Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,936)

Search Parameters:
Keywords = adaptive weight optimization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6483 KB  
Article
Loop-MapNet: A Multi-Modal HDMap Perception Framework with SDMap Dynamic Evolution and Priors
by Yuxuan Tang, Jie Hu, Daode Zhang, Wencai Xu, Feiyu Zhao and Xinghao Cheng
Appl. Sci. 2025, 15(20), 11160; https://doi.org/10.3390/app152011160 - 17 Oct 2025
Abstract
High-definition maps (HDMaps) are critical for safe autonomy on structured roads. Yet traditional production—relying on dedicated mapping fleets and manual quality control—is costly and slow, impeding large-scale, frequent updates. Recently, standard-definition maps (SDMaps) derived from remote sensing have been adopted as priors to [...] Read more.
High-definition maps (HDMaps) are critical for safe autonomy on structured roads. Yet traditional production—relying on dedicated mapping fleets and manual quality control—is costly and slow, impeding large-scale, frequent updates. Recently, standard-definition maps (SDMaps) derived from remote sensing have been adopted as priors to support HDMap perception, lowering cost but struggling with subtle urban changes and localization drift. We propose Loop-MapNet, a self-evolving, multimodal, closed-loop mapping framework. Loop-MapNet effectively leverages surround-view images, LiDAR point clouds, and SDMaps; it fuses multi-scale vision via a weighted BiFPN, and couples PointPillars BEV and SDMap topology encoders for cross-modal sensing. A Transformer-based bidirectional adaptive cross-attention aligns SDMap with online perception, enabling robust fusion under heterogeneity. We further introduce a confidence-guided masked autoencoder (CG-MAE) that leverages confidence and probabilistic distillation to both capture implicit SDMap priors and enhance the detailed representation of low-confidence HDMap regions. With spatiotemporal consistency checks, Loop-MapNet incrementally updates SDMaps to form a perception–mapping–update loop, compensating remote-sensing latency and enabling online map optimization. On nuScenes, within 120 m, Loop-MapNet attains 61.05% mIoU, surpassing the best baseline by 0.77%. Under extreme localization errors, it maintains 60.46% mIoU, improving robustness by 2.77%; CG-MAE pre-training raises accuracy in low-confidence regions by 1.72%. These results demonstrate advantages in fusion and robustness, moving beyond one-way prior injection and enabling HDMap–SDMap co-evolution for closed-loop autonomy and rapid SDMap refresh from remote sensing. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

39 pages, 7020 KB  
Article
Improved Multi-Faceted Sine Cosine Algorithm for Optimization and Electricity Load Forecasting
by Stephen O. Oladipo, Udochukwu B. Akuru and Abraham O. Amole
Computers 2025, 14(10), 444; https://doi.org/10.3390/computers14100444 - 17 Oct 2025
Abstract
The sine cosine algorithm (SCA) is a population-based stochastic optimization method that updates the position of each search agent using the oscillating properties of the sine and cosine functions to balance exploration and exploitation. While flexible and widely applied, the SCA often suffers [...] Read more.
The sine cosine algorithm (SCA) is a population-based stochastic optimization method that updates the position of each search agent using the oscillating properties of the sine and cosine functions to balance exploration and exploitation. While flexible and widely applied, the SCA often suffers from premature convergence and getting trapped in local optima due to weak exploration–exploitation balance. To overcome these issues, this study proposes a multi-faceted SCA (MFSCA) incorporating several improvements. The initial population is generated using dynamic opposition (DO) to increase diversity and global search capability. Chaotic logistic maps generate random coefficients to enhance exploration, while an elite-learning strategy allows agents to learn from multiple top-performing solutions. Adaptive parameters, including inertia weight, jumping rate, and local search strength, are applied to guide the search more effectively. In addition, Lévy flights and adaptive Gaussian local search with elitist selection strengthen exploration and exploitation, while reinitialization of stagnating agents maintains diversity. The developed MFSCA was tested against 23 benchmark optimization functions and assessed using the Wilcoxon rank-sum and Friedman rank tests. Results showed that MFSCA outperformed the original SCA and other variants. To further validate its applicability, this study developed a fuzzy c-means MFSCA-based adaptive neuro-fuzzy inference system to forecast energy consumption in student residences, using student apartments at a university in South Africa as a case study. The MFSCA-ANFIS achieved superior performance with respect to RMSE (1.9374), MAD (1.5483), MAE (1.5457), CVRMSE (42.8463), and SD (1.9373). These results highlight MFSCA’s effectiveness as a robust optimizer for both general optimization tasks and energy management applications. Full article
(This article belongs to the Special Issue Operations Research: Trends and Applications)
Show Figures

