Review of Physics-Informed Neural Networks: Challenges in Loss Function Design and Geometric Integration
Abstract
Share and Cite
Plankovskyy, S.; Tsegelnyk, Y.; Shyshko, N.; Litvinchev, I.; Romanova, T.; Velarde Cantú, J.M. Review of Physics-Informed Neural Networks: Challenges in Loss Function Design and Geometric Integration. Mathematics 2025, 13, 3289. https://doi.org/10.3390/math13203289
Plankovskyy S, Tsegelnyk Y, Shyshko N, Litvinchev I, Romanova T, Velarde Cantú JM. Review of Physics-Informed Neural Networks: Challenges in Loss Function Design and Geometric Integration. Mathematics. 2025; 13(20):3289. https://doi.org/10.3390/math13203289
Chicago/Turabian StylePlankovskyy, Sergiy, Yevgen Tsegelnyk, Nataliia Shyshko, Igor Litvinchev, Tetyana Romanova, and José Manuel Velarde Cantú. 2025. "Review of Physics-Informed Neural Networks: Challenges in Loss Function Design and Geometric Integration" Mathematics 13, no. 20: 3289. https://doi.org/10.3390/math13203289
APA StylePlankovskyy, S., Tsegelnyk, Y., Shyshko, N., Litvinchev, I., Romanova, T., & Velarde Cantú, J. M. (2025). Review of Physics-Informed Neural Networks: Challenges in Loss Function Design and Geometric Integration. Mathematics, 13(20), 3289. https://doi.org/10.3390/math13203289