagenesis from 6.5 g/L furfural tolerance. The comprehensive transcriptomic analysis of YB-3 was performed. During the stress of furfural treatment, C. tropicalis YB-3 protected cells from oxidative stress damage by increasing the accumulation of the glutathione reductase gene and the expression of antioxidant enzymes, with the enhancement of the inositol phosphate synthase to maintain the structural integrity and transport function of the inner membrane system, thereby affecting the cells’ tolerance. Through the gene knockout and exogenous verification, it was further confirmed that the pathways involved in the three genes of sulfate adenosine transferase gene, glutathione reductase gene, and inositol phosphate synthase gene had significant effects on improving the tolerance of the strain to furfural. The deep excavation of furfural-tolerant gene components and directional modification of C. tropicalis to enhance tolerance are key steps for improving the utilization rate of biomass. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

10 pages, 567 KiB  
Article
Disparity Between Functional and Structural Recovery of Placental Mitochondria After Exposure to Hypoxia
by Jonathan R. Sierla, Laia Pagerols Raluy, Magdalena Trochimiuk, Julian Trah, Mariam Petrosyan, Lis N. Velasquez, Udo Schumacher, Dominique Singer and Julia Heiter
Int. J. Mol. Sci. 2025, 26(7), 2956; https://doi.org/10.3390/ijms26072956 - 25 Mar 2025
Viewed by 573
Abstract
Intrauterine growth restriction (IUGR) affects 5–10% of pregnancies with placental hypoxia, playing a key role as a common pathophysiological pathway of different etiologies. Despite the high metabolic rate of the placenta and its “gatekeeper” role in protecting the fetus from hypoxia, the response [...] Read more.
Intrauterine growth restriction (IUGR) affects 5–10% of pregnancies with placental hypoxia, playing a key role as a common pathophysiological pathway of different etiologies. Despite the high metabolic rate of the placenta and its “gatekeeper” role in protecting the fetus from hypoxia, the response of placental mitochondria to hypoxic stress is not well understood. This study tested the hypothesis that transient exposure to hypoxia leads to a loss of placental mitochondria and affects their function. Human villous trophoblastic (JEG-3) cells were cultured under normoxic and hypoxic conditions for 24 h. Mitochondrial content was determined by flow cytometry before and after hypoxic exposure and after 24 h of normoxic recovery. Parameters of oxidative phosphorylation were assessed using a respirometric analyzer before hypoxic exposure and after normoxic recovery. Mitochondrial content decreased significantly from 88.5% to 26.7% during hypoxic incubation. Although it had increased to 84.2% after 24 h of normoxic recovery, oxidative phosphorylation parameters were still significantly suppressed to 1/2 to 1/3 of the pre-incubation levels. The results underscore the ability of placental cells to adapt mitochondrial content to O2 supply. Despite rapid recovery under normoxia, respiratory function remains suppressed, which may result in persistent impairment of adenosine triphosphate (ATP)-dependent synthetic and transport functions. Full article
(This article belongs to the Special Issue Physiology and Pathophysiology of Placenta: 3rd Edition)
Show Figures