Figure 1

16 pages, 5944 KB  
Article
A Gradient-Variance Weighting Physics-Informed Neural Network for Solving Integer and Fractional Partial Differential Equations
by Liang Zhang, Quansheng Liu, Ruigang Zhang, Liqing Yue and Zhaodong Ding
Appl. Sci. 2025, 15(20), 11137; https://doi.org/10.3390/app152011137 - 17 Oct 2025
Abstract
Physics-Informed Neural Networks (PINNs) have emerged as a promising paradigm for solving partial differential equations (PDEs) by embedding physical laws into the learning process. However, standard PINNs often suffer from training instabilities and unbalanced optimization when handling multi-term loss functions, especially in problems [...] Read more.
Physics-Informed Neural Networks (PINNs) have emerged as a promising paradigm for solving partial differential equations (PDEs) by embedding physical laws into the learning process. However, standard PINNs often suffer from training instabilities and unbalanced optimization when handling multi-term loss functions, especially in problems involving singular perturbations, fractional operators, or multi-scale behaviors. To address these limitations, we propose a novel gradient variance weighting physics-informed neural network (GVW-PINN), which adaptively adjusts the loss weights based on the variance of gradient magnitudes during training. This mechanism balances the optimization dynamics across different loss terms, thereby enhancing both convergence stability and solution accuracy. We evaluate GVW-PINN on three representative PDE models and numerical experiments demonstrate that GVW-PINN consistently outperforms the conventional PINN in terms of training efficiency, loss convergence, and predictive accuracy. In particular, GVW-PINN achieves smoother and faster loss reduction, reduces relative errors by one to two orders of magnitude, and exhibits superior generalization to unseen domains. The proposed framework provides a robust and flexible strategy for applying PINNs to a wide range of integer- and fractional-order PDEs, highlighting its potential for advancing data-driven scientific computing in complex physical systems. Full article
Show Figures

Figure 1

23 pages, 1611 KB  
Article
Optimal Distribution Network Reconfiguration Using Particle Swarm Optimization-Simulated Annealing: Adaptive Inertia Weight Based on Simulated Annealing
by Franklin Jesus Simeon Pucuhuayla, Dionicio Zocimo Ñaupari Huatuco, Yuri Percy Molina Rodriguez and Jhonatan Reyes Llerena
Energies 2025, 18(20), 5483; https://doi.org/10.3390/en18205483 - 17 Oct 2025
Abstract
The reconfiguration of distribution networks plays a crucial role in minimizing active power losses and enhancing reliability, but the problem becomes increasingly complex with the integration of distributed generation (DG). Traditional optimization methods and even earlier hybrid metaheuristics often suffer from premature convergence [...] Read more.
The reconfiguration of distribution networks plays a crucial role in minimizing active power losses and enhancing reliability, but the problem becomes increasingly complex with the integration of distributed generation (DG). Traditional optimization methods and even earlier hybrid metaheuristics often suffer from premature convergence or require problem reformulations that compromise feasibility. To overcome these limitations, this paper proposes a novel hybrid algorithm that couples Particle Swarm Optimization (PSO) with Simulated Annealing (SA) through an adaptive inertia weight mechanism derived from the Lundy–Mees cooling schedule. Unlike prior hybrid approaches, our method directly addresses the original non-convex, combinatorial nature of the Distribution Network Reconfiguration (DNR) problem without convexification or post-processing adjustments. The main contributions of this study are fourfold: (i) proposing a PSO-SA hybridization strategy that enhances global exploration and avoids stagnation; (ii) introducing an adaptive inertia weight rule tuned by SA, more effective than traditional schemes; (iii) applying a stagnation-based stopping criterion to speed up convergence and reduce computational cost; and (iv) validating the approach on 5-, 33-, and 69-bus systems, with and without DG, showing robustness, recurrence rates above 80%, and low variability compared to conventional PSO. Simulation results confirm that the proposed PSO-SA algorithm achieves superior performance in both loss minimization and solution stability, positioning it as a competitive and scalable alternative for modern active distribution systems. Full article
(This article belongs to the Section F5: Artificial Intelligence and Smart Energy)
Show Figures

