Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = adaptive multi–phase charging

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1450 KB  
Article
A New Wide-Area Backup Protection Algorithm Based on Confidence Weighting and Conflict Adaptation
by Zhen Liu, Wei Han, Baojiang Tian, Gaofeng Hao, Fengqing Cui, Xiaoyu Li, Shenglai Wang and Yikai Wang
Electronics 2025, 14(20), 4032; https://doi.org/10.3390/electronics14204032 - 14 Oct 2025
Viewed by 419
Abstract
To alleviate the communication burden of wide-area protection and enhance the fault tolerance of multi-source criteria, this paper introduces an improved wide-area backup protection method based on multi-source information fusion. Initially, the variation characteristics of bus sequence voltages after a fault are utilized [...] Read more.
To alleviate the communication burden of wide-area protection and enhance the fault tolerance of multi-source criteria, this paper introduces an improved wide-area backup protection method based on multi-source information fusion. Initially, the variation characteristics of bus sequence voltages after a fault are utilized to screen suspected fault lines, thereby reducing communication traffic. Subsequently, four basic probability assignment functions are constructed using the polarity of zero-sequence current charge, the polarity of phase-difference current charge, and the starting signals of Zone II/III distance protection from the local and adjacent lines. The confidence of each probability function is evaluated using normalized information entropy, while consistency is analyzed via Gaussian similarity, enabling dynamic allocation of fusion weights. Additionally, a conflict adaptation factor is designed to adjust the fusion strategy dynamically, improving fault tolerance in high-conflict scenarios and mitigating the impact of abnormal single criteria on decision results. Finally, the fused fault probability is used to identify the fault line. Simulation results based on the IEEE 39-bus model demonstrate that the proposed algorithm can accurately identify fault lines under different fault types and locations and remains robust under conditions such as information loss and protection maloperation or failure. Full article
(This article belongs to the Special Issue Advanced Online Monitoring and Fault Diagnosis of Power Equipment)
Show Figures

Figure 1

33 pages, 8005 KB  
Article
A Decoupled Two-Stage Optimization Framework for the Multi-Objective Coordination of Charging Efficiency and Battery Health
by Xin Yi, Lingxia Shi, Xiaoyang Chen and Xu Lei
Energies 2025, 18(19), 5180; https://doi.org/10.3390/en18195180 - 29 Sep 2025
Viewed by 528
Abstract
A fundamental challenge in lithium-ion battery charging is the inherent trade–off between charging speed and battery health. Fast charging tends to accelerate battery degradation, while slow charging extends downtime and intensifies range anxiety, heightening concerns over inadequate driving range during operation. This contradiction [...] Read more.
A fundamental challenge in lithium-ion battery charging is the inherent trade–off between charging speed and battery health. Fast charging tends to accelerate battery degradation, while slow charging extends downtime and intensifies range anxiety, heightening concerns over inadequate driving range during operation. This contradiction has become a key bottleneck restricting the advancement of electric vehicles. In response to the limitations of conventional charging strategies and optimization methods, which typically intensify this trade–off, this study proposes a novel two–stage fast charging optimization strategy for lithium–ion batteries. The proposed method first introduces a hybrid clustering algorithm that combines the canopy algorithm with bisecting K–means to achieve adaptive SOC staging. This staging is guided by the nonlinear characteristics of the internal resistance with respect to the state of charge (SOC), allowing for a data–driven division of charging phases. Following staging, a closed–loop optimization framework is developed. A wavelet neural network (WNN) is employed to precisely capture and approximate the nonlinear characteristics of the charging process for performance prediction, upon which a multi–strategy enhanced multi–objective particle swarm optimization (MOPSO) algorithm is applied to efficiently search for Pareto–optimal solutions that balance charging time and ohmic loss. In addition, an active learning mechanism is incorporated to refine the WNN using selectively sampled data iteratively, thereby improving prediction accuracy and the robustness of the optimization process. Experimental results demonstrate that when the SOC reaches 70%, the proposed method shortens the charging time by 12.5% and reduces ohmic loss by 31% compared with the conventional constant current–constant voltage (CC–CV) strategy, effectively achieving a balance between charging efficiency and battery health. Full article
Show Figures