Figure 1

9 pages, 438 KiB  
Review
ABCB1-Mediated Colchicine Transport and Its Implications in Familial Mediterranean Fever: A Systematic Review
by Sarah Adriana Scuderi, Alessio Ardizzone, Emanuela Esposito and Anna Paola Capra
Curr. Issues Mol. Biol. 2025, 47(3), 210; https://doi.org/10.3390/cimb47030210 - 20 Mar 2025
Viewed by 838
Abstract
Familial Mediterranean fever (FMF) is an autoinflammatory genetic disorder characterized by recurrent fevers and inflammation of the serous membranes in the abdomen, lungs, and joints. Currently, the standard treatment of FMF includes colchicine, which is an alkaloid, derived from Colchicum autumnale. Colchicine’s [...] Read more.
Familial Mediterranean fever (FMF) is an autoinflammatory genetic disorder characterized by recurrent fevers and inflammation of the serous membranes in the abdomen, lungs, and joints. Currently, the standard treatment of FMF includes colchicine, which is an alkaloid, derived from Colchicum autumnale. Colchicine’s efficacy in FMF is well-established as it is used both to prevent acute attacks and reduce the risk of long-term complications. However, despite these available treatments, 5–10% of patients exhibit resistance to the drug. It has been demonstrated that polymorphisms in several genes involved in inflammation can influence treatment outcomes and the risk of FMF complications like amyloidosis. Among them, some research focused on polymorphism affecting adenosine triphosphate (ATP)-binding cassette sub-family B member 1 (ABCB1) gene encoding for P-glycoprotein. P-glycoprotein is considered a key transporter protein as it regulates the absorption, distribution, and excretion of several drugs, including colchicine. In diseases like FMF, ABCB1 polymorphisms have been shown to affect the response to colchicine, potentially leading to treatment resistance or altered toxicity. Based on this evidence, this systematic review aims to analyze available evidence on ABCB1-mediated colchicine transport and its clinical implications in FMF, showing how relevant ABCB1 variants are in response to therapy. Full article
(This article belongs to the Section Bioorganic Chemistry and Medicinal Chemistry)
Show Figures

Figure 1

34 pages, 11006 KiB  
Review
A New Perspective on the Role of Alterations in Mitochondrial Proteins Involved in ATP Synthesis and Mobilization in Cardiomyopathies
by Melissa Vázquez-Carrada, María Magdalena Vilchis-Landeros, Héctor Vázquez-Meza, Daniel Uribe-Ramírez and Deyamira Matuz-Mares
Int. J. Mol. Sci. 2025, 26(6), 2768; https://doi.org/10.3390/ijms26062768 - 19 Mar 2025
Cited by 2 | Viewed by 1110
Abstract
The heart requires a continuous energy supply to sustain its unceasing contraction–relaxation cycle. Mitochondria, a double-membrane organelle, generate approximately 90% of cellular energy as adenosine triphosphate (ATP) through oxidative phosphorylation, utilizing the electrochemical gradient established by the respiratory chain. Mitochondrial function is compromised [...] Read more.
The heart requires a continuous energy supply to sustain its unceasing contraction–relaxation cycle. Mitochondria, a double-membrane organelle, generate approximately 90% of cellular energy as adenosine triphosphate (ATP) through oxidative phosphorylation, utilizing the electrochemical gradient established by the respiratory chain. Mitochondrial function is compromised by damage to mitochondrial DNA, including point mutations, deletions, duplications, or inversions. Additionally, disruptions to proteins associated with mitochondrial membranes regulating metabolic homeostasis can impair the respiratory chain’s efficiency. This results in diminished ATP production and increased generation of reactive oxygen species. This review provides an overview of mutations affecting mitochondrial transporters and proteins involved in mitochondrial energy synthesis, particularly those involved in ATP synthesis and mobilization, and it examines their role in the pathogenesis of specific cardiomyopathies. Full article
(This article belongs to the Special Issue The Impact of Mitochondria on Human Disease and Health)
Show Figures