Figure 1

18 pages, 1970 KB  
Article
Hybrid MCMF–NSGA-II Framework for Energy-Aware Task Assignment in Multi-Tier Shuttle Systems
by Ping Du and Gongyan Li
Appl. Sci. 2025, 15(20), 11127; https://doi.org/10.3390/app152011127 - 17 Oct 2025
Abstract
The rapid growth of robotic warehouses and smart logistics has increased the demand for efficient scheduling of multi-tier shuttle systems (MTSSs). MTSS scheduling is a complex robotic task allocation problem, where throughput, energy efficiency, and service quality must be jointly optimized under operational [...] Read more.
The rapid growth of robotic warehouses and smart logistics has increased the demand for efficient scheduling of multi-tier shuttle systems (MTSSs). MTSS scheduling is a complex robotic task allocation problem, where throughput, energy efficiency, and service quality must be jointly optimized under operational constraints. To address this challenge, this study proposes a hybrid optimization framework that integrates the Minimum-Cost Maximum-Flow (MCMF) algorithm with the Non-dominated Sorting Genetic Algorithm II (NSGA-II). The MTSS is modeled as a cyber–physical robotic system that explicitly incorporates task flow, energy flow, and information flow. The lower-layer MCMF ensures efficient and feasible task–robot assignments under state-of-charge (SOC) and deadline constraints, while the upper-layer NSGA-II adaptively tunes cost-function weights to explore Pareto-optimal trade-offs among makespan, energy consumption, and waiting time. Simulation results show that the hybrid framework outperforms baseline heuristics and static optimization methods and reduces makespan by up to 5%, the energy consumption by 2.8%, and the SOC violations by over 90% while generating diverse Pareto fronts that enable flexible throughput-oriented, service-oriented, or energy-conservative scheduling strategies. The proposed framework thus provides a practical and scalable solution for energy-aware robotic scheduling in automated warehouses, thus bridging the gap between exact assignment methods and adaptive multi-objective optimization approaches. Full article
(This article belongs to the Topic Smart Production in Terms of Industry 4.0 and 5.0)
Show Figures

Figure 1

26 pages, 5646 KB  
Article
A Symmetry-Aware BAS for Improved Fuzzy Intra-Class Distance-Based Image Segmentation
by Yazhi Wang, Lei Ding and Qing Zhang
Symmetry 2025, 17(10), 1752; https://doi.org/10.3390/sym17101752 - 17 Oct 2025
Abstract
At present, the Beetle Antennae Search (BAS) algorithm has achieved remarkable success in image segmentation. However, when dealing with some complex image segmentation problems, particularly in the context of instance segmentation, which aims to identify and delineate each distinct object of interest, even [...] Read more.
At present, the Beetle Antennae Search (BAS) algorithm has achieved remarkable success in image segmentation. However, when dealing with some complex image segmentation problems, particularly in the context of instance segmentation, which aims to identify and delineate each distinct object of interest, even within the same semantic class, there are problems such as poor optimization performance, slow convergence speed, and low stability. Therefore, to address the challenges of instance segmentation, an improved image segmentation model is proposed, and a novel BAS algorithm called the Crossover and Mutation Beetle Antennae Search (CMBAS) algorithm is designed to optimize it. The core of our approach treats instance segmentation as a sophisticated clustering problem, where each cluster center corresponds to a unique object instance. Firstly, an improved intra-class distance based on fuzzy membership weighting is designed to enhance the compactness of individual instances. Secondly, to quantify the genetic potential of individuals through their fitness performance, CMBAS uses an adaptive crossover rate mechanism based on fitness ranking and establishes a ranking-driven crossover probability allocation model. Thirdly, to guide individuals to evolve towards excellence, CMBAS uses a strategy for individual mutation of longicorn beetle antennae based on DE/current-to-best/1. Furthermore, the symmetry-aware adaptive crossover and mutation operations enhance the balance between exploration and exploitation, leading to more robust and consistent instance-level segmentation results. Experimental results on five typical benchmark functions demonstrate that CMBAS achieves superior accuracy and stability compared to the BAGWO, BAS, GWO, PSO, GA, Jaya, and FA algorithms. In image segmentation applications, CMBAS exhibits exceptional instance segmentation performance, including an enhanced ability to distinguish between adjacent or overlapping objects of the same class, resulting in smoother and more continuous instance boundaries, clearer segmented targets, and excellent convergence performance. Full article
(This article belongs to the Special Issue Symmetry and Asymmetry in Intelligent Control and Computing)
Show Figures