Figure 1

39 pages, 13215 KB  
Article
Adaptive Variable Universe Fuzzy Droop Control Based on a Novel Multi-Strategy Harris Hawk Optimization Algorithm for a Direct Current Microgrid with Hybrid Energy Storage
by Chen Wang, Shangbin Jiao, Youmin Zhang, Xiaohui Wang and Yujun Li
Energies 2024, 17(21), 5296; https://doi.org/10.3390/en17215296 - 24 Oct 2024
Cited by 6 | Viewed by 1775
Abstract
In the off-grid photovoltaic DC microgrid, traditional droop control encounters challenges in effectively adjusting the droop coefficient in response to varying power fluctuation frequencies, which can be influenced by factors such as line impedance. This paper introduces a novel Multi-strategy Harris Hawk Optimization [...] Read more.
In the off-grid photovoltaic DC microgrid, traditional droop control encounters challenges in effectively adjusting the droop coefficient in response to varying power fluctuation frequencies, which can be influenced by factors such as line impedance. This paper introduces a novel Multi-strategy Harris Hawk Optimization Algorithm (MHHO) that integrates variable universe fuzzy control theory with droop control to develop an adaptive variable universe fuzzy droop control strategy. The algorithm employs Fuch mapping to evenly distribute the initial population across the solution space and incorporates logarithmic spiral and improved adaptive weight strategies during both the exploration and exploitation phases, enhancing its ability to escape local optima. A comparative analysis against five classical meta-heuristic algorithms on the CEC2017 benchmarks demonstrates the superior performance of the proposed algorithm. Ultimately, the adaptive variable universe fuzzy droop control based on MHHO dynamically optimizes the droop coefficient to mitigate the negative impact of internal system factors and achieve a balanced power distribution between the battery and super-capacitor in the DC microgrid. Through MATLAB/Simulink simulations, it is demonstrated that the proposed adaptive variable universe fuzzy droop control strategy based on MHHO can limit the fluctuation range of bus voltage within ±0.75%, enhance the robustness and stability of the system, and optimize the charge and discharge performance of the energy storage unit. Full article
Show Figures

Figure 1

23 pages, 10195 KB  
Article
A Non-Dissipative Equalizer with Fast Energy Transfer Based on Adaptive Balancing Current Control
by Shun-Chung Wang, Chun-Yu Liu and Yi-Hua Liu
Electronics 2020, 9(12), 1990; https://doi.org/10.3390/electronics9121990 - 24 Nov 2020
Cited by 7 | Viewed by 2664
Abstract
In this study, an active inductive equalizer with fast energy transfer based on adaptive balancing current control is proposed to rapidly equilibrate lithium-ion battery packs. A multiphase structure of equalizer formed by many specific parallel converter legs (PCLs) with bidirectional energy conversion serves [...] Read more.
In this study, an active inductive equalizer with fast energy transfer based on adaptive balancing current control is proposed to rapidly equilibrate lithium-ion battery packs. A multiphase structure of equalizer formed by many specific parallel converter legs (PCLs) with bidirectional energy conversion serves as the power transfer stage to make the charge shuttle back and forth between the cell and sub-pack or sub-pack and sub-pack more flexible and efficient. This article focuses on dealing with the problem of slow balancing rate, which inherently arises from the reduction of balancing current as the voltage difference between the cells or sub-packs decreases, especially in the later period of equalization. An adaptive varied-duty-cycle (AVDC) algorithm is put forward here to accelerate the balance process. The devised method has taken the battery nonlinear behavior and the nonideality of circuit component into consideration and can adaptively modulate the duty cycle with the change of voltage differences to maintain balancing current nearly constant in the whole equilibrating procedure. Test results derived from simulations and experiments are provided to demonstrate the validity and effectiveness of the equalizer prototype constructed. Comparing with the conventional fixed duty cycle (FDC) method, the improvements of 68.3% and 8.3% in terms of balance time and efficiency have been achieved. Full article
(This article belongs to the Special Issue Application of Electronic Devices on Intelligent System)
Show Figures