Figure 1

18 pages, 4879 KiB  
Article
An Endogenous Proton-Powered Adaptive Nanomotor for Treating Muscle Atrophy
by Ming Liu, Zhicun Liu, Xiangkai Qiao, Cheng Chen, Hongtu Guo, Hao Gu, Junbo Li and Tiedong Sun
Materials 2025, 18(6), 1351; https://doi.org/10.3390/ma18061351 - 19 Mar 2025
Viewed by 981
Abstract
Nanomotors driven by endogenous enzymes are favored in biology and pharmacy due to their spontaneous driving and efficient biocatalytic activity, and have potential applications in the treatment of clinical diseases that are highly dependent on targeted effects. For diseases such as muscle atrophy, [...] Read more.
Nanomotors driven by endogenous enzymes are favored in biology and pharmacy due to their spontaneous driving and efficient biocatalytic activity, and have potential applications in the treatment of clinical diseases that are highly dependent on targeted effects. For diseases such as muscle atrophy, using energy molecules such as ATP to improve cellular metabolism is a relatively efficient treatment method. However, traditional adenosine triphosphate (ATP) therapies for muscle atrophy face limitations due to instability under physiological conditions and poor targeting efficiency. To address these challenges, we developed an endogenous proton-gradient-driven ATP transport motor (ATM), a nanomotor integrating chloroplast-derived FoF1-ATPase with a biocompatible flask-shaped organic shell (FOS). The ATM is synthesized by vacuum-injecting phospholipid-embedded FoF1-ATPase nanothylakoids into ribose-based FOS, enabling autonomous propulsion in acidic microenvironments through proton-driven negative chemotaxis (directional movement away from regions of higher proton concentration). This nanomotor converts proton gradients into ATP synthesis, directly replenishing cellular energy deficits in atrophic tissues. In vitro studies demonstrated high biocompatibility (>90% cell viability at 150 μg/mL) and pH-responsive motility, achieving speeds up to 4.32 μm/s under physiological gradients (ΔpH = 3). In vivo experiments using dexamethasone-induced muscle atrophy mice revealed that ATM treatment accelerated weight recovery and restored normal muscle morphology, with treated mice exhibiting cell sizes comparable to healthy controls (30–40 μm vs. 15–25 μm in untreated). These results highlight the ATM’s potential as a precision therapeutic platform for metabolic disorders, leveraging the natural enzyme functionality and synthetic material design to enhance efficacy while minimizing systemic toxicity. Full article
Show Figures

Figure 1

10 pages, 1853 KiB  
Article
Genetic Diversity in the Diminazene Resistance-Associated P2 Adenosine Transporter-1 (AT-1) Gene of Trypanosoma evansi
by Shoaib Ashraf, Ghulam Yasein, Qasim Ali, Kiran Afshan, Martha Betson, Neil Sargison and Umer Chaudhry
Animals 2025, 15(5), 756; https://doi.org/10.3390/ani15050756 - 6 Mar 2025
Viewed by 763
Abstract
Trypanosomes are parasitic protozoa that cause severe diseases in humans and animals. The most important species of Trypanosmes include Trypanosoma evansi and Trypanosoma brucei gambiense. The most well-known human diseases are sleeping sickness in Africa and Chagas disease in South America. The [...] Read more.
Trypanosomes are parasitic protozoa that cause severe diseases in humans and animals. The most important species of Trypanosmes include Trypanosoma evansi and Trypanosoma brucei gambiense. The most well-known human diseases are sleeping sickness in Africa and Chagas disease in South America. The most identified animal diseases include Nagana in the African tsetse fly belt and Surra in South Asia, North Africa, and the Middle East. Surra is caused by Trypanosoma evansi. Diminazene resistance is an emerging threat caused by T. evansi infecting animals. The underlying mechanism of diminazene resistance is poorly understood. Trypanosoma brucei gambiense causes African sleeping sickness. The development of diminazene resistance in Trypanosoma brucei gambiense is associated with the alterations in the corresponding P2 adenosine transporter-1 (AT-1) gene. In the present study, by extrapolating the findings from Trypanosoma brucei gambiense, we analyzed genetic diversity in the P2 adenosine transporter-1 gene (AT-1) from T. evansi to explore a potential link between the presence of mutations in this locus and diminazene treatment in ruminants. We examined T. evansi-infected blood samples collected from goats, sheep, camels, buffalo, and cattle in seven known endemic regions of the Punjab province of Pakistan. Heterozygosity (He) indices indicated a high level of genetic diversity between seven T. evansi field isolates that had resistance-type mutations at codons 178E/S, 239Y/A/E, and 286S/H/I/D/T of the P2 adenosine transporter-1 (AT-1) locus. A low level of genetic diversity was observed in 19 T. evansi field isolates with susceptible-type mutations at codons A178, G181, D239, and N286 of the P2 adenosine transporter-1 (AT-1) locus. Our results on T. evansi warrant further functional studies to explore the relationship between diminazene resistance and the mutations in AT-1. Full article
Show Figures