Figure 1

23 pages, 2648 KB  
Article
QL-AODV: Q-Learning-Enhanced Multi-Path Routing Protocol for 6G-Enabled Autonomous Aerial Vehicle Networks
by Abdelhamied A. Ateya, Nguyen Duc Tu, Ammar Muthanna, Andrey Koucheryavy, Dmitry Kozyrev and János Sztrik
Future Internet 2025, 17(10), 473; https://doi.org/10.3390/fi17100473 - 16 Oct 2025
Abstract
With the arrival of sixth-generation (6G) wireless systems comes radical potential for the deployment of autonomous aerial vehicle (AAV) swarms in mission-critical applications, ranging from disaster rescue to intelligent transportation. However, 6G-supporting AAV environments present challenges such as dynamic three-dimensional topologies, highly restrictive [...] Read more.
With the arrival of sixth-generation (6G) wireless systems comes radical potential for the deployment of autonomous aerial vehicle (AAV) swarms in mission-critical applications, ranging from disaster rescue to intelligent transportation. However, 6G-supporting AAV environments present challenges such as dynamic three-dimensional topologies, highly restrictive energy constraints, and extremely low latency demands, which substantially degrade the efficiency of conventional routing protocols. To this end, this work presents a Q-learning-enhanced ad hoc on-demand distance vector (QL-AODV). This intelligent routing protocol uses reinforcement learning within the AODV protocol to support adaptive, data-driven route selection in highly dynamic aerial networks. QL-AODV offers four novelties, including a multipath route set collection methodology that retains up to ten candidate routes for each destination using an extended route reply (RREP) waiting mechanism, a more detailed RREP message format with cumulative node buffer usage, enabling informed decision-making, a normalized 3D state space model recording hop count, average buffer occupancy, and peak buffer saturation, optimized to adhere to aerial network dynamics, and a light-weighted distributed Q-learning approach at the source node that uses an ε-greedy policy to balance exploration and exploitation. Large-scale simulations conducted with NS-3.34 for various node densities and mobility conditions confirm the better performance of QL-AODV compared to conventional AODV. In high-mobility environments, QL-AODV offers up to 9.8% improvement in packet delivery ratio and up to 12.1% increase in throughput, while remaining persistently scalable for various network sizes. The results prove that QL-AODV is a reliable, scalable, and intelligent routing method for next-generation AAV networks that will operate in intensive environments that are expected for 6G. Full article
(This article belongs to the Special Issue Moving Towards 6G Wireless Technologies—2nd Edition)
Show Figures