Figure 1

22 pages, 2992 KB  
Article
Quantitative Methods to Support Data Acquisition Modernization within Copper Smelters
by Alessandro Navarra, Ryan Wilson, Roberto Parra, Norman Toro, Andrés Ross, Jean-Christophe Nave and Phillip J. Mackey
Processes 2020, 8(11), 1478; https://doi.org/10.3390/pr8111478 - 17 Nov 2020
Cited by 17 | Viewed by 4779
Abstract
Sensors and process control systems are essential for process automation and optimization. Many sectors have adapted to the Industry 4.0 paradigm, but copper smelters remain hesitant to implement these technologies without appropriate justification, as many critical functions remain subject to ground operator experience. [...] Read more.
Sensors and process control systems are essential for process automation and optimization. Many sectors have adapted to the Industry 4.0 paradigm, but copper smelters remain hesitant to implement these technologies without appropriate justification, as many critical functions remain subject to ground operator experience. Recent experiments and industrial trials using radiometric optoelectronic data acquisition, coupled with advanced quantitative methods and expert systems, have successfully distinguished between mineral species in reactive vessels with high classification rates. These experiments demonstrate the increasing potential for the online monitoring of the state of a charge in pyrometallurgical furnaces, allowing data-driven adjustments to critical operational parameters. However, the justification to implement an innovative control system requires a quantitative framework that is conducive to multiphase engineering projects. This paper presents a unified quantitative framework for copper and nickel-copper smelters, which integrates thermochemical modeling into discrete event simulation and is, indeed, able to simulate smelters, with and without a proposed set of sensors, thus quantifying the benefit of these sensors. Sample computations are presented, which are based on the authors’ experiences in smelter reengineering projects. Full article
(This article belongs to the Special Issue Process Modeling in Pyrometallurgical Engineering)
Show Figures

Figure 1

26 pages, 17366 KB  
Article
Single-Phase 13-Level Power Conditioning System for Peak Power Reduction of a High-Speed Railway Substation
by Kyoung-min Kwon and Jaeho Choi
Energies 2019, 12(23), 4405; https://doi.org/10.3390/en12234405 - 20 Nov 2019
Cited by 3 | Viewed by 3066
Abstract
The control and operation of a single-phase 13-level power conditioning system (PCS) for peak power reduction of a high-speed railway substation (HSRS) are proposed. This PCS is a single-phase 3100 V, 2 MVA 13-level H-bridge multi-level inverter structure. It has excellent power quality. [...] Read more.
The control and operation of a single-phase 13-level power conditioning system (PCS) for peak power reduction of a high-speed railway substation (HSRS) are proposed. This PCS is a single-phase 3100 V, 2 MVA 13-level H-bridge multi-level inverter structure. It has excellent power quality. It is easy to serialize by voltage. In addition, the DC bus power of each cell inverter is supplied by lithium-ion batteries. The generalized reduction gradient optimization algorithm based on past load pattern is applied to the power management system for peak power reduction of HSRS. The phase detector and power controller for the control of a single-phase PCS based on virtually coordinated axes using an all-pass filter are expected to be robust to external disturbances with fast response characteristics. This study also proposes an adapted select switch (ASS) method that can change the switching depending on the operation state of PCS and the state of charge (SOC) of the battery to minimize battery imbalance by controlling each cell inverter of the H-bridge. The validity of the proposed system was confirmed by PSiM simulation and experiments using a demonstration system of 6 MW PCS and 2.68 MWh batteries at one of Gyeongbu high-speed line substations in Korea. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Graphical abstract

13 pages, 3334 KB  
Article
A High-Efficiency Low-Power Chip-Based CMOS Liquid Crystal Driver for Tunable Electro-Optic Eyewear
by Hai Deng and Guoqiang Li
Electronics 2019, 8(1), 14; https://doi.org/10.3390/electronics8010014 - 22 Dec 2018
Cited by 2 | Viewed by 3922
Abstract
A high-efficiency low-power chip-based liquid crystal (LC) driver has been successfully designed and implemented for adaptive electro-optic eyewear including tunable vision correction devices (eyeglass, contact lens, intraocular lens, occluder, and prism), phoropter, iris, head-mounted display, and 3D imaging. The driver can generate a [...] Read more.
A high-efficiency low-power chip-based liquid crystal (LC) driver has been successfully designed and implemented for adaptive electro-optic eyewear including tunable vision correction devices (eyeglass, contact lens, intraocular lens, occluder, and prism), phoropter, iris, head-mounted display, and 3D imaging. The driver can generate a 1 kHz bipolar square wave with magnitude tunable from 0 V to 15 V to change the lens focus adaptively. The LC driver output magnitude is controlled by a reference DC voltage that is manually tunable between 0 and 3 V. A multi-mode 1×/2×/3×/4×/5× charge pump is developed for DC-DC conversion to expand the output range with a fast-sink function implemented to regulate the charge pump output. In addition, a new four-phase H-bridge driving scheme is employed to improve the DC/AC inverter efficiency. The LC driver has been successfully implemented and tested as an IC chip (8.6 mm × 8.6 mm) using AMS 0.18 μm High-Voltage CMOS technology. Full article
(This article belongs to the Section Microelectronics)
Show Figures