Figure 1

22 pages, 3824 KiB  
Article
Astaxanthin Alleviates Oxidative Stress in Mouse Preantral Follicles and Enhances Follicular Development Through the AMPK Signaling Pathway
by Jiaqi He, Yue Zhong, Yaqiu Li, Sitong Liu and Xiaoyan Pan
Int. J. Mol. Sci. 2025, 26(5), 2241; https://doi.org/10.3390/ijms26052241 - 2 Mar 2025
Cited by 4 | Viewed by 1426
Abstract
This study investigates the effects of astaxanthin on oxidative stress, mitochondrial function, and follicular development in mouse preantral follicles, with a focus on the involvement of the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway. Astaxanthin (2.5 nM) significantly enhanced both the antrum formation [...] Read more.
This study investigates the effects of astaxanthin on oxidative stress, mitochondrial function, and follicular development in mouse preantral follicles, with a focus on the involvement of the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway. Astaxanthin (2.5 nM) significantly enhanced both the antrum formation (from 85.96% in the control group to 94.38% in the astaxanthin group) and maturation rates (from 79.15% to 85.12%) of oocytes (p < 0.05). From day 4 of in vitro culture, astaxanthin notably increased the area of follicle attachment (from 0.06 µm2 to 0.32 µm2) and the secretion of estradiol (from 32.10 ng/L to 49.73 ng/L) (p < 0.05). Additionally, it significantly decreased malondialdehyde content (from 80.54 μM to 62.65 μM) within the follicles while increasing the mRNA expression levels of glutathione and superoxide dismutase 1 (p < 0.05). Astaxanthin also reduced reactive oxygen species levels in oocytes (p < 0.05). Notably, astaxanthin enhanced the expression of p-AMPK and PGC-1α, which are key proteins for the AMPK pathway; NRF1 and TFAM, which are crucial for mitochondrial biogenesis; NRF2 and HO-1, which protect against oxidative stress; CO1, CO2, CO3, ATP6, ATP8, and TOM20, which are essential for electron transport chain activity and ATP synthesis; PINK1, Parkin, and LC3-II, which are involved in mitophagy; Bcl-2, which inhibits cell apoptosis; and StAR and P450scc, which promote estrogen synthesis (p < 0.05). Furthermore, astaxanthin improved mitochondrial membrane potential and decreased the expression of cleaved caspase 3, Bax, and P53, which promotes cell apoptosis (p < 0.05). However, these changes induced by astaxanthin were completely reversed by AMPK inhibitors, indicating the involvement of the AMPK pathway. Conclusively, astaxanthin enhances the in vitro development of follicles, alleviates oxidative stress in preantral follicles, and promotes mitochondrial function during in vitro culture, which may be mediated by the AMPK pathway. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

14 pages, 1539 KiB  
Article
The Chemical Defensome: A Survey of Environmental Sensing and Response Genes in Copepods
by Vittoria Roncalli, Daniela Ascione, Chiara Lauritano and Ylenia Carotenuto
Int. J. Mol. Sci. 2025, 26(4), 1546; https://doi.org/10.3390/ijms26041546 - 12 Feb 2025
Viewed by 758
Abstract
Highly conserved among eukaryotes, the chemical defensome protects organisms against chemical stressors and helps to reestablish the altered homeostatic state. The defensome includes genes such as transporters (e.g., adenosine triphosphate ATP-binding cassette), phase I and phase II detoxification enzymes, and antioxidant enzymes. [...] Read more.
Highly conserved among eukaryotes, the chemical defensome protects organisms against chemical stressors and helps to reestablish the altered homeostatic state. The defensome includes genes such as transporters (e.g., adenosine triphosphate ATP-binding cassette), phase I and phase II detoxification enzymes, and antioxidant enzymes. During their life cycle, planktonic copepods, the most abundant and ubiquitous metazoans on Earth, are exposed to many environmental stressors that impair their survival and fitness. Here, using high-quality publicly available transcriptomic data, defensome genes were searched in copepods belonging to different orders and living in different environments (e.g., Antarctic, Subarctic, Mediterranean). Gene expression responses were investigated in four calanoids exposed to different stresses to identify a common and species-specific detoxification system. Our results confirm that the defensome is highly conserved among copepods but also report differences in the relative contribution of genes among species living in different habitats, suggesting a fitness adaptation to environmental pressures. The genes provided here can be used as biomarkers of chemical defense and can also be tested in other planktonic organisms to assess the “health” of marine organisms, which is useful for understanding environmental adaptations and they can be used to assess changes and make predictions at the population and community levels. Full article
Show Figures