Figure 1

16 pages, 1809 KB  
Article
Transformer Fault Diagnosis Method Based on Improved Particle Swarm Optimization and XGBoost in Power System
by Yuanhao Zheng, Chaoping Rao, Fei Wang and Hongbo Zou
Processes 2025, 13(10), 3321; https://doi.org/10.3390/pr13103321 - 16 Oct 2025
Abstract
Fault prediction and diagnosis are critical for enhancing the maintenance and reliability of power system equipment, reducing operational costs, and preventing potential failures. In power transformers, periodic oil sampling and gas ratio analysis provide valuable insights for predictive maintenance and life-cycle assessment. Machine [...] Read more.
Fault prediction and diagnosis are critical for enhancing the maintenance and reliability of power system equipment, reducing operational costs, and preventing potential failures. In power transformers, periodic oil sampling and gas ratio analysis provide valuable insights for predictive maintenance and life-cycle assessment. Machine learning methods, such as XGBoost, have proven to deliver more accurate results, especially when historical data is limited. However, the performance of XGBoost is highly dependent on the optimization of its hyperparameters. To address this, this paper proposes an improved Particle Swarm Optimization (IPSO) method to optimize the hyperparameters of XGBoost for transformer fault diagnosis. The PSO algorithm is enhanced by introducing topology optimization, adaptively adjusting the acceleration factor, dividing the swarm into master–slave particle groups to strengthen search capability, and dynamically adjusting inertia weights using a linear adaptive strategy. IPSO is applied to optimize key hyperparameters of the XGBoost model, improving both its diagnostic accuracy and generalization ability. Experimental results confirm the effectiveness of the proposed model in enhancing fault prediction and diagnosis in power systems. Full article
(This article belongs to the Special Issue Hybrid Artificial Intelligence for Smart Process Control)
Show Figures

Figure 1

20 pages, 2444 KB  
Article
An Optimal Active Power Allocation Method for Wind Farms Considering Unit Fatigue Load
by Zhi Huang, Xinyu Yang, Sile Hu, Yu Guo, Yutong Wang, Xianglong Liu, Yuan Wang, Wenjing Liang and Jiaqiang Yang
Sustainability 2025, 17(20), 9189; https://doi.org/10.3390/su17209189 - 16 Oct 2025
Abstract
To address the issue of premature wear and tear in wind turbines due to uneven fatigue load distribution within wind farms, this study proposes an optimal active power allocation method that considers unit fatigue loads. First, the fatigue load expressions for wind turbine [...] Read more.
To address the issue of premature wear and tear in wind turbines due to uneven fatigue load distribution within wind farms, this study proposes an optimal active power allocation method that considers unit fatigue loads. First, the fatigue load expressions for wind turbine shafts and tower systems with two degrees of freedom are derived, and a quantitative relationship between turbine fatigue load and active power output variations is established. Subsequently, the optimization objective is set as minimizing the total fatigue load in the wind farm during frequency regulation. This model incorporates the fatigue load differences among different turbines and ensures that the sum of the power adjustments across all turbines meets the frequency regulation power demand, resulting in an active power allocation model. To solve this optimization model, an improved Firefly Algorithm (IFA), integrating Logistic mapping and an adaptive weight strategy, is employed. Aligned with the recommended goals of sustainable development, this approach not only reduces fatigue loads, enhancing the lifespan and efficiency of wind turbines, but also ensures that the wind farm retains strong frequency regulation performance. By optimizing turbine performance and promoting a more balanced load distribution, the proposed method significantly contributes to the overall reliability and economic sustainability of renewable energy systems. Finally, a case study system consisting of nine 5 MW turbines is established to validate the proposed method, demonstrating its ability to evenly distribute the fatigue load across turbines while effectively tracking higher-level dispatch commands and reducing the same fatigue loads. Full article
Show Figures