Figure 1

25 pages, 416 KB  
Article
A Comparison of QM/MM Simulations with and without the Drude Oscillator Model Based on Hydration Free Energies of Simple Solutes
by Gerhard König, Frank C. Pickard, Jing Huang, Walter Thiel, Alexander D. MacKerell, Bernard R. Brooks and Darrin M. York
Molecules 2018, 23(10), 2695; https://doi.org/10.3390/molecules23102695 - 19 Oct 2018
Cited by 39 | Viewed by 7832
Abstract
Maintaining a proper balance between specific intermolecular interactions and non-specific solvent interactions is of critical importance in molecular simulations, especially when predicting binding affinities or reaction rates in the condensed phase. The most rigorous metric for characterizing solvent affinity are solvation free energies, [...] Read more.
Maintaining a proper balance between specific intermolecular interactions and non-specific solvent interactions is of critical importance in molecular simulations, especially when predicting binding affinities or reaction rates in the condensed phase. The most rigorous metric for characterizing solvent affinity are solvation free energies, which correspond to a transfer from the gas phase into solution. Due to the drastic change of the electrostatic environment during this process, it is also a stringent test of polarization response in the model. Here, we employ both the CHARMM fixed charge and polarizable force fields to predict hydration free energies of twelve simple solutes. The resulting classical ensembles are then reweighted to obtain QM/MM hydration free energies using a variety of QM methods, including MP2, Hartree–Fock, density functional methods (BLYP, B3LYP, M06-2X) and semi-empirical methods (OM2 and AM1 ). Our simulations test the compatibility of quantum-mechanical methods with molecular-mechanical water models and solute Lennard–Jones parameters. In all cases, the resulting QM/MM hydration free energies were inferior to purely classical results, with the QM/MM Drude force field predictions being only marginally better than the QM/MM fixed charge results. In addition, the QM/MM results for different quantum methods are highly divergent, with almost inverted trends for polarizable and fixed charge water models. While this does not necessarily imply deficiencies in the QM models themselves, it underscores the need to develop consistent and balanced QM/MM interactions. Both the QM and the MM component of a QM/MM simulation have to match, in order to avoid artifacts due to biased solute–solvent interactions. Finally, we discuss strategies to improve the convergence and efficiency of multi-scale free energy simulations by automatically adapting the molecular-mechanics force field to the target quantum method. Full article
Show Figures

Figure 1

13 pages, 4438 KB  
Article
An AST-ELM Method for Eliminating the Influence of Charging Phenomenon on ECT
by Xiaoxin Wang, Hongli Hu, Huiqin Jia and Kaihao Tang
Sensors 2017, 17(12), 2863; https://doi.org/10.3390/s17122863 - 9 Dec 2017
Cited by 5 | Viewed by 4079
Abstract
Electrical capacitance tomography (ECT) is a promising imaging technology of permittivity distributions in multiphase flow. To reduce the effect of charging phenomenon on ECT measurement, an improved extreme learning machine method combined with adaptive soft-thresholding (AST-ELM) is presented and studied for image reconstruction. [...] Read more.
Electrical capacitance tomography (ECT) is a promising imaging technology of permittivity distributions in multiphase flow. To reduce the effect of charging phenomenon on ECT measurement, an improved extreme learning machine method combined with adaptive soft-thresholding (AST-ELM) is presented and studied for image reconstruction. This method can provide a nonlinear mapping model between the capacitance values and medium distributions by using machine learning but not an electromagnetic-sensitive mechanism. Both simulation and experimental tests are carried out to validate the performance of the presented method, and reconstructed images are evaluated by relative error and correlation coefficient. The results have illustrated that the image reconstruction accuracy by the proposed AST-ELM method has greatly improved than that by the conventional methods under the condition with charging object. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

Back to TopTop