Figure 1

33 pages, 6032 KiB  
Article
Effects of Low-Temperature Stress During the Grain-Filling Stage on Carbon–Nitrogen Metabolism and Grain Yield Formation in Rice
by Huimiao Ma, Yan Jia, Weiqiang Wang, Jin Wang, Detang Zou, Jingguo Wang, Weibin Gong, Yiming Han, Yuxiang Dang, Jing Wang, Ziming Wang, Qianru Yuan, Yu Sun, Xiannan Zeng, Shiqi Zhang and Hongwei Zhao
Agronomy 2025, 15(2), 417; https://doi.org/10.3390/agronomy15020417 - 7 Feb 2025
Cited by 4 | Viewed by 1214
Abstract
Interactions between carbon and nitrogen metabolism are essential for balancing source–sink dynamics in plants. Frequent cold stress disrupts these metabolic processes in rice and reduces grain yield. Two rice cultivars (DN428: cold-tolerant; SJ10: cold-sensitive) were subjected to 19 °C low-temperature stress at full-heading [...] Read more.
Interactions between carbon and nitrogen metabolism are essential for balancing source–sink dynamics in plants. Frequent cold stress disrupts these metabolic processes in rice and reduces grain yield. Two rice cultivars (DN428: cold-tolerant; SJ10: cold-sensitive) were subjected to 19 °C low-temperature stress at full-heading for varying lengths of time to analyze the effects on leaf and grain metabolism. The objective was to track carbon–nitrogen flow and identify factors affecting grain yield. Low-temperature stress significantly reduced the activity of nitrate reductase (NR), glutamine synthetase (GS), glutamate synthase (GOGAT), glutamate dehydrogenase (GDH), glutamic oxaloacetic transaminase (GOT), and glutamic pyruvic transaminase (GPT), in functional leaves compared to the control. This reduction decreased nitrogen accumulation, inhibited chlorophyll synthesis, and slowed photosynthesis. To preserve intracellular osmotic balance and lessen the effects of low temperatures, sucrose, fructose, and total soluble sugar levels, as well as sucrose synthase (SS) and sucrose phosphate synthase (SPS) activities, surged in response to low-temperature stress. However, low-temperature stress significantly reduced the activity of adenosine diphosphate glucose pyrophosphorylase (AGPase), granule-bound starch synthase (GBSS), soluble starch synthase (SSS), and starch branching enzyme (SBE). At the same time, low-temperature stress reduced the area of vascular bundles and phloem, making it difficult to transport carbon and nitrogen metabolites to grains on time. The response of grains to low-temperature stress differs from that of leaves, with prolonged low-temperature exposure causing a gradual decrease in carbon and nitrogen metabolism-related enzyme activities and product accumulation within the grains. The insufficient synthesis of starch precursors and carbon skeletons results in significantly lower thousand-grain weight and seed-setting rates, ultimately contributing to grain yield loss. This decline was more pronounced in inferior grains compared to superior grains. Compared to SJ10, DN428 exhibited higher values across various indicators and smaller declines under low-temperature stress, suggesting enhanced cold-tolerance and a greater capacity to maintain grain yield stability. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Graphical abstract