Figure 1

24 pages, 2221 KB  
Article
Multi-Scale Frequency-Aware Transformer for Pipeline Leak Detection Using Acoustic Signals
by Menghan Chen, Yuchen Lu, Wangyu Wu, Yanchen Ye, Bingcai Wei and Yao Ni
Sensors 2025, 25(20), 6390; https://doi.org/10.3390/s25206390 - 16 Oct 2025
Abstract
Pipeline leak detection through acoustic signal measurement faces critical challenges, including insufficient utilization of time-frequency domain features, poor adaptability to noisy environments, and inadequate exploitation of frequency-domain prior knowledge in existing deep learning approaches. This paper proposes a Multi-Scale Frequency-Aware Transformer (MSFAT) architecture [...] Read more.
Pipeline leak detection through acoustic signal measurement faces critical challenges, including insufficient utilization of time-frequency domain features, poor adaptability to noisy environments, and inadequate exploitation of frequency-domain prior knowledge in existing deep learning approaches. This paper proposes a Multi-Scale Frequency-Aware Transformer (MSFAT) architecture that integrates measurement-based acoustic signal analysis with artificial intelligence techniques. The MSFAT framework consists of four core components: a frequency-aware embedding layer that achieves joint representation learning of time-frequency dual-domain features through parallel temporal convolution and frequency transformation, a multi-head frequency attention mechanism that dynamically adjusts attention weights based on spectral distribution using frequency features as modulation signals, an adaptive noise filtering module that integrates noise detection, signal enhancement, and adaptive fusion functions through end-to-end joint optimization, and a multi-scale feature aggregation mechanism that extracts discriminative global representations through complementary pooling strategies. The proposed method addresses the fundamental limitations of traditional measurement-based detection systems by incorporating domain-specific prior knowledge into neural network architecture design. Experimental validation demonstrates that MSFAT achieves 97.2% accuracy and an F1-score, representing improvements of 10.5% and 10.9%, respectively, compared to standard Transformer approaches. The model maintains robust detection performance across signal-to-noise ratio conditions ranging from 5 to 30 dB, demonstrating superior adaptability to complex industrial measurement environments. Ablation studies confirm the effectiveness of each innovative module, with frequency-aware mechanisms contributing most significantly to the enhanced measurement precision and reliability in pipeline leak detection applications. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

19 pages, 4105 KB  
Essay
HIPACO: An RSSI Indoor Positioning Algorithm Based on Improved Ant Colony Optimization Algorithm
by Yiying Zhao and Baohua Jin
Algorithms 2025, 18(10), 654; https://doi.org/10.3390/a18100654 - 16 Oct 2025
Abstract
Aiming at the shortcomings of traditional ACO algorithms in indoor localization applications, a high-performance improved ant colony algorithm (HIPACO) based on dynamic hybrid pheromone strategy is proposed. The algorithm divides the ant colony into worker ants (local exploitation) and soldier ants (global exploration) [...] Read more.
Aiming at the shortcomings of traditional ACO algorithms in indoor localization applications, a high-performance improved ant colony algorithm (HIPACO) based on dynamic hybrid pheromone strategy is proposed. The algorithm divides the ant colony into worker ants (local exploitation) and soldier ants (global exploration) through a division of labor mechanism, in which the worker ants use a pheromone-weighted learning strategy for refined search, and the soldier ants perform Gaussian perturbation-guided global exploration. At the same time, an adaptive pheromone attenuation model (elite particle enhancement, ordinary particle attenuation) and a dimensional balance strategy (sinusoidal modulation function) are designed to dynamically optimize the searching process; moreover, a hybrid guidance mechanism is introduced to apply adaptive Gaussian perturbation guidance on successive failed particles to dynamically optimize the searching process. A hybrid guidance mechanism is introduced to enhance the robustness of the algorithm by applying adaptive Gaussian perturbation to successive failed particles. The experimental results show that in the 3D localization scenario with four beacon nodes, the average localization error of HIPACO is 0.82 ± 0.35 m, which is 42.3% lower than that of the traditional ACO algorithm, the convergence speed is improved by 2.1 times, and the optimal performance is maintained under different numbers of anchor nodes and spatial scales. This study provides an efficient solution to the indoor localization problem in the presence of multipath effect and non-line-of-sight propagation. Full article
Show Figures

Figure 1

42 pages, 13173 KB  
Article
Simulation Application of Adaptive Strategy Hybrid Secretary Bird Optimization Algorithm in Multi-UAV 3D Path Planning
by Xiaojun Zheng, Rundong Liu and Xiaoyang Liu
Computers 2025, 14(10), 439; https://doi.org/10.3390/computers14100439 - 15 Oct 2025
Viewed by 106
Abstract
Multi-UAV three-dimensional (3D) path planning is formulated as a high-dimensional multi-constraint optimization problem involving costs such as path length, flight altitude, avoidance cost, and smoothness. To address this challenge, we propose an Adaptive Strategy Hybrid Secretary Bird Optimization Algorithm (ASHSBOA), an enhanced variant [...] Read more.
Multi-UAV three-dimensional (3D) path planning is formulated as a high-dimensional multi-constraint optimization problem involving costs such as path length, flight altitude, avoidance cost, and smoothness. To address this challenge, we propose an Adaptive Strategy Hybrid Secretary Bird Optimization Algorithm (ASHSBOA), an enhanced variant of the Secretary Bird Optimization Algorithm (SBOA). ASHSBOA integrates a weighted multi-direction dynamic learning strategy, an adaptive strategy-selection mechanism, and a hybrid elite-guided boundary-repair scheme to enhance the ability to identify local optima and balance exploration and exploitation. The algorithm is tested on benchmark suites CEC-2017 and CEC-2022 against nine classic or state-of-the-art optimizers. Non-parametric tests show that ASHSBOA consistently achieves superior performance and ranks first among competitors. Finally, we applied ASHSBOA to a multi-UAV 3D path planning model. In Scenario 1, the path cost planned by ASHSBOA decreased by 124.9 compared to the second-ranked QHSBOA. In the more complex Scenario 2, this figure reached 1137.9. Simulation results demonstrate that ASHSBOA produces lower-cost flight paths and more stable convergence behavior compared to comparative methods. These results validate the robustness and practicality of ASHSBOA in UAV path planning. Full article
51 pages, 9631 KB  
Review
Review of Physics-Informed Neural Networks: Challenges in Loss Function Design and Geometric Integration
by Sergiy Plankovskyy, Yevgen Tsegelnyk, Nataliia Shyshko, Igor Litvinchev, Tetyana Romanova and José Manuel Velarde Cantú
Mathematics 2025, 13(20), 3289; https://doi.org/10.3390/math13203289 - 15 Oct 2025
Viewed by 151
Abstract
Physics-Informed Neural Networks (PINNs) represent a transformative approach to solving partial differential equation (PDE)-based boundary value problems by embedding physical laws into the learning process, addressing challenges such as non-physical solutions and data scarcity, which are inherent in traditional neural networks. This review [...] Read more.
Physics-Informed Neural Networks (PINNs) represent a transformative approach to solving partial differential equation (PDE)-based boundary value problems by embedding physical laws into the learning process, addressing challenges such as non-physical solutions and data scarcity, which are inherent in traditional neural networks. This review analyzes critical challenges in PINN development, focusing on loss function design, geometric information integration, and their application in engineering modeling. We explore advanced strategies for constructing loss functions—including adaptive weighting, energy-based, and variational formulations—that enhance optimization stability and ensure physical consistency across multiscale and multiphysics problems. We emphasize geometry-aware learning through analytical representations—signed distance functions (SDFs), phi-functions, and R-functions—with complementary strengths: SDFs enable precise local boundary enforcement, whereas phi/R capture global multi-body constraints in irregular domains; in practice, hybrid use is effective for engineering problems. We also examine adaptive collocation sampling, domain decomposition, and hard-constraint mechanisms for boundary conditions to improve convergence and accuracy and discuss integration with commercial CAE via hybrid schemes that couple PINNs with classical solvers (e.g., FEM) to boost efficiency and reliability. Finally, we consider emerging paradigms—Physics-Informed Kolmogorov–Arnold Networks (PIKANs) and operator-learning frameworks (DeepONet, Fourier Neural Operator)—and outline open directions in standardized benchmarks, computational scalability, and multiphysics/multi-fidelity modeling for digital twins and design optimization. Full article
Show Figures