26 pages, 8557 KiB  
Article
A Structural Bioinformatics-Guided Study of Adenosine Triphosphate-Binding Cassette (ABC) Transporters and Their Substrates
by Iqra Younus, Robert C. Ford and Stephen M. Prince
Membranes 2025, 15(1), 20; https://doi.org/10.3390/membranes15010020 - 10 Jan 2025
Viewed by 1456
Abstract
Adenosine triphosphate-binding cassette (ABC) transporters form a ubiquitous superfamily of integral membrane proteins involved in the translocation of substrates across membranes. Human ABC transporters are closely linked to the pathogenesis of diseases such as cancer, metabolic diseases, and Alzheimer’s disease. In this study, [...] Read more.
Adenosine triphosphate-binding cassette (ABC) transporters form a ubiquitous superfamily of integral membrane proteins involved in the translocation of substrates across membranes. Human ABC transporters are closely linked to the pathogenesis of diseases such as cancer, metabolic diseases, and Alzheimer’s disease. In this study, four ABC transporters were chosen based on (I) their importance in humans and (II) their score in a structural bioinformatics screen aimed at the prediction of crystallisation propensity. The top-scoring ABC transporters’ orthologs (Mus musculus—mouse ABCB5, Ailuropoda melanoleuca—giant panda ABCB6, Myotis lucifugus—little brown bat ABCG1 and Mus musculus ABCG4) were then expressed in Saccharomyces cerevisiae with a combined green fluorescent protein and polyhistidine tag, enabling visualisation and purification. After partial purification and in the presence of the detergent (n-dodecyl-β-D-maltoside), the kinetic parameters of the ATP hydrolysis reactions of the orthologs were determined, as well as the extent of stimulation of their activity when presented with putative substrates. We discuss the efficiency of such bioinformatics approaches and make suggestions for their improvement and wider application in membrane protein-structure determination. Full article
(This article belongs to the Section Biological Membranes)
Show Figures

Figure 1

9 pages, 1376 KiB  
Brief Report
A High-Fat Diet Induces Epigenetic 1-Carbon Metabolism, Homocystinuria, and Renal-Dependent HFpEF
by Suresh C. Tyagi
Nutrients 2025, 17(2), 216; https://doi.org/10.3390/nu17020216 - 8 Jan 2025
Cited by 2 | Viewed by 1927
Abstract
Background/Objectives: Chronic gut dysbiosis due to a high-fat diet (HFD) instigates cardiac remodeling and heart failure with preserved ejection fraction (HFpEF), in particular, kidney/volume-dependent HFpEF. Studies report that although mitochondrial ATP citrate lyase (ACLY) supports cardiac function, it decreases more in human HFpEF [...] Read more.
Background/Objectives: Chronic gut dysbiosis due to a high-fat diet (HFD) instigates cardiac remodeling and heart failure with preserved ejection fraction (HFpEF), in particular, kidney/volume-dependent HFpEF. Studies report that although mitochondrial ATP citrate lyase (ACLY) supports cardiac function, it decreases more in human HFpEF than HFrEF. Interestingly, ACLY synthesizes lipids and creates hyperlipidemia. Epigenetically, ACLY acetylates histone. The mechanism(s) are largely unknown. Methods/Results: One hypothesis is that an HFD induces epigenetic folate 1-carbon metabolism (FOCM) and homocystinuria. This abrogates dipping in sleep-time blood pressure and causes hypertension and morning heart attacks. We observed that probiotics/lactobacillus utilize fat/lipids post-biotically, increasing mitochondrial bioenergetics and attenuating HFpEF. We suggest novel and paradigm-shift epigenetic mitochondrial sulfur trans-sulfuration pathways that selectively target HFD-induced HFpEF. Previous studies from our laboratory, using a single-cell analysis, revealed an increase in the transporter (SLC25A) of s-adenosine–methionine (SAM) during elevated levels of homocysteine (Hcy, i.e., homocystinuria, HHcy), a consequence of impaired epigenetic recycling of Hcy back to methionine due to an increase in the FOCM methylation of H3K4, K9, H4K20, and gene writer (DNMT) and decrease in eraser (TET/FTO). Hcy is transported to mitochondria by SLC7A for clearance via sulfur metabolomic trans-sulfuration by 3-mercaptopyruvate sulfur transferase (3MST). Conclusions: We conclude that gut dysbiosis due to HFD disrupts rhythmic epigenetic memory via FOCM and increases in DNMT1 and creates homocystinuria, leading to a decrease in mitochondrial trans-sulfuration and bioenergetics. The treatment with lactobacillus metabolites fat/lipids post-biotically and bi-directionally produces folic acid and lactone–ketone body that mitigates the HFD-induced mitochondrial remodeling and HFpEF. Full article
Show Figures

Figure 1

Back to TopTop