Figure 1

23 pages, 2425 KB  
Article
Effects of Euphorbia humifusa Extract on Nutrient Digestibility, Diarrhea, Serum Biomarkers, and Anti-Inflammatory Mechanisms in Preweaned Calves
by Chuntao Zhang, Zhongying Xing, Wenxiao Feng, Yan Tu and Qiyu Diao
Animals 2025, 15(20), 2979; https://doi.org/10.3390/ani15202979 - 15 Oct 2025
Viewed by 164
Abstract
Early-life rearing of animals is critical for their lifelong productivity, health, and the quality/safety of livestock products. EHE, a feed additive with growth-promoting, antibacterial, and immunity-enhancing properties, was tested for effects on preweaned calves. Forty-eight calves (42.18 ± 0.61 kg) were randomly assigned [...] Read more.
Early-life rearing of animals is critical for their lifelong productivity, health, and the quality/safety of livestock products. EHE, a feed additive with growth-promoting, antibacterial, and immunity-enhancing properties, was tested for effects on preweaned calves. Forty-eight calves (42.18 ± 0.61 kg) were randomly assigned to four groups (n = 12/group), fed milk replacer with 0 (CON), 400 (A), 800 (B), or 1200 (C) mg/d EHE for 60 d (after 6 d adaptation). Growth, nutrient digestibility, serum biomarkers, rumen fermentation, and diarrhea incidence were measured; network pharmacology was used to analyze EHE’s targets. Results: Group C had 14.09% higher body weight gain (52 vs. 45 kg, p < 0.05), higher dry matter intake/digestibility, and increased acid detergent fiber digestibility vs. CON. Group C had reduced diarrhea frequency, tended to have lower rumen acetate-to-propionate ratio, and had higher early rumen volatile fatty acids (VFA). At d 66, Groups B and C had reduced serum IL-6/IL-8 (p < 0.05). Network pharmacology identified 256 anti-inflammatory targets (e.g., BCL2, IL6) involved in apoptosis/inflammatory pathways. Conclusion: 1200 mg/d EHE optimally improves calf growth, digestibility, and anti-inflammatory status. Full article
Show Figures

Figure 1

28 pages, 3488 KB  
Article
A Cooperative Longitudinal-Lateral Platoon Control Framework with Dynamic Lane Management for Unmanned Ground Vehicles Based on A Dual-Stage Multi-Objective MPC Approach
by Shunchao Wang, Zhigang Wu and Yonghui Su
Drones 2025, 9(10), 711; https://doi.org/10.3390/drones9100711 - 14 Oct 2025
Viewed by 253
Abstract
Cooperative longitudinal–lateral trajectory optimization is essential for unmanned ground vehicle (UGV) platoons to improve safety, capacity, and efficiency. However, existing approaches often face unstable formation under low penetration rates and rely on fragmented control strategies. This study develops a cooperative longitudinal–lateral trajectory tracking [...] Read more.
Cooperative longitudinal–lateral trajectory optimization is essential for unmanned ground vehicle (UGV) platoons to improve safety, capacity, and efficiency. However, existing approaches often face unstable formation under low penetration rates and rely on fragmented control strategies. This study develops a cooperative longitudinal–lateral trajectory tracking framework tailored for UGV platooning, embedded in a hierarchical control architecture. Dual-stage multi-objective Model Predictive Control (MPC) is proposed, decomposing trajectory planning into pursuit and platooning phases. Each stage employs adaptive weighting to balance platoon efficiency and traffic performance across varying operating conditions. Furthermore, a traffic-aware organizational module is designed to enable the dynamic opening of UGV-dedicated lanes, ensuring that platoon formation remains compatible with overall traffic flow. Simulation results demonstrate that the adaptive weighting strategy reduces the platoon formation time by 41.6% with only a 1.29% reduction in the average traffic speed. In addition, the dynamic lane management mechanism yields longer and more stable UGV platoons under different penetration levels, particularly in high-flow environments. The proposed cooperative framework provides a scalable solution for advancing UGV platoon control and demonstrates the potential of unmanned systems in future intelligent transportation applications. Full article
(This article belongs to the Section Innovative Urban Mobility)
Show Figures

Figure 1

Back to TopTop